

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

ORTI 2.1.1 Part A © by OSEK Document: ORTI-A-211.doc

OSEK/VDX

OSEK Run Time Interface (ORTI)

Part A: Language Specification

Version 2.1.1

4. March 2002

This document is an official release and replaces all previously distributed documents. The OSEK group retains the
right to make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in
writing from the OSEK/VDX steering committee.

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

2 © by OSEK ORTI 2.1.1 Part A

Preface
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.
For detailed information about OSEK project goals and partners, please refer to the �OSEK
Binding Specification�.

General conventions, explanations of terms and abbreviations have been compiled in the
additional inter-project "OSEK Overall Glossary".

Regarding implementation and system generation aspects please refer to the "OSEK
Implementation Language" (OIL) specification.

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

ORTI 2.1.1 Part A © by OSEK 3

Table of Contents
1 Introduction ...4

1.1 General Remarks ..4
1.2 Motivation ..4
1.3 Benefits ...4
1.4 Organization of ORTI Specification...5
1.5 Language Definition ...5

1.5.1 Scope ...5
1.5.1.1 Representation..5
1.5.1.2 Tracing Dynamic Data ...5

1.6 Acronyms..5

2 KOIL ...6
2.1 File Structure ..6

2.1.1 Version Section ...6
2.1.2 Declaration Section ...6
2.1.3 Information Section...6

2.2 Grammar ...7
2.3 Version Section...8
2.4 Declaration Section...9
2.5 Information Section ..9
2.6 Rules ...10

3 Attributes...11
3.1 Attribute types...11

3.1.1 CTYPE ..11
3.1.2 STRING ..11
3.1.3 ENUM ...11

3.1.3.1 Links...12
3.2 Attribute Description ..13
3.3 Attribute Modifier...13

3.3.1 TOTRACE ..13

4 History...14

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

4 © by OSEK ORTI 2.1.1 Part A

1 Introduction

1.1 General Remarks

1.2 Motivation
In order to have the OSEK specification accepted by the customer it is important to have good
application development support. This leads to a shorter design cycle and quicker time to
market. In addition to good support from code generators, CASE tools and compilers it is also
necessary to have sophisticated debuggers available that are capable of displaying and
debugging the configuration of the OSEK components. For this purpose internal data of the
OSEK component has to be made available to the tool.

Since OSEK is a standard that is being supported by many different suppliers, there is a need
for a standard OSEK Run Time Interface (ORTI) to third party vendors that is valid for all
OSEK suppliers. This will decrease the amount of work necessary for widespread support of
the OSEK standard. Once a tool is �OSEK aware� for one OSEK implementation it is �OSEK
aware� for all implementations.

1.3 Benefits
The OSEK Run Time Interface (ORTI) offers the following benefits to the Tool Vendors:

• Internal operating system data is visible to the tool

• Information on Task entry and exit available (if possible)

• Information on all important properties of the OSEK objects

• One common interface for any Microcontroller Platform and any OSEK Vendor

• ASCII interface for the ORTI file makes extensions easy and manageable

ORTI offers the following benefits to the OSEK vendors.

• Support by a great variety of development tools

• One common interface to debugging tools

• Better acceptance by the customer

ORTI offers the following benefits to the OSEK customer.

• Internal operating system data is visible

• Information on all important properties of the OSEK objects

• Enhanced debug tools

• Free choice of tools

• Free choice of OSEK products

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

ORTI 2.1.1 Part A © by OSEK 5

1.4 Organization of ORTI Specification
The ORTI specification consists of parts A and B. Part A introduces the Kernel Object
Interface Language (KOIL) used by ORTI and focuses on the grammar (syntax). Part B
describes the OSEK specific (standard) objects and their semantics.

1.5 Language Definition

1.5.1 Scope
The OSEK Run Time Interface (ORTI) is intended as a universal interface for development
tools to the OSEK Operating System. However, ORTI is also suitable for other static kernel
environments. Therefore the specification has been divided into two parts. This part (A)
describes the language used to define kernel objects to a debug tool. This language is called
Kernel Object Interface Language (KOIL).

