
OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 1 -

OSEK/VDX

Communication

Version 2.2.2

18th December 2000

This document is an official release and replaces all previously distributed documents. The OSEK group retains
the right to make changes to this document without notice and does not accept liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without
permission in writing from the OSEK/VDX steering committee.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 2 -

Table of Contents
1 INTRODUCTION..11

1.1 REQUIREMENTS.. 12
1.2 CONTENT AND STRUCTURE OF THE DOCUMENT .. 13

1.2.1 Communication protocol layers...13
1.2.2 System generation requirements ..13
1.2.3 Communication conformance class ...13
1.2.4 Changes between OSEK COM 2.1 r1 and this specification ...13

1.3 COMMUNICATION CONCEPT.. 14

2 INTERACTION LAYER...16

2.1 INTERACTION LAYER OVERVIEW... 16
2.1.1 Interaction layer operation ..16
2.1.2 Communication model ...16
2.1.3 Message concept ..17
2.1.4 Queued and Unqueued messages...17
2.1.5 Messages copies...18
2.1.6 Direct and periodical transmission modes...18
2.1.7 Message addressing ...18
2.1.8 Message lengths ...19
2.1.9 Application programming interface...19
2.1.10 Notifications...20
2.1.11 Deadline monitoring ..20
2.1.12 Portability support ...21

2.2 INTERACTION LAYER SPECIFICATION .. 22
2.2.1 Definitions..22
2.2.2 Initialisation and shutdown..23
2.2.3 Communication model ...24
2.2.4 Messages ..25
2.2.5 Addressing schemes ...27
2.2.6 Data consistency model ...28
2.2.7 Message transmission ..29
2.2.8 Message reception ...34
2.2.9 Communication deadline monitoring...38
2.2.10 Notification mechanisms ..43
2.2.11 Interface to OSEK Indirect Network Management ..50
2.2.12 Application programming interface...51
2.2.13 Usage of OSEK COM services...71
2.2.14 Mapping of interaction layer to network layer services...72

3 NETWORK LAYER..73

3.1 NETWORK LAYER OVERVIEW.. 73
3.1.1 Network Layer operation ...73
3.1.2 Unacknowledged Unsegmented Data Transfer..73
3.1.3 Unacknowledged Segmented Data Transfer..74
3.1.4 Network layer timing constraints ...78
3.1.5 Interleaving of messages..78

3.2 NETWORK LAYER SPECIFICATION ... 79
3.2.1 Definitions..79
3.2.2 Generality ..80
3.2.3 Unacknowledged Unsegmented Data Transfer..80
3.2.4 Unacknowledged Segmented Data Transfer..87

4 DATA LINK LAYER INTERFACE ..115

4.1 DATA LINK LAYER OVERVIEW... 115
4.2 DATA LINK LAYER SPECIFICATION .. 116

4.2.1 Definitions..116
4.2.2 Services for the network layer..117

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 3 -

4.2.3 Services for the network management ... 119
4.2.4 Services for the network layer and network management ... 121

5 SYSTEM GENERATION REQUIREMENTS.. 123

5.1 CONFORMANCE CLASS ... 124
5.1.1 Entity requirements.. 124
5.1.2 Entity attributes requirements.. 124

5.2 UNQUEUED MESSAGE... 125
5.2.1 Entity requirements.. 127
5.2.2 Entity attributes requirements.. 127
5.2.3 Entity association requirements... 127

5.3 QUEUED MESSAGE ... 130
5.3.1 Entity requirements.. 131
5.3.2 Entity attributes requirements.. 131
5.3.3 Entity association requirements... 132

5.4 MESSAGE ACCESSOR.. 135
5.4.1 Entity requirements.. 135
5.4.2 Entity attributes requirements.. 136
5.4.3 Entity association requirements... 136

5.5 DIRECT TRANSMISSION MODE SPECIFICATION... 138
5.5.1 Entity requirements.. 138
5.5.2 Entity attributes requirements.. 138
5.5.3 Entity association requirements... 138

5.6 PERIODICAL TRANSMISSION MODE SPECIFICATION.. 139
5.6.1 Entity requirements.. 139
5.6.2 Entity attributes requirements.. 139
5.6.3 Entity association requirements... 140

5.7 MIXED TRANSMISSION MODE SPECIFICATION.. 141
5.7.1 Entity requirements.. 141
5.7.2 Entity attributes requirements.. 141
5.7.3 Entity association requirements... 143

5.8 RECEPTION DEADLINE MONITORING SPECIFICATION ... 144
5.8.1 Entity requirements.. 144
5.8.2 Entity attributes requirements.. 145
5.8.3 Entity association requirements... 145

5.9 TRANSMISSION DEADLINE MONITORING SPECIFICATION ... 146
5.9.1 Entity requirements.. 146
5.9.2 Entity attributes requirements.. 147
5.9.3 Entity association requirements... 147

5.10 TASK ... 148
5.10.1 Entity requirements.. 148
5.10.2 Entity attributes requirements.. 148
5.10.3 Entity association requirements... 149

5.11 FUNCTION.. 150
5.11.1 Entity requirements.. 150
5.11.2 Entity attributes requirements.. 150
5.11.3 Entity association requirements... 151

5.12 CALLBACK... 152
5.12.1 Entity requirements.. 152
5.12.2 Entity attributes requirements.. 152
5.12.3 Entity association requirements... 153

5.13 EVENT... 155
5.13.1 Entity requirements.. 155
5.13.2 Entity attributes requirements.. 156
5.13.3 Entity association requirements... 156

5.14 FLAG ... 158
5.14.1 Entity requirements.. 158
5.14.2 Entity attributes requirements.. 158
5.14.3 Entity association requirements... 159

5.15 NETWORK HANDLE.. 161

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 4 -

5.15.1 Entity requirements ..161
5.15.2 Entity attributes requirements..161
5.15.3 Entity association requirements...162

5.16 APPLICATION ADDRESS.. 163
5.16.1 Entity requirements ..163
5.16.2 Entity attributes requirements..163
5.16.3 Entity association requirements...163

5.17 UUDT ... 164
5.17.1 Entity requirements ..164
5.17.2 Entity attributes requirements..165

5.18 USDT.. 166
5.18.1 Entity requirements ..167
5.18.2 Entity attributes requirements..167

6 CONFORMANCE CLASSES...169

6.1 OSEK OS SUPPORT.. 171

7 ANNEX..172

7.1 CAN BUS BINDING INTERFACE (NORMATIVE) ... 173
7.1.1 Scope..173
7.1.2 D_UUData.req...173
7.1.3 D_UUData.con ..173
7.1.4 D_UUData.ind...174

