

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK - 1 -

OSEK/VDX

Binding Specification

Version 1.4.2

July 15th, 2004

This document is an official release and replaces all previously distributed documents. The OSEK group retains the
right to make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in
writing from the OSEK/VDX steering committee.

OSEK/VDX BD 1.4.2 © by OSEK - 2 -

What is OSEK/VDX?
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for
an open-ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and
network management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means „Vehicle Distributed eXecutive“. The functionality of OSEK operating
system was harmonised with VDX. For simplicity OSEK will be used instead of OSEK/VDX
in the document.

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 3

Motivation
• High, recurring expenses in the development and variant management of non-

application related aspects of control unit software.
• Incompatibility of control units made by different manufacturers due to different

interfaces and protocols.

Goal
Support of the portability and reusability of the application software by:
• Specification of interfaces which are abstract and as application-independent as

possible, in the following areas: real-time operating system, communication and
network management.

• Specification of a user interface independent of hardware and network.
• Efficient design of architecture: The functionality shall be configurable and scaleable, to

enable optimal adjustment of the architecture to the application in question.
• Verification of functionality and implementation of prototypes in selected pilot projects.

Advantages
• Clear savings in costs and development time.
• Enhanced quality of the software of control units of various companies.
• Standardised interfacing features for control units with different architectural designs.
• Sequenced utilisation of the intelligence (existing resources) distributed in the vehicle,

to enhance the performance of the overall system without requiring additional hardware.
• Provides independence with regards to individual implementation, as the specification

does not prescribe implementation aspects.

Scope of the document :
As the standardisation of requirements that are applicable to different OSEK/VDX
specifications should not be replicated within the different specifications, this document is
therefore set-up to collate all requirements that are owned by the different specifications.
This document also provides an overall description of the OSEK/VDX specifications set.

This binding specification is therefore a ‘normative’ document and intention is laid to prevent
a divergence of the OSEK/VDX specifications by giving the possibility to refer to a single
binding document.

OSEK/VDX BD 1.4.2 © by OSEK - 4 -

Table of Contents

1 GENERAL DESCRIPTION (INFORMATIVE) ..5

2 BINDINGS CONFIGURATION (NORMATIVE) ...9

2.1 BINDING INDEX OF OSEK/VDX SPECIFICATIONS :...9
2.2 BINDING INDEX OF OSEK/VDX CERTIFICATION PLANS : ...9

3 COMMON REQUIREMENTS SPECIFICATION (NORMATIVE)...10

3.1 DEFINITION OF ERROR CODES...10
3.2 DEFINITION OF STATUSTYPE..10
3.3 SUPPORT OF ‘INTERNAL COMMUNICATION’ ..11

4 GLOSSARY (INFORMATIVE)...12

5 HISTORY ...24

List of Figures

FIGURE 1-1: LAYER MODEL OF OSEK/VDX WITH OSEK OS ..5
FIGURE 1-2 LAYER MODEL OF OSEK/VDX WITH OSEKTIME OS...6

List of Tables

TABLE 2-1 : BINDING INDEX OSEK/VDX SPECIFICATIONS ..9
TABLE 2-2 : BINDING INDEX OSEK CERTIFICATION PLANS ..9

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 5

1 General description (informative)
The OSEK/VDX specification set consists of 4 normative documents that define the
requirements of two choices of operating systems (real-time executive for ECU’s) with two
choices of communication features (data exchange within and between ECU’s) linked to the
respective operating systems, and network management strategies (configuration
determination and monitoring).

OSEK Operating System

Interaction Layer

Network Layer

Data Link Layer

OSEK/VDX

Network
Management

OSEK COM

Bus Communication Hardware

Application

Figure 1-1: Layer model of OSEK/VDX with OSEK OS

Bus I/O Driver

OSEKtime Operating System

OSEKtime FTCom Layer

Application

Bus I/O Driver

Fault-Tolerant Subsystem

OSEK/VDX
Network

Management

Message Filtering Layer

Fault Tolerant Layer

Application Layer

Interaction Layer

Communication Subsystem

Time
Service

Bus I/O Driver

CNI Driver

Bus Communication HardwareBus Communication Hardware

Figure 1-2 Layer model of OSEK/VDX with OSEKtime OS

OSEK/VDX operating system (OS)

The specification of the OSEK/VDX OS provides a pool of services and processing
mechanisms. The operating system serves as a basis for the controlled real-time execution of
concurrent application and provides their environment on a processor. The architecture of the
OSEK/VDX OS distinguishes three processing levels: interrupt level, a logical level for
operating systems activities and task level. The interrupt level is assigned higher priorities
than the task level. In addition to the management of the processing levels, operating system
services are provided for functionality like task management, event management, resource
management, counter, alarm and error treatment.