Part B describes OSEK-specific kernel objects, attributes and their semantics. So, ORTI uses
KOIL as a vehicle to pass information about kernel objects to the debugger and specifies a
number of semantic rules for standard objects, which are OSEK specific.

ORTI does not describe how the obtained data is to be represented on the screen - this is the
responsibility of the debugger.

In order to keep ORTI universal and manageable it does not contain vendor specific functions.
Information is provided via an ASCII text file. Since OSEK implementations are configured
statically, the data is available at build time.

A dynamic representation of configuration data is not necessary with OSEK and therefore not
part of ORTI.

1.5.1.1 Representation
Two types of data shall be made available to the debug tool. One type describes static
configuration data that will remain unchanged during program execution. The second type of
data shall be dynamic and this data requires to be re-evaluated each time the debugging tool
wishes to display the information. The static information is useful for display of general
information and in combination with the dynamic data. The dynamic data gives information
about the current status of the system (e.g. when halted).

1.5.1.2 Tracing Dynamic Data
A debugger can decide to keep track of some (e.g. important) dynamic data variables. For
example, it can be interesting to display the history of the �running task�. Dynamic data can
be accessed by the debug tool using two different methods � by means of run time data tracing
(typically with trace-memory) or by data access on breakpoints.

1.6 Acronyms
EBNF Extended Backus-Naur Form

KOIL Kernel Object Interface Language

ORTI OSEK Run-Time Interface

OS Operating System

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

6 © by OSEK ORTI 2.1.1 Part A

2 KOIL

2.1 File Structure
An ORTI file consists of the following parts: version section, declaration section and
information section.

2.1.1 Version Section
This section describes the version of KOIL as well as the Kernel used. In case of ORTI, the
Kernel version reflects the version number of the ORTI standard used.

2.1.2 Declaration Section
This section declares the kernel types (similar to a structure declaration in the C language)
present in the implementation. It describes the method that should be used to access and
interpret the data obtained for a kernel object of such a type. This section may also detail the
suggested display name for a given attribute.

2.1.3 Information Section
This section contains information on all kernel objects (using types from the declaration
section) that are currently available for a given system. It describes the method that shall be
used to reference or calculate each required attribute. This information is either supplied as
static values or else a formula that shall be used to calculate the required value.

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

ORTI 2.1.1 Part A © by OSEK 7

2.2 Grammar
This section describes the grammar of the Kernel Object Interface Language (KOIL) in LL(1)
using the Extended Backus-Naur Form. The terminal symbols marked with 1 are described in
the paragraph Rules in this chapter

file = version_section declaration_section information_section ;

version_section = 'VERSION' '{' koil_version kernel_version '}' ';' ;

koil_version = 'KOIL' '=' ' "2.1" ' ';' ;

kernel_version = 'OSSEMANTICS' '=' semantics_name ',' semantics_version ';' ;

declaration_section = 'IMPLEMENTATION' implementation_name
 '{' { declaration_spec } '}' ';' ;

declaration_spec = object_type '{' { attribute_decl } '}' [',' type_description] ';' ;

attribute_decl = ['TOTRACE'] attribute_type attribute_name

 [',' attribute_description] ';' ;

attribute_type = c_type | enum_type | string_type ;

c_type = 'CTYPE' [ctype_decl] ;

enum_type = 'ENUM' [ctype_decl]
 '[' enum_element { ',' enum_element } ']' ;

string_type = 'STRING';

enum_element = enum_desc '=' (constant | formula) ;

information_section = { object_def } ;

object_def = object_type object_name '{' { attribute_def } '}' ';' ;

attribute_def = attribute_name '=' formula ';' ;

implementation_name = koil_identifier1 ;

object_name = koil_identifier1 ;

object_type = koil_identifier1 ;

attribute_name = koil_identifier1 ;

link_name = koil_identifier1 ;

semantics_name = string1 ;

semantics_version = string1 ;

ctype_decl = string1 ;

enum_desc = string1 [':' link_name] ;

attribute_description = string1 ;

type_description = string1 ;

constant = (integer_constant1 | character_constant1) ;

formula = ' " ' expression ' " ' ;

expression = logical_OR_expression { '?' expression ':' expression } ;