7.2 USE OF ISO 15765-2 ADDRESSING FORMATS (INFORMATIVE) .. 175
7.2.1 Scope and concepts..175
7.2.2 CAN frame data length ..175
7.2.3 Normal addressing...175
7.2.4 Extended addressing ..177

7.3 USE OF ISO15765-2 ADDRESSING FORMATS WITH SAE J1939 (INFORMATIVE) 179
7.3.1 Overview ..179
7.3.2 Rules...179

7.4 FORMAT OF SERVICE PRIMITIVES (NORMATIVE).. 181
7.5 DEFINITION OF TIMING SYMBOLS (NORMATIVE).. 183

8 HISTORY ...184

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 5 -

List of Figures

FIGURE 1-1: LAYER MODEL OF OSEK COM.. 14
FIGURE 2-1: SYNCHRONOUS VS. ASYNCHRONOUS COMMUNICATION SCHEMES .. 17
FIGURE 2-2: OSEK COM INITIALISATION AND SHUTDOWN SERVICES.. 24
FIGURE 2-3: MESSAGE ACCESSOR .. 27
FIGURE 2-4: DIRECT TRANSMISSION MODE FOR EXTERNAL OR INTERNAL-EXTERNAL COMMUNICATION (WITHCOPY

CONFIGURATION) .. 30
FIGURE 2-5: PERIODICAL TRANSMISSION MODE.. 31
FIGURE 2-6: ACTIVATION/DE-ACTIVATION OF PERIODICAL TRANSMISSION MODE – ... 31
FIGURE 2-7: MIXED TRANSMISSION MODE.. 33
FIGURE 2-8: BEHAVIOUR OF QUEUED MESSAGE .. 35
FIGURE 2-9: BEHAVIOUR OF QUEUED MESSAGE WITH A QUEUE LENGTH EQUAL TO 1 .. 35
FIGURE 2-10: BEHAVIOUR OF UNQUEUED MESSAGE .. 36
FIGURE 2-11: DIRECT TRANSMISSION MODE: EXAMPLE OF A SUCCESSFUL TRANSMISSION IN CASE OF UUDT

PROTOCOL... 39
FIGURE 2-12: DIRECT TRANSMISSION MODE: EXAMPLE OF A FAILED TRANSMISSION IN CASE OF UUDT PROTOCOL

... 39
FIGURE 2-13: PERIODICAL TRANSMISSION MODE: SUCCESSFUL TRANSMISSION.. 40
FIGURE 2-14: PERIODICAL TRANSMISSION MODE: FAILED TRANSMISSIONS... 40
FIGURE 2-15: MIXED TRANSMISSION MODE: SUCCESSFUL TRANSMISSIONS .. 41
FIGURE 2-16: MIXED TRANSMISSION MODE: FAILED TRANSMISSIONS... 42
FIGURE 2-17: PERIODICAL RECEPTION: CORRECT AND MISSING RECEPTIONS.. 43
FIGURE 2-18: CONDITIONAL NOTIFICATION DATA FLOW ... 46
FIGURE 2-19: CONDITIONAL NOTIFICATION FLOW CHART ... 47
FIGURE 3-1: UUDT MESSAGE TRANSMISSION .. 74
FIGURE 3-2: USDT SINGLE FRAME MESSAGE TRANSMISSION ... 75
FIGURE 3-3: USDT MULTIPLE FRAME MESSAGE TRANSMISSION... 76
FIGURE 3-4: N_HANDLE (UUDT) .. 81
FIGURE 3-5: NETWORK DATA FIELD STRUCTURE (UUDT).. 84
FIGURE 3-6: SINGLE FRAME MESSAGE TRANSMISSION .. 85
FIGURE 3-7: MAPPING-OUT (UUDT).. 86
FIGURE 3-8: MAPPING-IN (UUDT) ... 87
FIGURE 3-9: N_HANDLE (USDT)... 88
FIGURE 3-10: MULTIPLE FRAME MESSAGE TRANSMISSION.. 95
FIGURE 3-11: SINGLE FRAME MESSAGE TRANSMISSION .. 95
FIGURE 3-12: N_DATA AND NPCI FIELDS TO DATA LINK USER DATA... 97
FIGURE 3-13: PLACEMENT OF TIME INTERVALS .. 106
FIGURE 3-14: MAPPING-OUT (USDT)... 113
FIGURE 3-15: MAPPING-IN (USDT).. 114
FIGURE 4-1: SEQUENCING OF D_UUDATA SERVICE PRIMITIVES... 118
FIGURE 6-1:CONFORMANCE CLASSES SUMMARY.. 170
FIGURE 7-1: LEGEND OF COMMUNICATION DEADLINE MONITORING ... 183

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 6 -

List of Tables

TABLE 2-1: TRANSMISSION MODE SUMMARY ... 37
TABLE 2-2: NOTIFICATION CLASSES AND MECHANISMS .. 48
TABLE 2-3: SUMMARY OF NOTIFICATION CLASSES AND NOTIFICATION MECHANISMS .. 49
TABLE 2-4:ERROR CODES DEFINED BY OSEK COM .. 51
TABLE 2-5: CONFIGURATIONS OF THE INTERACTION LAYER ... 54
TABLE 2-6: SUMMARY OF API COMMUNICATION SERVICES ... 70
TABLE 2-7: COM SERVICES AVAILABLE FOR TASK AND ISR.. 71
TABLE 2-8: INTERACTION LAYER / NETWORK LAYER INTERFACE... 72
TABLE 3-1: NPDU FORMAT ... 96
TABLE 3-2: ENCODING OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) BYTES................................. 100
TABLE 3-3: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : SF_NPCI . DL................ 101
TABLE 3-4: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : FF_NPCI . DL................ 101
TABLE 3-5: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : FC_NPCI . FS 102
TABLE 3-6: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : FC_NPCI . FS(CTS) 102
TABLE 3-7: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : FC_NPCI . FS(WT) 103
TABLE 3-8: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : FC_NPCI . BS................ 103
TABLE 3-9: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : FC_NPCI . STMIN.......... 104
TABLE 3-10: DEFINITION OF NETWORK PROTOCOL CONTROL INFORMATION (NPCI) : CF_NPCI . SN 105
TABLE 3-11: SUMMARY OF SEQUENCENUMBER (SN) DEFINITION ... 105
TABLE 3-12: TIME INTERVALS DEFINITION ... 108
TABLE 3-13— WAIT FRAME HANDLING.. 109
TABLE 3-14: ERROR HANDLING.. 110
TABLE 3-15— HANDLING OF AN UNEXPECTED ARRIVAL OF A NETWORK LAYER NPDU..................................... 111
TABLE 6-1: EVENT SETTING AND TASK ACTIVATION ... 171
TABLE 7-1 : D_UUDATA.REQ SUMMARY... 173
TABLE 7-2 : D_UUDATA.CON SUMMARY... 173
TABLE 7-3 : D_UUDATA.IND SUMMARY.. 174
TABLE 7-4:MAPPING OF NPDU PARAMETERS INTO CAN FRAME - NORMAL ADDRESSING.............................. 176
TABLE 7-5:NORMAL FIXED ADDRESSING (PHYSICAL ADDRESS).. 177
TABLE 7-6:NORMAL FIXED ADDRESSING, (FUNCTIONAL) ... 177
TABLE 7-7:MAPPING OF NPDU PARAMETERS INTO CAN FRAME - EXTENDED ADDRESSING.......................... 178
TABLE 7-8:NORMAL ADDRESSING, PHYSICAL ADDRESSED MESSAGES.. 179
TABLE 7-9:NORMAL ADDRESSING, FUNCTIONAL ADDRESSED MESSAGES ... 179