OSEK/VDX communication (COM)

The communication specification provides interfaces for the transfer of data within vehicle
networks systems. This communication takes place between and within network stations
(ECU’s). The positioning of OSEK/VDX COM within the OSEK/VDX architecture is
represented in Figure 1-1. It shows the interface with the application, OSEK/VDX network
management and the hardware communication bus. This specification defines an interaction
layer and requirements to the underlying network layer and/or data link layer. The interaction
layer provides the application programming interface (API) of OSEK/VDX COM to support
the transfer of messages within and between network stations. For network communication,
the interaction layer uses services provided by the lower layers. ECU-internal communication
is handled by the interaction layer only.

OSEK/VDX BD 1.4.2 © by OSEK - 6 -

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 7

OSEK/VDX OSEKtime – Operating System

The OSEKtime operating system provides the necessary services to support distributed fault-
tolerant highly dependable real-time applications (e.g., start-up of the system, message
handling, state message interface, interrupt processing, synchronisation and error handling).

The operating system is built according to the user's configuration instructions at system
generation time. The operating system cannot be modified later at execution time.

Described in the operating system specification is also the Time Service specification. The
Time Services support the synchronisation of the task execution due to a global time base
during system start-up and repeatedly during normal operation (e.g., at every end of the
dispatching table). The Time Service functionality are usually close connected to the
communication layer, therefore the Time Service is implemented in FTCom.

If the functionality of both OSEKtime OS and OSEK OS is needed, it is possible to run both
systems in parallel (not shown in Figure 1-2).

OSEK/VDX Fault-Tolerant Communication FTCom

FTCom is divided into the layers: Application, Message Filtering, Fault Tolerant, and
Interaction. The Application layer provides the Application Programming Interface (API).
The Message Filtering layer provides mechanisms for message filtering. The Fault Tolerant
layer provides services required to support the fault-tolerant functionality, that includes
judgement mechanisms for message instance management and support of message status
information. The Interaction layer provides services for the transfer of message instances via
network: Resolves issues connected with the presentation of a message instance on different
hosts (e.g. different byte ordering), provides a message instance packing/unpacking service
and supports a message instance status information. For efficiency reasons the Filter and Fault
Tolerant layer are optional.

OSEK/VDX network management (NM)

Network serves as a basis for new distributed control functions that are independent of local
ECU platforms. As a consequence of networking, the local station behaviour influences and
depends on the global behaviour, and vice versa. The mutual influences and dependencies
often require network wide negotiated management. In order to guarantee the reliability and
safety of a distributed system, the OSEK/VDX NM gives support for several of such
management tasks. The basic concept of OSEK/VDX NM is monitoring network stations.
Two alternatives monitoring mechanisms are offered: direct and indirect station monitoring.
Direct monitoring is performed by a dedicated communication of the network management.
Direct monitoring of the nodes may be impossible or undesirable. This could be the case for
example for very simple or time critical applications. The mechanism of indirect monitoring
is therefore available. It is based on the use of monitored application messages. This indirect
monitoring is limited to nodes that send messages in the course of normal operation.

OSEK/VDX Implementation Language (OIL)

OSEK/VDX BD 1.4.2 © by OSEK - 8 -

To reach the original goal of the OSEK/VDX project in having portable software, a way of
describing an OSEK/VDX system is defined. This is the motivation for definition of a
standardised OSEK/VDX Implementation language, called OIL.

OSEK/VDX Run Time Interface (ORTI)

To provide debugging support on the level of OSEK objects, it is necessary to have debuggers
available that are capable of displaying and debugging OSEK components. The ORTI
specification provides an interface for debugging and monitoring tools to access OSEK
objects in target memory. Tools can evaluate internal data structures of OSEK objects and
their location in memory. ORTI is consisting of a language to describe kernel objects (KOIL,
Kernel Object Interface Language) and a description of OSEK specific objects and attributes.

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 9

2 Bindings configuration (normative)
Multiple bindings of the OSEK/VDX specifications are available. Each reflects development
efforts resulting from OSEK/VDX evaluations and introduction of new requirements.
Interfaces between the OSEK/VDX specifications are guaranteed within the following
binding sets. The following tables list the issues of all OSEK/VDX specifications applicable
to each of the two binding references: on one hand configuration of OSEK/VDX
specifications (referred to as ‘SB’) and on the other hand of OSEK/VDX certification plans
(referred to as ‘CB’).

2.1 Binding index of OSEK/VDX specifications :

Specification binding identifier: SB0 SB1 SB2 SB3 SB4 SB5 SB6
Binding - - - 1.2 1.3 1.4 1.5

Operating System (OS) 1.0 2.0r1 2.0r1 2.1r1 2.2 2.2,
2.2.1

2.2,
2.2.1,
2.2.2

Communication (COM) 1.0 2.0a 2.1r1 2.2.2 2.2.2 3.0,
3.0.1

3.0,
3.0.1

Network management (NM) 1.0 2.1 2.5 2.5.1 2.5.1 2.5.1,
2.5.2

2.5.1,
2.5.2,
2.5.3

OSEK Impl. Language (OIL) - 2.0 2.1 2.2 2.3 2.4 2.5
OSEKtime OS / FTCOM 1.0 1.0 1.0 1.0

Table 2-1 : Binding index OSEK/VDX specifications

Note: OS 2.2.1/2, COM 3.0.1 and NM 2.5.1/2 are documentation updates with no functional
changes, to reflect wording changes done during ISO standardisation (ISO 17356).