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

8 © by OSEK ORTI 2.1.1 Part A

logical_OR_expression = logical_AND_expression { '||' logical_AND_expression } ;

logical_AND_expression = inclusive_OR_expression { '&&' inclusive_OR_expression } ;

inclusive_OR_expression = exclusive_OR_expression { '|' exclusive_OR_expression } ;

exclusive_OR_expression = AND_expression { '^' AND_expression } ;

AND_expression = equality_expression { '&' equality_expression } ;

equality_expression = relational_expression { ('==' | '!=') relational_expression } ;

relational_expression = shift_expression { ('<' | '>' | '<=' | '>=') shift_expression } ;

shift_expression = additive_expression { ('<<' | '>>') additive_expression } ;

additive_expression = multiplicative_expression { ('+' | '-') multiplicative_expression } ;

multiplicative_expression = cast_expression { ('*' | '/' | '%') cast_expression } ;

cast_expression = { '(' type_name ')' } unary_expression ;

unary_expression = postfix_expression
| unary_operator cast_expression
| 'sizeof' unary_expression
| 'sizeof' '(' type_name ')' ;

unary_operator = '&' | '*' | '+' | '-' | '~' | '!' ;

postfix_expression = primary_expression { '[' expression ']' | ('.' | '->') appl_identifier1 } ;

primary_expression = appl_identifier1 | constant | '(' expression ') ' ;

constant = integer_constant1
| character_constant1
| floating_constant1
| enumeration_constant1 ;

type_name = { type_specifier } ['*'] ;

type_specifier = 'void' | 'char' | 'short' | 'int' | 'long' | 'float' | 'double'
| 'signed' | 'unsigned' | type_def_name ;

type_def_name = appl_identifier1 ;

2.3 Version Section
In an ORTI file, the KOIL statement refers to the version used of Part A. The
OSSEMANTICS statement contains a semantics name and the SEMANTICS version (e.g.
"MYRTOS","1.0"). For ORTI-compliant OSEK kernels the semantics name must be �ORTI�
and the version refers to Part B of the ORTI specification used. For example:

VERSION
{

KOIL = "2.1"; // KOIL (Part A), Spec v2.1
OSSEMANTICS = "ORTI", "2.1"; // ORTI, Part B Spec v2.1

};

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

ORTI 2.1.1 Part A © by OSEK 9

2.4 Declaration Section
The declaration section contains all (one or more) object type declarations of a certain kernel
implementation:

IMPLEMENTATION MYOSEK
{

<object type declarations>
};

Each object type declaration contains the type of its attributes (similar like a C structure
declaration contains the type of its members). The complete set of attributes must be declared
in one single object type declaration. The attribute type informs the debugger how to access
the target memory and interpret the value for display. For example (declaration of the object
�TASK� having two ENUM type attributes):

TASK
{

ENUM
[

"RES_SCHEDULER" = 0,
"8" = 1,
"4" = 2

] PRIORITY, "Actual Prio";
ENUM
[

"READY"=0, "RUNNING"=1, "WAITING"=2, "READY"=3, "SUSPENDED"=4
] STATE, "State";

 };

2.5 Information Section
The information section consists of all (one or more) object definitions (�instantiations�).
Every object definition refers to an object type from the declaration section. The complete set
of attributes must be defined in one single object definition. The attribute definition contains
the formula (a debugger expression, see2.2) required to retrieve the value. No attribute
definition may appear that is not declared in the object type declaration. For example (defining
two �TASK� objects):

TASK SampleTaskFirst
{

PRIORITY = "osTcbActualPrio[0]";
STATE = "osTcbTaskState[0]";

};

TASK SampleTaskSecond
{

PRIORITY = "osTcbActualPrio[1]";
STATE = "osTcbTaskState[1]";

};

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

10 © by OSEK ORTI 2.1.1 Part A

2.6 Rules
An ORTI file must conform to the following:

• All objects are described using the KOIL syntax.