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 7 -

Index of services

C

ChangeProtocolParameters................................. 68
CloseCOM.. 54

D

D_GetHandleStatus .. 117
D_GetLayerStatus... 119
D_Init.. 120
D_Offline.. 118
D_Online .. 119
D_Status ... 120
D_UUData.. 116
D_WindowData .. 118

G

GetMessageResource.. 61
GetMessageStatus... 67

I

I_MessageTimeOut... 49
I_MessageTransfer ... 49

InitCOM ... 54

M

MessageInit .. 56

R

ReadFlag... 58
ReceiveDynamicMessage................................... 66
ReceiveMessage ... 60
ReceiveMessageFrom... 64
ReleaseMessageResource 62
ResetFlag .. 58

S

SendDynamicMessage.. 65
SendMessage .. 59
SendMessageTo.. 62
StartCOM ... 55
StartPeriodical .. 57
StopCOM ... 55
StopPeriodical .. 57

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 8 -

Table of Abbreviations

– Interaction Layer –

API Application Programming Interface

BS_Value Block Size Value

CCC Communication Conformance Class

DA Dynamic Addressing

DM Dynamic Message length

ECU Electronic Control Unit

F_NORMAL Normal addressing format

FIFO (queue) First In First Out (queue)

I_CDM_RX_TO Time Out of Communication Deadline Monitoring for
Reception (periodical)

I_CDM_FRX_TO Time Out of Communication Deadline Monitoring for
First Reception (periodical)

I_CDM_TMD_TO Time Out of Communication Deadline Monitoring- Direct
Transmission Mode

I_CDM_TMM_TO Time Out of Communication Deadline Monitoring- Mixed
Transmission Mode

I_CDM_TMP_TO Time Out of Communication Deadline Monitoring-
Periodical Transmission Mode

I_n_FAILED_TMM Number of FAILED Transmissions, Mixed Transmission
Mode

I_n_FAILED_TMP Number of FAILED Transmissions, Periodical
Transmission Mode

I_TMM_TOF Time Offset of Mixed Transmission Mode

I_TMM_TPD Time Period of Mixed Transmission Mode

I_TMP_TOF Time Offset of Periodical Transmission Mode

I_TMP_TPD Time Period of Periodical Transmission Mode

NM Network Management

RAM Random Access Memory

SA Static Addressing

SM Static Message

ST_Value Separation Time Value

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 9 -

– Network layer –

BS Block Size

Consecutive Frame Consecutive Frame Network Protocol Data Unit

CF_NPCI Consecutive Frame Network Protocol Control Information

CF_NPDU Consecutive Frame Network Protocol Data Unit

FC_NPCI Flow Control Network Protocol Control Information

Flow Control Clear To Send Flow Control Network Protocol Data Unit Clear To Send

Flow Control Wait Flow Control Network Protocol Data Unit Wait

FC_NPDU_CTS Flow Control Network Protocol Data Unit Clear To Send

FC_NPDU_WT Flow Control Network Protocol Data Unit Wait

FC_NPDU Flow Control Network Protocol Data Unit

(either FC_NPDU_CTS or FC_NPDU_WT)

First Frame First Frame Network Protocol Data Unit

FF_NPCI First Frame Network Protocol Control Information

FF_NPDU First Frame Network Protocol Data Unit

N_AI Network Addressing field

N_Ar Network time interval A on the receiver side

N_As Network time interval A on the sender side

N_Br Network time interval B on the receiver side

N_Bs Network time interval B on the sender side

N_Cr Network time interval B on the receiver side

N_Cs Network time interval C on the sender side

NPCI Network Protocol Control Information

NPDU Network Protocol Data Unit

N_SA Network Source Address

NSDU Network Service Data Unit

N_TA Network Target Address

N_USData.req N_USData.request

N_USData.con N_USData.confirmation

N_USData.ind N_USData.indication

N_UUData.req N_UUData.request

N_UUData.con N_UUData.confirmation

N_UUData.ind N_UUData.indication

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 10 -

N_WFTmax Maximum number of Flow Control Wait transmission

Single Frame Single Frame Network Protocol Data Unit

SF_NPCI Single Frame Network Protocol Control Information

SF_NPDU Single Frame Network Protocol Data Unit

STmin Minimum separation time

– Data Link layer –

CAN Controller Area Network

DLL Data Link layer

DPDU Data Link Protocol Data Unit

DSDU Data Link Service Data Unit

D_UUData.req D_UUData.request

D_UUData.con D_UUData.confirmation

D_UUData.ind D_UUData.indication

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 11 -

1 Introduction

The aim of OSEK communication (OSEK COM) is to agree on interfaces and protocols for
in-vehicle communication. The term in-vehicle communication means both:

• communication between networked vehicle nodes (inter-ECU communication).

• communication within electronic control units (ECU-internal communication).

OSEK COM provides a standardized software communication interface that lowers the level
of coupling between the application and the particular type of media used, hence facilitating
portability of software across different communicating environments.

The definition of different conformance classes enables the integration of OSEK COM in
systems featuring various levels of capabilities. The communication platform is scaleable to
provide the required functionality.

Using the OSEK communication services for intertask communication presents the following
advantages :

• This interface is independent of the bus system used hence allowing for application
software asset re-use across different bus platforms.

• OSEK COM provides a clearly defined API communication interface : this enables
provision of a largely re-usable communication kernel to support various types of
applications. Thus, there is no need for the application programmer to redevelop the
communication function.

• Portability of the application software is supported : if the OSEK communication
services are used exclusively for inter-task communication, the application can be
assigned to any ECU providing an OSEK compliant interface.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 12 -

1.1 Requirements

The main requirements to be met by the OSEK communication specification are :

Portability of application software :

It is necessary that mechanisms to support inter-ECU communication are commonised with
those that support ECU-internal communication in order to facilitate portability of application
software across different configurations. Specific external communication services are defined
to support applications that interface with the bus system under all circumstances (e.g.
diagnostics).