2.2 Binding index of OSEK/VDX certification plans :

Certification binding identifier: CB0 CB1 CB2 CB3 CB4 CB5 CB6
Conformance methodology - 2.0 2.0 3.0 4.0 4.5 4.5

OS test plan - 2.0 2.0 3.0 4.0 4.5 4.5

COM test plan (internal comm.) - - 2.0 3.0 4.0 4.5 4.5

COM test plan (external comm.) - - - - - - -

NM test plan - - 2.0 3.0 4.0 4.5 4.5

OSEKtime test plan - - - -

Table 2-2 : Binding index OSEK certification plans

OSEK/VDX BD 1.4.2 © by OSEK - 10 -

3 Common requirements specification (normative)

3.1 Definition of error codes

The different parts of OSEK/VDX (e.g. OSEK OS, OSEK COM) specify return codes of
system functions to indicate different conditions which can arise during performing the
system function. These return codes of type StatusType are defined as define-variables in the
respective documentation. However, because these return codes can not be seen locally (e.g.
they are used as input parameter to ShutdownOS), unique values have to be defined across the
different specifications.

To accommodate this, ranges of error code values have been defined which are assigned to
the different parts of the specification. Each range consists of 32 values. Within each range,
the first up to 16 values are consecutively defined as standard return values. Starting with the
second half of the range, the second 16 values may be defined consecutively to inform about
detection of implementation specific additional errors (e.g. stack overflow, corruption of
internal lists etc.).

Within the first range, the value ‘0’ (E_OK) has a special meaning. It indicates the successful
completion of a system function without any specific return indication.

The ranges are assigned as follows:

0

1 to 31

32 to 63

64 to 95

96 to 127

128 to 159

160 to 255

E_OK

OSEK OS error codes

OSEK COM error codes

OSEK NM error codes

OSEKtime OS error codes

OSEKtime FTCom error codes

OSEK RESERVED

3.2 Definition of StatusType

The data type StatusType is used within all parts of OSEK/VDX. To be able to combine
different parts of OSEK/VDX from different supplies (e.g. OSEK COM from supplier A,
OSEK NM from supplier B), the definition of this type has to be handled with care to avoid
conflicts.

Conflicts can arise if the definitions are different between the different parts of OSEK/VDX.
Moreover, even if the definitions are the same, the compiler will have to create an error if the
same type is defined more than once in one translation unit.

Therefore, the definition of StatusType and of the constant E_OK have to be done as follows
in all parts of OSEK:

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 11

#ifndef STATUSTYPEDEFINED

#define STATUSTYPEDEFINED

typedef unsigned char StatusType;

#define E_OK 0

#endif

These definitions have to be done in the header files supplied by the OSEK suppliers.

Please note that, if StatusType is not set to ‘unsigned char’, there is no guarantee that
implementations of different OSEK parts by different suppliers will be able to coexist.

3.3 Support of ‘internal communication’

The definition of messages for internal, external and internal-external communication must
be consistent and guaranteed. To cope with the situation that both kernels, i.e. COM and OS,
are linked within a system, rules are set up clarifying which kernel handles internal
communication.

If both COM and OS kernels are present but one of CCCA or CCCB only is to be supported
(no application message use external communication) then the OSEK OS kernel shall provide
the functionality to handle internal messages, i.e. those using internal communication.

If both COM and OS kernels are present but one of CCC0 onwards is to be supported to
handle external communication in addition to internal communication then the OSEK COM
kernel shall provide the functionality to handle internal messages, i.e. those using internal
communication.

Thus, it is guaranteed that definitions of data types used within internal and external message
handling are consistent within a system.

To internally assure that the stated rules are followed, a #define symbol
LOCALMESSAGESONLY is defined. Internal communication within OSEK OS must be
implemented if this #define symbol is set.

The #define symbol LOCALMESSAGESONLY shall be defined by the tool which generates
a system out of an OIL file. As long as the definition of messages in OIL has not been
completed, other means of definition may be used.