• Each object-type and object-name must have a unique name.

• An ORTI file may contain C++ -style comments (/* */ and //), where C++ rules apply.

• Whitespace (blank, CR, LF, TAB, comment) between terminals is ignored.

• All keywords and identifiers are case-sensitive.

• The integer_constant terminal represents a number, where the standard C convention
is used for decimal, hexadecimal and octal notation.

• The character_constant terminal follows the C definition as well, including the
support of all standard escape sequences, such as �\n�, �\t� etc.

• The floating_constant terminal follows the C definition.

• The string terminal (also known as string constant or string literal) represents a
sequence of zero or more characters surrounded by double-quotes ("). The C string
definitions apply (not including escape sequences except \� and \\). String constants can be
concatenated, as in: �aap� �noot�, being equivalent to �aapnoot�.

• The appl_identifier terminal represents any ISO/ANSI-C identifier and represents
application symbols. These symbols rely on symbolic information retrieved from the debug
information of the application and must have �external linkage� scope (e.g. global C
variables). The symbol value is only valid after the application has executed its
initialization phase (typically this is the system startup code before reaching the
applications entry point, which is main() in C). The only exception to this constraint is
when using the unary address-operator (&).

• The koil_identifier terminal represents KOIL names. The syntax of <koil_identifier>
is the same as the syntax of the ISO/ANSI-C identifier.

• A formula may contain the address of the variable or some expression that is interpreted by
the debugger to evaluate the attribute value. The formula is represented as a subset of C-
expressions.

• All formulas in the declaration section must yield the correct value immediately after
download of the application, and must yield the same value whenever calculated after
download.

• All formulas in the information section may be dynamic; tools are free to evaluate these
values as appropriate.

• The debugger should have enough information available to be able to resolve the C
expression.

• Objects and attributes defined in the declaration section need not appear in the information
section. However, objects and attributes that appear in the information section must have
been defined previously in the declaration section.

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

ORTI 2.1.1 Part A © by OSEK 11

3 Attributes

3.1 Attribute types
Any attribute type has to be declared inside an object declaration, before it may be used
(referred to) inside an object definition. An attribute type uses one of the following KOIL data
types.

3.1.1 CTYPE
CTYPE is a generic type that corresponds to the High-Level Language (HLL) debug
information type of the expression that defines the value of the attribute.

CTYPE PRIORITY;

Since some ORTI consuming tools might not have access to the full debugging information of
the application, optionally a tentative type for the attribute can be specified, as in:

CTYPE "unsigned char" PRIORITY;

This tentative type must be a valid C-type within the application, for non-ANSI type
extensions the type information must be contained in the debug information. This type could
be used as a type cast by the ORTI consuming tool, when evaluating a formula. When both the
HLL debug type information as well as the tentative type are present, the tentative type
prevails.

3.1.2 STRING
The value of the STRING attribute should be displayed by the debugger as supplied. The rule
of <string> applies. For example:

STRING HOME_PRIORITY, "Home Priority";

3.1.3 ENUM
ENUM defines a table matching internal attribute values to a display string that should be
used by the debugger to display a state to the user. An ENUM table describes the value
interpretation for one particular attribute. The exact type of the internal attribute value shall be
defined after the �ENUM� keyword.

ENUM ["RUNNING" = 1, "READY" = 2, "SUSPENDED" = 0, "WAITING" = 3] STATE;

This means that if the formula for the state attribute evaluates to the value �3� then the
descriptive text �WAITING� should be displayed rather than the numeric value 3.

ENUM ["10" = 1, "20" = 2, "25" = 3] PRIORITY;

This means that if the formula for the priority attribute evaluates to the value �2� then the
value �20� would be displayed.