Independence of underlying network and hardware :

The communication services and protocols are defined so that various bus systems and
controllers can be accommodated with minimal configuration effort. In order to overcome the
restrictions of the underlying network, regarding the maximum length of application
messages, segmented as well as unsegmented communication need to be supported. The
relationship between communication services and protocols need to be resolved in order to
ensure stable services and effective protocol performance to support a wide range of
applications.

Scalability :

Allowance must be made for the support of network nodes featuring different levels of
functionalities and requiring different levels of functions.

Support for network management :

Provision is to be made such that OSEK network management communication is not in
conflict with normal communication.

Interoperability of electronic equipment :

Provision of standardized communication protocols are to be made in order to allow for the
interoperability of electronic equipment originating from various suppliers and connected to
the same vehicle network.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 13 -

1.2 Content and structure of the document

1.2.1 Communication protocol layers

This document introduces the communication requirements in two steps. Each protocol layer
is introduced via an overview. The overview does not state any requirements. Instead, it aims
at showing the scope of and introducing the concepts further developed in the communication
layer that it introduces: this section may be enough for those who need a general
understanding of the subject matter. This section does not attempt to demonstrate how the
functions are performed in detail.

A requirement specification follows each overview: this section states the detailed functional
and non-functional requirements of the specific protocol layer. This section is mainly
addressed to OSEK implementers and those who will specify requirements for communicating
applications.

1.2.2 System generation requirements

Requirements defining what can and what needs to be defined at system generation time are
gathered in a unique section of the specification. These requirements are presented following a
systematic approach (entity, entity attributes, and entity relationships). This section feeds the
requirements for a portable system generation scheme that is further standardised by the OIL
(OSEK Implementation Language) working group.

1.2.3 Communication conformance class

Requirements for the provision of a given set of different functions defined in this
specification are presented at the end of the document.

1.2.4 Changes between OSEK COM 2.1 r1 and this specification

The previous specification has been revised against OSEK technical committee remarks. As a
whole, efforts have been focused to improve the cohesion of the protocol layers (overview /
specification section). In addition, the provisional specification of the network layer has been
updated reflecting the results of the harmonisation process between OSEK and ISO
(TC22/SC3/WG1/ TF2 Diagnostics on CAN).

The API section has been reviewed and extended with two services to support the
transmission of variable length messages. In addition, “flag” mechanisms have been provided
two interface services to access them in a portable way. Initialisation services have been
repartionned to ease their interface with an OSEK operating system.

The communication conformance class has been revisited in order to allow for a smaller
certifiable specification sub-set that support internal communication only. Given the demand
to authorise queued message usage within small specification subset ; the queued message is
now an optional features that can be provided if required.

Finally, system generation requirements have been developed to feed the OIL initiative.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 14 -

1.3 Communication concept

The general positioning of OSEK COM within the OSEK architecture is represented in the
figure below. It shows the positioning of OSEK COM with respect to the application, the
OSEK network management, the underlying OSEK operating system (if used), and with the
hardware communication bus.

Application

Communication API Network API

Interaction Layer

Bus I/O Driver

Data Link Layer

Bus Frame
Bus Communication Hardware

OSEK/VDX

Network
Management

OSEK/COM
Standard API

OSEK/COM
Standard Protocols

Operating System

OSEK/COM
Device Driver
Interface

Data Link Layer
(DLL)

Network

ISO/OSI
Model

Session

Presentation

Application

Physical

Transport

Network Layer

Figure 1-1: Layer model of OSEK COM

OSEK COM is based on the layer model1 shown above, consisting of the Interaction Layer
(INL), Network Layer (NWL) and the opened Data Link Layer (DLL). The physical layer is
integrated into the communication controller’s hardware and is not covered by the OSEK
COM specification.

1 The layer model is provided herein as a conceptual model that does not imply a particular implementation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 15 -

Presentation layer

This OSEK COM specification does not define a presentation layer. Data
representation (big-endian, little-endian, etc.) has to be defined and maintained by the
application designer in order to have a consistent and uniform data representation
across the distributed architecture.

Interaction layer

The interaction layer provides the application program interface (API) of OSEK COM.
It provides communication services for the transfer of application messages. For
network communication, the interaction layer uses the services provided by the lower
layers. ECU-internal communication is handled directly by the interaction layer
without the involvement of underlying layers.

Network layer

The network layer provides services for the unacknowledged and segmented transfer
of application messages. The network layer provides flow control mechanisms to
enable interfacing of communication peers featuring different level of performance and
capabilities. The network layer uses services provided by the Data Link Layer.

Data link layer interface

The data link layer interface provides services for the unacknowledged transfer of
individual data packets over a network to the layers above. The size of these data
packets (frames) depends on the underlying network and is not specified by OSEK
COM. Additionally, the data link layer provides services for the network management
module (e.g. configuration, initialisation, status request).

OSEK COM provides a rich set of communication facilities but it is likely that many
applications will only require a subset of this functionality. In order to optimise the use of
OSEK COM for particular applications there are four distinct conformance classes defined
with increasing levels of functionality. The designer selects the conformance class used for an
application at system generation time in order to optimise resource usage by excluding
unnecessary features.

To differentiate the OSEK COM conformance classes from the OSEK OS Kernel
conformance classes they are referred to as Communication Conformance Classes, or CCCs,
with CCCA containing only the basic functionality and CCC2 being a full implementation.
Application source code written for a lower conformance class is compatible with a higher
one, but the reverse would not normally be true. The actual level of resource usage
optimisation outside of the conformance classes is implementation specific.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 16 -

2 Interaction layer

This chapter states the services and the functionality requirements of the interaction layer.

Requirements for the provision of implemented functionality of the interaction layer are stated
in the communication conformance class section of the OSEK COM specification.

2.1 Interaction layer overview

2.1.1 Interaction layer operation

The main purpose of the interaction layer is to communicate data between application
activities by sending messages. An activity can be either the sender or receiver of a particular
message. Communication may be either internal or external.

It is necessary to have a clearly defined programming interface for communications to allow
application portability and easy maintenance.

The interaction layer must ensure data integrity. To achieve this it is necessary to manage
resource access to prevent conflicts. The interaction layer is also responsible for routing
communications to the appropriate destination, be that internal or external to the originating
processor.

Robust application design requires that the interaction layer also returns information allowing
the progress of a message to be tracked.