OSEK/VDX BD 1.4.2 © by OSEK - 12 -

4 Glossary (INFORMATIVE)
1:1 Connection
logical communication channel between a transmitter and a receiver. A message is sent by exactly
one transmitter and is received by exactly one receiver

1:N Connection
logical communication channel between a transmitter and N receivers. A message is sent by exactly
one transmitter and is received by N receivers

Acceptance Filtering
mechanism which decides whether each received protocol frame is to be taken into account by the
local Node or ignored

Activate
state transition of a task from suspended to ready. The transition is achieved by a system service

Actual Configuration
set of all operable nodes (see operability of a node) to which communication access is possible

Address-related Communication
special kind of communication between nodes using node addresses (see node addressing). Each
address-related communication message contains certain data and - either explicitly or implicitly - the
node address of the transmitter and the receiver. The communication of the network management is
completely based on address-related communication

Alarm
alarm is an association between a counter and a task, event or callback. An alarm expires when a
predefined counter value is reached. The expiry value can be defined relative to the current counter
value or can be an absolute value. Alarms can be defined to be either single-shot or cyclic. An alarm
is statically assigned at system generation time to: one counter and a task, event or alarm callback
routine

Alarm callback
alarm callback routine is a short function provided by the application that gets called when the alarm
expires but before any task is activated or event set

Alarm Management
alarm management is based on the counter concept. It lets the user link alarm callbacks, task
activation or event setting to counter values. The link is done by use of alarms

Alive Message
dedicated NM message. An alive message is used to announce an initialised and operable node (see
operability of a node) for integration in the actual configuration

API
Abbreviation of "Application Program Interface", the description of the application's interface to the
operating system, communications and network management functions

Application errors
error where the operating system can not execute the requested service correctly, but assumes the
correctness of its internal data. In this case, centralised error treatment is called

Arbitration
mechanism which guarantees that a simultaneous access made by multiple stations results in
contention where one frame will survive uncorrupted

Basic Conformance Class
conformance Class of the OSEK operating system in which only Basic Tasks are admitted. Two basic
conformance classes are distinguished: BCC1 and BCC2

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 13

Basic Task
task that has a defined beginning and a defined end. Basic tasks only release the processor if they are
being terminated, the operating system is executing a higher-priority task or an interrupt occurs. A
Basic Task can only enter the task states suspended, ready and running. It is not possible for a Basic
Task to wait for an event

BCC
abbreviation of "Basic Conformance Class"

Broadcast
special case of multicast, whereby a single message is addressed to all nodes simultaneously

BNF
abbreviation of "Backus-Naur Form"

BT
abbreviation of "Basic Task"

BusOff
node is in the BusOff state when it is switched off from the bus. In the BusOff state a node can neither
send nor receive any protocol frames

CALLOUT
Callouts provide a general mechanism to customise and enhance the behaviour of the Interaction
Layer. Callouts are configured statically, are invoked in response to the passage of a message or I-
PDU and cannot be changed at run-time. The prototype for a callout allows it to return a value

CAN
abbreviation of "Controller Area Network". A protocol originally defined for use as a communication
network for control application in vehicles

CC
abbreviation of "Conformance Class"

CCC
abbreviation of “Communication Conformance Class”

Certification
purpose of certification is to determine whether an implementation is consistent with a given reference
model. The scope of this reference model has to be settled according to the objectives of the
OSEK/VDX project. All constraints necessary to fulfil these objectives must be incorporated in the
reference model

COM
abbreviation of "Communication"

COM-callback
A COM-callback routine is a short function provided by the application which can be called by the
Interaction Layer as a notification mechanism (class 1). No parameters are passed to a COM-callback
routine and it does not have a return value. A COM-callback routine runs either on interrupt level or on
task level

Communication Layer
set of all entities and elements which constitute a communication layer based on the ISO/OSI
Reference Model (ISO 7498)

OSEK/VDX BD 1.4.2 © by OSEK - 14 -

Configurability
ability to set the parameters of a system in terms of static values (e.g. number of tasks, RAM size for
stack, size of message buffer, etc.)

Confirmation
service primitive defined in the ISO/OSI Reference model (ISO 7498). With the 'confirmation' service
primitive a service provider informs a service user about the result of a preceding service request of
the service user

Conformance Class
in each module (operating system, communication, network management) a pool of services is
provided, each being divided into a number of subsets. Applications can choose to use different
subsets of the services in order to reduce demands on the CPU and memory. These subsets are
upwardly compatible and are described as conformance classes

Constructional Element
generic term for all definition and declaration services for system objects

Counter
counters are system objects that register recurring events, e.g. time, angle. A counter is represented
by a count and some counter-specific constants

CPU
abbreviation of "Central Processing Unit"

Critical Section
sequence of instructions where mutual exclusion must be ensured. Such a section is called 'critical'
because shared data is modified within it

Data Consistency
data consistency means that the content of a given message correlates unambiguously to the
operation performed onto the message by the application. This means that no unforeseen sequence
of operations may alter the content of a message hence rendering a message inconsistent with
respect to its allowed and expected value

Data Link Layer
communication layer which provides services for the transfer of I-PDUs. The data link layer consists of
the communication hardware and the communication driver software

Deadlock
state in which tasks block one another so that further processing of the tasks concerned is no longer
possible. A deadlock between two tasks occurs, e.g. if both tasks wait for the reception of a message
which is to be sent by the other task before sending its own message