ENUM ["TaskA" = "&(taskCB[3])", "TaskB" = "&(taskCB[4])"] RUNNINGTASK;

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

12 © by OSEK ORTI 2.1.1 Part A

This example shows that formulas could also be used in ENUM definitions. As stated in
section 2.6 the formula in the declaration section will be evaluated only once. Therefore take
care about using variable contents in the declaration section like in the following example:

ENUM ["TaskA" = "taskCB[3].id", "TaskB" = "taskCB[4].id"] RUNNINGTASK;
/* Not recommended! */

Since some ORTI consuming tools might not have access to the full debugging information of
the application, optionally the tentative type of the attribute can be specified, as in:

ENUM "unsigned char" ["10" = 1, "20" = 2, "25" = 3] PRIORITY;

This tentative type must be a valid C-type within the application, which could be used as a
type cast by the ORTI consuming tool, when evaluating a formula. When both the HLL debug
type information as well as the tentative type are present, the tentative type prevails.

If the value does not belong to the enumeration the value with some error indication should be
displayed.

3.1.3.1 Links
Links are an optional extension of ENUM and represent a reference to another kernel object
whose definition is in the same file.
IMPLEMENTATION myOSEK
{...

TASK
{ ...

ENUM
["First Stack" : Stack1 = "&taskStack1[0]",
"Second Stack" : Stack2 = "&taskStack2[0]"

] STACK;
...

};

STACK
{

...
};

};

// Definitions of the STACK objects which may be referenced by TASK objects

TASK TaskA
{

STACK = "taskA.stack";
};

STACK Stack1
{

...
);

STACK Stack2
{

...
);

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

ORTI 2.1.1 Part A © by OSEK 13

3.2 Attribute Description
Attributes can have an additional description. These descriptions are optional and may be
added at the end of every object attribute declaration. Description fields start after a comma (,)
and use the <string> terminal. For example:

CTYPE PRIORITY, "Priority";

Descriptions allow the possibility of supplying more relevant names to a debugger without
limiting the possible names that an attribute may have. The descriptions supplied are typically
implementation specific.

3.3 Attribute Modifier

3.3.1 TOTRACE
The attribute modifier TOTRACE informs the debugger that the attribute should be traced by
the debugging tool, if this is feasible.

OSEK/VDX OSEK Run Time Interface (ORTI)

Part A: Language Specification

14 © by OSEK ORTI 2.1.1 Part A

4 History
Version Date Remarks

1.0 � 2.0 Not published by OSEK/VDX

2.1 16. July 2001 Authors:
Mr. Barthelmann (3SOFT)
Mr. Büchner (Hitex)
Mr. Dienstbeck (Lauterbach)
Mr. Elies (Hitex)
Mr. Fathi (Cosmic)
Mr. Hoogenboom (Green Hills)
Mr. Janz (Vector)
Mr. Kriesten IIIT, (University of Karlsruhe)
Mrs. Nieser (Lauterbach)
Mr. Nishikawa (Toyota, Europe)
Mr. Schimpf (ETAS)
Mr. Stehle (Vector)
Mr. Ulcakar (iSystem)
Mr. Vetterli (Metrowerks)
Mr. Wertenauer (Cosmic)
Mr. Winters (Motorola)

2.1.1 4. March 2002 Fixed error in grammar (object_def)
Added rule of object and attribute
usage in declaration and information section

	Introduction
	General Remarks
	Motivation
	Benefits
	Organization of ORTI Specification
	Language Definition
	Scope
	Representation
	Tracing Dynamic Data

	Acronyms

	KOIL
	File Structure
	Version Section
	Declaration Section
	Information Section

	Grammar
	Version Section
	Declaration Section
	Information Section
	Rules

	Attributes
	Attribute types
	CTYPE
	STRING
	ENUM
	Links

	Attribute Description
	Attribute Modifier
	TOTRACE

	History