2.1.2 Communication model

OSEK COM implements an asynchronous programming model. Communication functions are
executed concurrently with the application, which allows data transmission to continue
without blocking other processing. A call to a message send function will therefore return
immediately after initiating a corresponding data transfer in the underlying communication
layers. This implies that a service that sends a message is unable to return final transmission
status because the transfer to the network may still be in progress. Therefore OSEK COM
must provide a means for an application to detect completion and determine its status. This
status can be communicated to the application by means of notification mechanisms defined
in this specification.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 17 -

Task B

running

blocked

running

blocked

Sender is blocked until
message is transmitted
Receiver is blocked until
message is received

Task A

running

blocked
sending

running

blocked
receiving

running

receiving

sending

running

Task A Task B

running running

running

Asynchronous communication

Sender is not blocked
while message is transmitted
Receiver is not blocked when
no message is received

Synchronous communication

"send"

"receive"

"receive"

"send"

"send"
"receive"

running

message
processing

"send"

running

"receive"

message
processing

Figure 2-1: Synchronous vs. asynchronous communication schemes

2.1.3 Message concept

OSEK COM exchanges data using messages. A message is a container for application specific
data, the format and use of which is not relevant to COM itself.

Conceptually, a message may only have a single sender in a system, but it may have any
number of receivers. Where there is a single sender and a single receiver the messages is
described as 1:1. A message with multiple receivers is described as 1:n.

A message type must be defined at system generation time; messages cannot be added or
deleted at run-time.

2.1.4 Queued and Unqueued messages

To accommodate different application requirements, a particular message can be defined as
either queued or unqueued. COM stores queued messages in a FIFO buffer and they are read
by the application in the order they arrived. A particular queued message can therefore only be
read once, as the read operation removes it from the queue.

By contrast, an unqueued message behaves more like a global variable and is not consumed by
reading. An unqueued message returns the last received value each time it is read.

A queued message would normally be used to track changes of state within a system, where it
is important that receiver maintains synchronisation of state information with the sender. It
requires the receiver to service the queue on a regular basis to prevent an overflow.

Unqueued messages are appropriate for the transmission of a current value, where this value
may be read multiple times by the receiver as required, or may even be ignored.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 18 -

2.1.5 Messages copies

For normal message transmission, OSEK COM provides each sender and receiver with its
own copy of a particular message. This allows each activity to manipulate the message data
without interfering with other users and is described as a WithCopy access. Data consistency
is guaranteed and a uniform data model is provided.

In order to optimise RAM usage it is also possible to access a message buffer using a
WithoutCopy method. In WithoutCopy mode both the sender and any receivers may share the
same physical message buffer. By using a WithoutCopy transfer OSEK COM cannot
guarantee data consistency without the use of a special mechanism to prevent simultaneous
access to the message buffer. Therefore syntax of a WithoutCopy access violates the uniform
data model. However, if it is possible to determine during the application design phase that no
conflicting message buffer accesses can occur then message protection is unnecessary and the
uniform data model is preserved. Whether an access is with or without copy is determined for
each message at system generation time on a per-task basis.

2.1.6 Direct and periodical transmission modes

There are two distinct modes for the transmission of an external message. Physical
transmission either occurs as soon as the application sends a message or the message can be
transmitted repeatedly at a pre-set interval. These transmission modes are called direct and
periodical respectively. A message can be defined as having both direct and periodical
transmission – this is referred to as a mixed transmission mode.

The transmission mode for a particular message is set at system generation time and cannot be
altered at run-time.

A periodical message would typically be used for information that is not time sensitive. It also
provides a ‘heart-beat’ for an ECU, which allows other ECUs to determine that it is
functioning correctly. Periodical transmission implies that a message’s contents can be altered
more than once between transmissions and these intermediate values will never be sent to the
receiver. This can be useful for reducing loading on the transmission medium when updates
are not time-critical.

Direct transmission is appropriate when the message’s application data must be sent quickly
whenever an update occurs. For rarely updated messages the use of direct transmission can
also minimise loading on the physical transmission medium, but there is a danger that a
message may be lost through a system error or restart of the receiving ECU. In such
circumstances a mixed mode transmission is desirable as it implies that the sender and
receiver will become re-synchronised within a finite period of time.

Mixed transmission mode is further enhanced with a ‘relevant change’ mechanism. This can
cause additional immediate transmissions of a message whenever the application data satisfies
pre-defined conditions. Such behaviour might be useful when a parameter moves outside of a
normal operating range and the receiver needs more immediate updating than the default
periodical transmission interval allows.

2.1.7 Message addressing

The destination address of a particular message is either static or dynamic.

A statically addressed 1:1 message has a single destination defined at system generation time.
This cannot be altered at run-time. A dynamically addressed 1:1 message must have a list of

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 19 -

possible destinations defined at system generation. Conceptually, the application can then
select one, and only one, of these pre-defined addresses whenever the message is sent.

A statically addressed 1:n message has a list of recipients defined at system generation, each
of which will receive the message whenever it is sent. There is no specific API to cope with
dynamically addressed 1:n messages but they can be implemented at the application level by
sending the same message to several dynamically selected addresses.

By using the API for sending a message with a dynamic address it is possibly for an
application to circumvent the 1:1 and 1:n models in OSEK COM. This facility may be
desirable when dynamic or end-of-line configuration is required for an ECU but it should be
enforced wherever possibly when using system-wide CASE (Computer Aided Software
Engineering) tools.

2.1.8 Message lengths

To accommodate different application requirements, a message can be defined with either
static or dynamic message lengths. For normal message transmission OSEK messages are
defined with a static message length at system generation. In some applications there may be a
need to vary the length of the data in a message dynamically at run-time. The maximum
length of a dynamic-length message must be defined at system generation.

2.1.9 Application programming interface

OSEK provides a clearly defined Application-Programming Interface (API) for initialisation,
communication and controlling the communication. These API functions can be logically
grouped into three types: initialisation, sending/receiving, and control.

2.1.9.1 Initialisation

• InitCOM and CloseCOM:

These service are used to initialise and release the platform specific
communication resources.

• StartCOM:

This service initialises internal COM data areas, calls message initialisation
routines and starts the OSEK communication module.

• StopCOM:

This is used to terminate a session of OSEK COM, release resources where
applicable.

• StopPeriodical and StartPeriodical :

These services start or stop the periodical transmission of all messages using
the periodical or the mixed transmission mode. It is sometimes useful to
suspend periodical activity without necessarily closing down the whole of
COM.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 20 -

2.1.9.2 Sending/Receiving

• SendMessage and ReceiveMessage:

These are used for sending and receiving normal messages with a Static
Address (SA) and a Static Message length (SM).

• SendDynamicMessage and ReceiveDynamicMessage:

Where a Dynamic Message length message (DM) is used with an SA
message these alternative services are used in order to pass the actual length
of the message.

• SendMessageTo and ReceiveMessageFrom:

This last pair of services are used for DM messages with a Dynamic Address
(DA).

2.1.9.3 Control

• GetMessageResource and ReleaseMessageResource :

As described in the With and WithoutCopy message section, these services
provide a locking mechanism to prevent conflicting access to a shared
message buffer.