Direct Node Monitoring
active monitoring of a node by another node in the network. For this purpose the monitored node
sends a NM message according to a dedicated and uniform algorithm. For the network-wide
synchronisation of NM messages a logical ring is used

Deadline Monitoring
in deadline monitoring the application is informed via the notification mechanism if: a message is not
received from another node within a specified interval, or if a request to send an I-PDU is not
completed by the DLL within a specified interval

DLL
abbreviation of "Data Link Layer"

ECC
abbreviation of "Extended Conformance Class"

ECU
abbreviation of "Electronic Control Unit" (see station)

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 15

EPROM
abbreviation of "Erasable Programmable Read Only Memory"

Error Handling
error service is provided to handle errors detected by the operating system. Its basic framework is
predefined and has to be completed by the user. This gives the user a choice of efficient centralised or
decentralised error handling

Error Hook
the error hook routine (ErrorHook) is called if a system service returns a StatusType value not equal to
E_OK. ErrorHook is also called if an error is detected during task activation or event setting

ET
abbreviation of "Extended Task"

Event
events are a method of task synchronisation. Extended tasks may suspend their execution without
terminating by waiting for events. The task continues when an appropriate event is set. Basic tasks
may not use events

Event Mechanism
means of task synchronisation by using events

Extended Conformance Class
conformance Class of the OSEK operating system in which Basic and Extended Tasks are permitted.
Two extended conformance classes are distinguished: ECC1, ECC2

Extended Task
extended tasks are distinguished from Basic Tasks by being allowed to use additional operating
system services which may result in a waiting state. An Extended Task can enter the task states
suspended, ready, running, and waiting

Fatal Error
error where the operating system can no longer assume correctness of its internal data. In this case
the operating system calls the centralised system shutdown

FIFO
abbreviation of "First In First Out"

Frame
data unit according to the data link protocol specifying the arrangement and meaning of bits or bit
fields in the sequence of transfer across the transfer medium (see data link message)

Full-preemptive Scheduling
full preemptive scheduling means that a task which is presently running may be rescheduled at any
instruction by the occurrence of trigger conditions pre-set by the operating system. Full-preemptive
scheduling will put the running task into the ready state as soon as a higher-priority task has become
ready. The preemptee's context is saved so that it can be continued at the location where it was
preempted2.54

Group Addressing
addressing of several receiver nodes in a single address-related NM message (see address-related
communication). Group addressing is implemented by using multicast connections

the message objects are identified by a local (Node-wide) reference named handle. The handle is
attached to both a logical and physical address

OSEK/VDX BD 1.4.2 © by OSEK - 16 -

Hook Routine
a user defined function which will be called by the operating system under certain circumstances and
in a defined context. Hook routines may be used for tracing or application dependent debugging
purposes, user defined extensions to context switches, and in error handling. Most operating system
services are not allowed in hook routines

IL
abbreviation for Interaction Layer

Indication
service primitive defined in the ISO/OSI Reference Model (ISO 7498). With the service primitive
'indication' a service provider informs a service user about the occurrence of either an internal event or
a service request issued by another service user

Indirect Node Monitoring
monitoring a node by "listening" to dedicated application communication messages. Indirect node
monitoring is based on monitored state messages which are sent periodically

Interaction Layer
communication layer that implements the interface between the application and other potential
communication layers (DLL, Network layers). The communication services of the interaction layer are
independent of both microcontroller and network protocol. The interaction layer enables internal and
network-wide communication by means of UnQueued messages and Queued messages

Internal Communication
exchange of messages between tasks belonging to the same node

Internal resource
internal resources are resources which are not visible to the user and therefore can not be addressed
by the system functions GetResource and ReleaseResource. They are managed strictly internally
within a clearly defined set of system functions

Interrupt
processor-specific event which can interrupt the execution of the current program section

Interrupt Latency
time between the moment an interrupt occurs and the execution of the first instruction of the Interrupt
Service Routine

Interrupt Level
processing level provided for ISRs. To keep the interrupt latency brief, only absolutely indispensable
actions should be performed at interrupt level

Interrupt Service Routine
function that provides the main processing of an interrupt

Intertask Communication
mode of information interchange between tasks. In the course of intertask communication, messages
are logically copied from the local area of a task (transmitter) to the local area of another task
(receiver)

I-PDU
collection of messages for transfer between nodes in a network. At the sending node the IL is
responsible for packing message into an I-PDU and then sending it to the DLL for transmission. At the
receiving node the DLL passes each I-PDU the IL which then unpacks the messages sending their
contents to the application

ISO/OSI Reference Model
model to standardize interfaces and protocols for communication. ISO/OSI is the abbreviation of
"International Organization for Standardization / Open Systems Interconnection" (ISO 7498)

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 17

ISR
abbreviation of "Interrupt Service Routine"