• GetMessageStatus:

This service retrieves the status information for a message.

• ChangeProtocolParameter:

This service modifies network layer parameters for a specific message.

2.1.10 Notifications

OSEK COM implements an asynchronous communication model. Therefore OSEK provides
a notification mechanism to inform the application about the final transmission status of a
previously invoked send or receive service.

2.1.11 Deadline monitoring

OSEK COM provides a mechanism for monitoring the transmission and reception timing of
messages called communication deadline monitoring. This can be used to:

• verify on the sender side that transmission requests (periodical or not) are followed by
transmissions on the network within a given period of time; and,

• verify on the receiver side that periodical messages are received within an allowed time
period.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 21 -

2.1.12 Portability support

OSEK COM implements a uniform data model, which means that the behaviour of tasks and
functions appears to be that of a sequential single-threaded system. This enables easier
software testing and the re-hosting of application software since possible interruption points
need not be taken into consideration during the programming of a task or function.

The implementation of the uniform data model requires abstract interface operations to
guarantee data consistency. In pre-emptive systems, local copies of message data might be
needed to ensure data consistency when tasks pre-empt each other.

OSEK COM allows the user to configure where a message is physically buffered for every
message and every task separately. A message may be buffered in shared memory or a task
may receive its exclusive copy. This approach provides to the system designer the full control
over and the most flexibility in the usage of the scarcest resource - RAM.

Portability is achieved by means of using only runtime services provided by OSEK COM to
access message objects. Any other method of accessing a message or the lower network layers
is out of the scope of and thus not supported by OSEK COM.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 22 -

2.2 Interaction layer specification

2.2.1 Definitions

Application layer: identifies layer 7 of the OSI basic reference model. This layer is out of the
scope of the OSEK COM specification.

Activity : identifies an OSEK task, function, ISR or Callback.

Application receiver: identifies an activity (e.g. OSEK task) of the application layer that
uses the OSEK communication receiving services.

Application sender: identifies an activity (e.g. OSEK task) of the application layer that uses
by the OSEK communication sending services.

Application receiver address: identifies one or multiple application receiver(s). The
definition of the address format (semantic) is application specific.

Application sender address: identifies a particular application sender. The definition of the
address format (semantic) is application specific.

Internal communication: identifies transfer of information taking place between application
senders and application receivers and supported by OSEK COM services provided by the
Interaction layer only (e.g. transfer of information between two activities on the same
processor).

External communication: identifies transfer of information supported by OSEK COM
communication services taking place between application senders and remote application
receivers and using at least one communication physical layer that corresponds to layer one of
the OSI basic reference model (e.g. transfer of information between two activities located in
two different ECU).. External communication needs to support at least one communication
physical layer that corresponds to layer one of the OSI basic reference model.

Internal application receiver: identifies an application receiver that communicates with the
application sender through internal communication.

External application receiver: identifies an application receiver that communicates with the
application sender through external communication.

Internal-External communication: identifies transfer of information from one application
sender to multiple application receivers using both internal communication and external
communication services.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 23 -

2.2.2 Initialisation and shutdown

There are three pairs of services provided by OSEK COM for starting and stopping its
activities :

1. InitCOM and CloseCOM are used for low-level initialisation of hardware;

2. StartCOM and StopCOM control resource usage once the OSEK OS kernel has started

3. StartPeriodical/StopPeriodical enable and disable periodical message transmission.

Each service is designed for use at particular times within an application.

InitCOM shall be called as part of the OSEK OS start-up in order to prepare hardware,
interrupt tables and other low-level features. It may be called from within a hook routine (i.e.
StartupHook), directly by the kernel or before the kernel itself is started. InitCOM assumes
that the processor interrupts are masked to allow it to configure interrupt-generating hardware.
InitCOM shall not alter the interrupt mask itself. InitCOM may be called at any time therefore
it shall not make use of any OSEK/VDX system services. InitCOM shall be called before
StartCOM or any other COM service is called.

Once the kernel has started an application may call StartCOM. This service is intended to
allocate and initialise system resources used by the COM module. StartCOM is free to use
kernel functions required (and may use these to alter interrupt settings if required). Until
StartCOM has been called, no COM service apart from InitCOM and CloseCOM shall be
called.

StartPeriodical and StopPeriodical shall be used to control the transmission of periodical or
mixed-mode messages.

StopCOM is designed to allow an application to cease using the COM module in order to free
up its resources. COM may subsequently be re-started using the StartCOM service. StopCOM
may use any kernel or COM service, and would normally be called at task level. StopCOM
will not allow message corruption, although incoming messages unread by an application will
be inaccessible and thus lost.

CloseCOM is the opposite service to InitCOM. CloseCOM would normally be called as the
OSEK OS is shutting down to return the hardware to a safe state. CloseCOM may be called
from an OSEK OS hook routine (i.e. ShutdownHook). CloseCOM is unable to make any use
of COM or kernel services, and shall not modify the system interrupt mask. Any data currently
being transmitted or due for transmission when CloseCOM is called may be lost or corrupted
unless StopCOM has previously been called to perform a graceful shutdown. CloseCOM shall
leave the hardware in a suitable state for re-initialisation by InitCOM.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 24 -

The following picture illustrates the sequence of operation to respectively initialise and
shutdown COM associated with an OSEK operating system. The picture assumes that StartOS
returns as an example ; StartOS does not necessarily return since its behaviour is
implementation specific. Refer to the OSEK OS specification to peruse requirements
applicable to mentioned hook routines.

Initialise CPU and
peripherals and

call startOS

System
(Re)Start

Call InitCOM
(Optional)

In startuphook Call to InitCOM
(If not called earlier)

Call StartCOM

OSEK/VDX Tasks
Use COM
Services

Call StopCOM

In shutdown hook Call CloseCOM
(Optional)

Call to CloseCOM
(If not called earlier)

After startOS
returns

Halt
(or restart)

Figure 2-2: OSEK COM initialisation and shutdown services

2.2.3 Communication model

Communication services provide the means to transfer information between application
senders and receivers.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 25 -

Communication can take place between one application sender and one application receiver,
referred to as 1:1, and one application sender to multiple application receivers, referred to as
1:n.

Internal communications can take place as 1:1 or 1:n. For external communication 1:1
communication is always possible, and 1:n is possible except in the case of USDT
(Unacknowledged Segmented Data Transfer) multiple frame messages. External
communication is supported by transferring information from one application sender to
multiple application receivers (1:n) if UUDT (Unacknowledged Unsegmented Data Transfer)
or USDT single frame messages are used for the transfer (see network layer chapter).

External communication is restricted to the transfer of information from one application
sender to one application receiver (1:1) if USDT multiple frame messages are used for the
transfer. (see network layer chapter).

2.2.4 Messages

2.2.4.1 Definition

A message is a data structure used to transfer information between application activities.

An OSEK message (also referred to as "message") identifies a generic item, handled by the
interaction layer and used by the application layer to support the transfer of application
information. OSEK COM has no knowledge of a message purpose, structure and content ; a
message serves as a transportation unit that interacts with the application layer by means of
OSEK application programming interface (API) communication services.

Two categories of messages are defined:

1. OSEK static length message: this category identifies a message whose length is set
at system generation time. The length of such message cannot be changed at run-
time.

2. OSEK dynamic length message: this category identifies a message whose length is
set at run time. The maximum length is set at system generation time and cannot be
changed at run-time.

Two types of messages are defined to support internal, external and internal-external
communication:

1. Unqueued message.

2. Queued message.

2.2.4.1.1 Unqueued message

An unqueued message is a message (static or dynamic length message) that shall be
overwritten whenever a new message data arrives.

The message shall not be consumed by any receive API service (e.g. ReceiveMessage).

Unqueued message can be defined on both the application receiver and sender sides, and used
for internal, external, and internal-external communication.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 26 -

Unqueued message can be transferred using any of the provided network layer protocols. (i.e.
USDT, USDT).

2.2.4.1.2 Queued Message

A queued message is a static length message whose internal data structure is organised as a
First-In/First-Out (FIFO) queue. Messages shall be delivered in the same order as they arrived.
Queued messages are consumed by OSEK receive service (i.e. ReceiveMessage). The receive
communication service shall be provided the oldest message of the queue to be returned to the
application receiver.

If the queued message is full and a new message data arrives, this message data will be lost.

Queued messages are always accessed via message copies. (see message copy configuration
chapter)

The queue (organised as a FIFO data structure) shall be implemented on the application
receiver side only.

For internal communication, the message shall be of the type "Queued" for both the sender
and receiver. For external and internal-external communication, it is not required that a
message be accessed as a ‘queued’ message by the external receivers, the external receivers
can process the message as an ‘unqueued’ message.

Notice that only one internal application receiver is permitted to access a specific queued
message. This limitation results from the costly implementation model the support for
multiple internal application receiver would require ; hence any queued message declared on
the receiving end is accessible by a single internal application receiver only. A single FIFO
data structure is therefore needed to be managed per receiving end.

The queue size for a particular message is specified on a per receiver-basis. The queue size
value depends on system design constraints, e.g. message inter-arrival rate and reading rate.

No implementation requirements are specified by the OSEK COM specification to allow for
various optimisation of implementation-specific detailed software architecture.

Queued messages can support internal , external and internal-external communication.

2.2.4.2 Message object

A message object identifies an implementation unit of a message. A message object
encapsulates application data and message status information that shall be processed by the
OSEK COM kernel as documented in this specification.

The detailed implementation format of a message object is implementation specific hence is
not described within the OSEK COM specification.

2.2.4.3 Message accessor

A message accessor identifies a data structure that shall be used by the application to handle
message data.

A message accessor shall be associated with each message handled by each application
receiver and sender.

The type and length shall be compatible with the associated message.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 27 -

Message 1 Message 2

Task 1 Task 2 Task 3

Accessor 11

Accessor 22

Accessor 21
Accessor 32

Figure 2-3: Message accessor

A message accessor shall be uniquely identified by means of an AccessName. There are no
naming requirements for the AccessName.

2.2.4.4 Message copy configurations

Two configurations are supported by OSEK COM to send or receive a message : WithCopy or
WithoutCopy. The WithCopy configuration requires the provision of a physical copy of the
message data associated with the message accessor. The WithoutCopy requires no copy of the
message data.

"WithCopy" :

A message accessor shall be mapped onto a message copy that shall be used by the
application receiver and sender. This local copy is provided for OSEK COM to ensure
message consistency. The memory allocation strategy for message copies is
implementation specific.

"WithoutCopy" :

A message accessor shall be mapped onto a message object directly

The definition of message copy configuration shall be performed at system generation time.

2.2.5 Addressing schemes

Two addressing schemes are defined to support the exchange of OSEK static length and
dynamic length messages: static addressing and dynamic addressing.

Assignment and definition of the addressing scheme applicable to a specific message shall be
defined at system generation time.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 28 -

2.2.5.1 Static addressing scheme

The static addressing scheme (SA) mandates the definition of application sender at system
generation time and application receivers for a specific message.

A message shall be assigned to a unique set of sub-network frame addressing attributes (e.g.
ISO 15765-2, F_NORMAL addressing format : CAN identifier).

Messages using the static addressing scheme shall be handled by means of the following
communication API services :

1. SendMessage

2. ReceiveMessage

3. SendDynamicMessage

4. ReceiveDynamicMessage

2.2.5.2 Dynamic addressing scheme

On the application sender side, the addressing information (application receiver address) that
identifies one or multiple application receiver(s) is selected by the application sender at run-
time and shall be sent out with the message using the SendMessageTo communication
service.

On the application receiver side, the addressing information that identifies the application
sender shall be provided to the application by means of the ReceiveMessageFrom service.

Messages using the dynamic addressing scheme (DA) shall be handled by means of the
following communication API services :

1. SendMessageTo

2. ReceiveMessageFrom

2.2.6 Data consistency model

In the WithCopy configuration, activities are provided with their own message copies, and can
thus manipulate the message data (through an accessor) without interfering. Nevertheless,
calls to API services may require exclusive access to the message object or to other internal
resources. If an OSEK COM implementation can not ensure that such an access is safe, the
service shall perform no-operation and return with special status code E_COM_LOCKED
(refer to API description) : the message object is said to be locked with respect to that
particular service. The application may then re-issue the request later if needed.

In the WithoutCopy configuration, several activities may share the same physical buffer (i.e.
the message object) and OSEK COM can not ensure data integrity. The application itself is
therefore responsible for avoiding conflicting access to a particular message object. OSEK
COM provides a special mechanism that can help with that objective : message objects
include a BUSY flag that can be tested and set, or cleared via the two dedicated API services
GetMessageResource, ReleaseMessageResource. The interaction layer will not access a
protected message object (BUSY flag set), unless explicitly requested via calls to API
services. Data consistency is ensured if the application is designed so that activities always
protect messages they need to access (including access via calls to API services).

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 29 -

For message objects that are used both in WithCopy and WithoutCopy configuration,
transmission or reception services called from an activity using WithCopy configuration shall
also test the protection state : if BUSY flag is set, the service shall perform no-operation and
return E_COM_LOCKED ; the integrity of the message object is therefore preserved. Note
that in either message configuration cases (ie WithCopy and WithoutCopy), the conditions for
a message to be locked are implementation specific since these depends on the strategy to
implement message objects and how these are accessed.