ISR Category
interrupt processing is subdivided into two categories of ISRs. ISR category 1 comprises all ISRs
which do not use operating system services and are, therefore, typically faster for entry and exit than
category 2 ISRs. Category 2 ISRs are allowed to use a restricted set of operating system services

Latency Time
time delay between the request of an activity and its execution

LIFO
abbreviation of "Last In First Out"

Limp Home
NM operating mode which is entered in case of an error which cannot be remedied

Limp Home Configuration
set of all nodes which cannot participate in direct node monitoring due to failure

Limp Home Message
dedicated NM message used for notifying a node that the system has entered the Limp Home state

Logical Ring
structure to order the nodes within a network. The nodes are arranged in terms of a ring. The logical
ring is used for the networkwide synchronisation of NM messages. In a logical ring the communication
sequence is defined independent of the network structure. Therefore each node is assigned a logical
successor. The logically first node is the successor of the logically last node in the ring. A ring
message always is sent from a node to its logical successor

Message
the fundamental unit of data transfer between an application and COM's IL, and therefore also of intra
and inter ECU communications. A Message can be 0 or more bits long and may contain some
application-specific data ranging from a bit to a large array or structure. Therefore messages can
support event and signal-based communcation as well as more complex interfaces.

Mixed-preemptive Scheduling
scheduling policy which enables the use of both scheduling policies, full-preemptive and non-
preemptive scheduling, for the execution of different tasks on the same system. The distinction is
made via a task attribute (preemptable / non-preemptable)

MSB
abbreviation of "Most Significant Bit"

Multiple Task Requesting
property of a task that allows it to have more than one activation outstanding (see activate). The
operating system receives and records activations. On terminating the task (see terminate), the
operating system checks whether any activations are outstanding. If so, the task immediately re-
enters the running state

Mutual Exclusion
to modify shared data, a task must be able to get exclusive access for a limited time, i.e. all other
tasks must be excluded to access this data. All tasks modifying shared data must be able to perform
this exclusion. Therefore it is called mutual exclusion

Network Configuration
set of nodes in the network. Within the NM two configurations are distinguished: actual configuration
and limp home configuration

OSEK/VDX BD 1.4.2 © by OSEK - 18 -

Network Management
network management serves to ensure the safety and availability of the communications network of
autonomous control units. OSEK-NM distinguishes between node-related (local) activities, e.g.
initialisation of the node, and network-related (global) activities, e.g. coordination of global NM
operating modes

NM
abbreviation of "Network Management"

NMBus-Sleep
NM operating mode. A node in NM Bus-Sleep mode does not participate in NM communication. This
mode request must be confirmed by all nodes in the network

NM-callback
An NM-callback routine is a short function provided by the application which can be called by the
Interaction Layer as a notification mechanism (class 1). A parameter can be passed to an NM-callback
routine and it does not have a return value. An NM-callback routine runs either on interrupt level or on
task level

NM Infrastructure
All order structures (e.g. logical ring-) and addressing mechanisms (Window), which are accessed by
the network management. This especially includes a communication infrastructure for the exchange of
NM messages, so that each node is able to communicate with any other node on the network in a
straightforward fashion

NMLimp Home
NM operating mode which is entered in case of an error which cannot be remedied

NM Message
NMPDU exchanged between NM entities. The NM distinguishes between regular ring messages, alive
messages and limp home messages

NM Mode
see NM operating mode

NM Operating Mode
the NM can enter different local operating modes, e.g. NMoff, and global operating modes, e.g. sleep-
mode. For each mode a specific behaviour of the NM is defined. The transition to global operating
mode requires a network-wide coordination, i.e. the local NM of all nodes has to enter the same global
mode. Local operating modes only affect the local NM of a node and are transparent for all the other
nodes. Operating modes of the application are not managed by the NM

NMSleep Mode
NM operating mode. A node in NM Sleep mode does not participate in NM communication. The NM
distinguishes between a local sleep mode and a global sleep mode. In both cases the transition into
the sleep mode is notified network-wide. The difference is that a local sleep mode request must not be
confirmed by the other nodes in the network. Whereas a global sleep mode request must be
confirmed by all nodes in the network

NMPDU
abbreviation of NM Protocol Data Unit. A NMPDU represents an NM message communicated
between the sending and receiving NM entities. The NMPDU contains an address field with source
and destination address, a control field with an opcode and an optional data field with application
specific ring data

Node
network topological entity. Nodes are connected by data links forming the network. Each node is
separately addressable on the network

Node Addressing
each node has a unique identification, i.e. an address, which is known in the network. The addresses
are used to transmit NM messages address-related from one node to another node. Individual node

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 19

addressing is implemented using 1:1 connections. Several nodes can be addressed using group
addressing

Non-preemptive Scheduling
scheduling policy in which a task switch is only performed via one of a selection of explicitly defined
system services (explicit rescheduling points)

Non-preemptable Task
task which can not be preempted by other tasks (see preempt). Such a task only releases the
processor at rescheduling points

Offline
state of the data link layer. In the Offline state, no application communication is possible. Only the
network management is allowed to communicate

OIL
abbreviation of "OSEK Implementation Language"

Online
(normal) state of the data link layer. Application and network management communication are
possible

Operability of a Node
station is considered operable in terms of NM, if the node participates in direct or indirect node
monitoring

OS
abbreviation of Operating System

OS Processing Level
processing level for the execution of services of the operating system. To enable optimum
coordination between the processing options of various actions, the OS distinguishes three
processing levels which are, by descending priority (high, medium, low): the interrupt level, the OS
processing level and the task level

Overrun
attempting to store data in memory beyond its capacity, e.g. Queued message object

PostTaskHook
system hook routine called upon leaving a task either due to pre-emption by another task or by
termination

Preempt
state transition of a task from running to ready. The scheduler decides to start another task. The
running task is put into the ready state. In case of a non-preemptive scheduling policy, preemption
only occurs at explicit rescheduling points

Preemptable Task
task which can be preempted by any task of higher priority (see preempt)

PreTaskHook
system hook routine called before entering or returning to a task

Priority Ceiling Protocol
mechanism used to prevent deadlocks and priority inversion in the framework of resource
management

OSEK/VDX BD 1.4.2 © by OSEK - 20 -

Protocol
formal set of conventions or rules governing the exchange of information between protocol entities.
Protocol comprises syntax and semantics of the protocol messages as well as the instructions on how
to react to them

Protocol Entity
task or a procedure for handling a protocol

Queued Message
Queued messages are contained in per-message FIFO buffers. Therefore the message at the head
of the buffer is consumed by the receive operation

Ready
task state. All functional prerequisites for a transition into the running state exist, and the task only
waits for allocation of the processor. The scheduler decides which ready task is executed next. The
state is reached via the state transitions Activate, Release and Preempt, and is exited by Start

Re-entrant
function is " re-entrant" if the same function can be called again during an interruption of its execution,
and both calls are executed correctly

Rescheduling Points
operating system calls which cause the activation of the scheduler. Rescheduling points exist not only
in full-preemptive and mixed preemptive systems, but also in non-preemptive systems, e.g. explicit call
of the scheduler, or successful termination of a task

Regular Ring Message
normal NM message containing the network status information. The regular ring message is also used
to indicate a station logoff or local sleep mode or to request for global sleep mode (see NM Sleep
Mode)

Release
state transition of a task from waiting to ready. At least one event has occurred which a task has
waited on

Reply Message
dedicated NM message for replying to the reception of a request message. The reply message can be
used by a slave of a logical star

Request
service primitive in compliance with the ISO/OSI Reference Mode (ISO 7498). With the 'request'
service primitive a service user requests a service from a service provider

Request Message
dedicated NM message for requesting the transmission of a reply message. The request message
can be used by a master of a logical star

Resource
the OSEK operating system provides resources to support task and ISR coordination by mutual
exclusion of critical sections. A task or ISR that locks a resource can not be preempted or interrupted
by any other task or ISR that also might lock that resource. The assignment of resources to tasks and
ISRs is performed at system generation time and cannot be changed by the application

Resource Management
resources are managed either implicitly (in the case of internal resources) or via a set of lock and
unlock calls

Response
service primitive defined in the ISO/OSI Reference Model (ISO 7498). The service primitive 'response'
is used by a service user in order to reply to a preceding indication from service provider

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 21

Ring data
(see NMPDU) The application is able to send and receive specific data via the NM infrastructure. The
data consistency of the data is guaranteed

Ring Message
normal NM message containing the network status information. The ring message is also used to
indicate a node local sleep mode or to request for global sleep mode (see NM Sleep Mode)

Running
task state. In the running state, the CPU is assigned to the task, so that its instructions can be
executed. Only one task can be in this state at any point in time. The state is entered by the state
transition Start and can be exited via the state transitions Wait, Preempt or Terminate

Scalability
setting the scope of capabilities of a system as determined by its functionality (see Conformance
Class)

Scheduler
the Scheduler decides whether a task switch should be made according to the selected scheduling
policy. The Scheduler can be considered to occupy a resource which can also be occupied and
released by tasks. Thus a task can block the Scheduler to achieve arbitrary periods where it is the
only task that can run

Scheduling Policy
the scheduling policy is used by the scheduler to determine whether a task may be preempted by
another tasks or not. Three Scheduling policies are distinguished: non-preemptive, full-preemptive and
mixed-preemptive scheduling

Segmented Communication
enables the transfer of application data (see I-PDU) which cannot fit into a single physical bus frame.
Data has to be disassembled into segments that are small enough to fit into bus frames. These
segments are then transferred separately and the message reassembled upon reception

Segmented Data Transfer
see Segmented communication

Semaphore
means for the synchronization of access to shared data. (see resource management)

Severe Error
error where the operating system could not achieve the requested service, but assumes the
correctness of its internal data. In this case centralized error treatment is called. Additionally the
operating system returns the error by the status information for decentralized error handling

Start
state transition of a task from ready to running. A ready task selected by the scheduler is executed

StartupHook
system hook routine called after the operating system start-up and before the scheduler is running

Suspended
task state. In the suspended state, the task is passive and does not occupy any dynamic resource. A
task can be in this state on system start-up, or can reach it via the status transition Terminate. To exit
the state, Activate the task

System Generation Services
definitions and directives which are necessary to set-up OSEK modules at compile time

OSEK/VDX BD 1.4.2 © by OSEK - 22 -

ShutdownHook
system hook routine called when a system shutdown is requested by the application or by the
operating system

Task
a task provides the framework for the execution of the application. A task can be executed
concurrently with other tasks (see Concurrency). A task is executed under the control of the Scheduler
according to the task priority assigned to it and the selected scheduling policy. A distinction is made
between Basic Tasks and Extended Task

Task Level
processing level where most application software is executed, although some is also executed in
ISRs. Tasks are executed according to the priority assigned to them and the selected scheduling
policy. Other processing levels are: Interrupt level and Operating System Level

Task Management
this comprises the following tasks: Activation (see activate) and Termination (see terminate) of tasks
as well as management of task states and task switches

Task Priority
the priority of a task is a measure for the precedence with which the task is to be executed. Initial
priorities are defined statically. However, as the application runs, tasks may change their priority (see
Priority Ceiling Protocol). Depending upon the CC, tasks of the same priority are admissible within a
system. Tasks of equal priority are started according to the order in which they are acivated

Task States
the tasks of the OSEK operating system can assume the states running, ready, waiting, and
suspended. Basic Tasks can not change to the state waiting. A task can only be in one state at any
point in time

Task Switching Time
time between the occurrence of the "task switch event" up to the execution of the first instruction of the
"new" task, i.e. including context switch

Task Switching Mechanism
mechanism, managed by the Scheduler, that performs a context switch to a selected Task

Terminate
state transition of a task from running to suspended. The running task causes its transition into the
suspended state by a system service. A task can only terminate itself

Unacknowledged Communication
the transmitter receives no data from the receiver confirming that the message has been received

Unacknowledged Data Transfer
see Unacknowledged Communication

Unidirectional Communication
data transfer mode characterised by data being exchanged only in one direction

Unqueued Message
an unqueued message is overwritten upon arrival of a new message. The receive operation reads the
last occurrence of an unqueued message. Therefore the message data can be read by the
application more than once

Unsegmented Communication
the transfer of data that fits within a single bus frame

Unsegmented Data Transfer
see Unsegmented communication

OSEK/VDX Binding Specification

OSEK/VDX BD 1.4.2 © by OSEK 23

UML
abbreviation of "Unified Modeling Language"

UUDT
abbreviation of "Unacknowledged Unsegmented Data Transfer"

Validation
ensuring the correctness of a specification

Wait
state transition of a task from running to waiting. The running task requires an event to continue
operation. Event reception causes the task to make the transition into the waiting state

Waiting
task state. A task cannot be executed (any longer), because it has to wait for at least one event. The
waiting state allows the processor to be freed and to be reassigned to a lower priority task without the
need to terminate the Extended Task. Only Extended Tasks can assume this state. The state is
reached by the status transition Wait and can be exited by Release of the task

Warning
corresponds to a return value, not equivalent to an error, giving complementary information related to
a system service execution

OSEK/VDX BD 1.4.2 © by OSEK - 24 -

5 History

Issue Description Date

1.0 Original issue 1.0 from candidate release 1 with
no requirement change.

July 28th, 2000

1.1 Replacement of COM 2.2 with COM 2.2.1 in
section 2.1.

September 11th, 2000

1.2 Replacement of OS 2.1 by OS 2.1r1 and COM
2.2.1 by COM 2.2.2 in section 2.1.

December 08th, 2000

1.3 Replacement of OS 2.1r1 by OS 2.2 and OIL
2.2 by OIL 2.3. Add OSEKtime/ORTI.

September 14th, 2001

1.4 Replaces: OIL 2.3 by OIL 2.4, COM 2.2.2 by
COM 3.0. Provision for OS 2.2.1, COM 3.0.1,
NM 2.5.2. Includes OSEK Overall Glossary.

September 6th, 2002

1.4.1 Includes editorial changes made to ISO 17356-
1 and 17356-2

January 29th, 2003

1.4.2 Includes updated specs because of ISO: OS
2.2.2, COM 3.0.x, NM 2.5.x, OIL 2.5

July 15th, 2004

	General description (informative)
	Bindings configuration (normative)
	Binding index of OSEK/VDX specifications :
	Binding index of OSEK/VDX certification plans :

	Common requirements specification (normative)
	Definition of error codes
	Definition of StatusType
	Support of ‘internal communication’

	Glossary (INFORMATIVE)
	History