2.2.7 Message transmission

2.2.7.1 Transmission using WithCopy message accessor configuration

The provision of a message copy affects the operation of the interface interaction layer -
application layer. The provision of a copy located within the application layer requires the
transfer of information from the message copy to the interaction layer's message object.

The information encapsulated within a message copy shall be transferred to the appropriate
message object upon call to a specific transmission API service.

This transfer of information between the application and interaction layers shall be applicable
for internal, external and internal-external communication using any of the applicable
transmission modes : i.e. Direct, Periodical, Mixed.

2.2.7.2 Transmission using WithoutCopy message accessor configuration

No transfer of message data can take place between the interaction and application layers.

An update of the message object shall be performed each time a message accessor associated
with a specific message is assigned a particular value.

2.2.7.3 Transmission modes

OSEK COM supports three transmission modes allowing different schemes to transmit
messages : Direct, Periodical and Mixed.

The Direct transmission mode supports internal, external and internal-external
communication.

The Periodical and Mixed transmission modes supports external and internal-external
communication.

Assignment and definition of the transmission mode applicable to a message shall be
performed at system generation time.

2.2.7.3.1 Direct transmission mode

The application is in charge of requesting each transmission of a message to the interaction
layer, using the SendMessage, SendDynamicMessage or SendMessageTo API service. In the
case of external or internal-external communication, it shall be followed by a transmission
request from the interaction layer to the network layer. Refer to network layer chapter for the
definition of the sequencing of network layer services.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 30 -

SendMessage or SendDynamicMessage or SendMessageTo
Updates Message Object and requests transmission

N_UUData.req or N_USData.req

Application level

Interaction layer level

∇

Figure 2-4: Direct transmission mode for external or internal-external communication
(WithCopy configuration)

The Direct Transmission mode can be used with both UUDT and USDT protocols, with Static
or Dynamic Length configuration and Static or Dynamic Addressing Scheme.

2.2.7.3.2 Periodical transmission mode

The interaction layer shall be able to issue periodical transmission requests of a message.

Each call to the API service SendMessage shall update the message object with the
application data to be transmitted. The SendMessage service shall not issue any transmission
request to the network layer.

The transmission is performed on a cyclic time basis by means of calling the
N_UUData.request service of the network layer upon expiration of the periodical transmission
mode time period (I_TMP_TPD).

If periodical message transmission is not possible due to message object being locked or
BUSY then the transmission shall take place as soon as possible after it is released.
Postponement of a periodical message transmission shall not affect the transmission time of
subsequent messages.

The periodical transmission mode time period (I_TMP_TPD) shall be defined at system
generation time on a per-message basis.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 31 -

Figure 2-5: Periodical transmission mode

The Periodical Transmission Mode applies to the UUDT protocol only (Static Length, Static
Addressing Scheme).

2.2.7.3.2.1 Activation / Deactivation of periodical transmission mechanism

This transmission mechanism shall be activated by a call to the StartPeriodical() API service.
The StartPeriodical service shall start the periodical transmission mode time offset timer
(I_TMP_TOF).

The first transmission request (N_UUData.request service) shall be issued upon expiration of
the periodical transmission mode time offset (I_TMP_TOF).

StartPeriodical shall be called after the StartCOM API service has completed and once the
message object is correctly initialised. The API service MessageInit() can be used to perform
this initialisation.

The periodical transmission mechanism shall be stopped by means of the StopPeriodical API
service.

The periodical transmission mode time offset (I_TMP_TOF) shall be defined at system
generation time on a per-message basis.

Figure 2-6: Activation/De-activation of Periodical transmission mode –

N_UUData.req
called by COM

Application level

Interaction layer level

SendMessage
Updates Message Object
Requests no transmission

SendMessage SendMessage

I_TMP_TPD

∇ ∇ ∇

SendMessage

∇

N_UUData.req
called by COM

N_UUData.req
called by COM

N_UUData.req
called by COM

∇
∇

I_TMP_TOF I_TMP_TPD

∇
∇

∇
∇

N_UUData.req

called by COM

Application level

Interaction layer level

SendMessage
Updates Message Object
Requests no transmission

SendMessage

∇ ∇

SendMessage

∇

N_UUData.req

called by COM

N_UUData.req

called by COM

StartPeriodicalMsgInitStartCom

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 32 -

2.2.7.3.3 Mixed transmission mode

2.2.7.3.3.1 Definitions

Message Value: message value is the message data contained in the message object.

Old Message Value: old message value is the message value which was set by the last
update.

Relevant change : A relevant change of the message value shall be detected when the
message value matches a condition defined at system generation time

2.2.7.3.3.2 Mixed transmission mode mechanism

The interaction layer shall be able to issue itself periodical transmission requests of the
message.

Each call to the API service SendMessage shall update the message object with the
application data to be transmitted. The SendMessage service shall not issue any transmission
request to the network layer.

The transmission is performed on a cyclic time basis by means of calling the
N_UUData.request service of the network layer upon expiration of the mixed transmission
mode time period (I_TMM_TPD).

Intermediate transmissions of the message shall be issued within the mixed transmission mode
time-period (I_TMM_TPD) upon relevant changes (see system generation chapter) of the
value of the message data . These intermediate transmissions do not modify the base cycle
(i.e. I_TMM_TPD).

If periodical message transmission is not possible due to message object being locked or
BUSY then the transmission shall take place as soon as possible after it is released.
Postponement of a message transmission shall not affect the transmission time of subsequent
messages.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 33 -

Application

Interaction Layer

Network Layer

t

T T T

N_UUData.req N_UUData.req

Update Msg object
(SendMessage)

Update Msg object
(SendMessage)

No relevant
change detected

Relevant
change detected

N_UUData.req

Timer T
expired

Timer T
expired

Timer T
expired

Timer T
expired

N_UUData.reqN_UUData.req

Figure 2-7: Mixed transmission mode

The relevant change is detected by the interaction layer through of an evaluation procedure
"Test Message Value" which shall be executed upon each call to the SendMessage service.

The evaluation procedure "Test Message Value" shall be configured and generated at system
generation time.

The mixed transmission mode time period (I_TMM_TPD) shall be defined at system
generation time.

The Mixed Transmission Mode applies to the UUDT protocol only (Static Length, Static
Addressing Scheme).

2.2.7.3.3.3 Activation / Deactivation of mixed transmission mechanism

The periodical transmissions shall be activated by a call to the StartPeriodical() API service.
The StartPeriodical service shall start the mixed transmission mode time offset timer
(I_TMM_TOF).

The first transmission request (N_UUData.request service) shall be issued upon expiration of
the mixed transmission mode time offset (I_TMM_TOF).

StartPeriodical shall be called after the StartCOM API service has completed and once the
message object is correctly initialised. The API service MessageInit() can be used to perform
this initialisation.

The periodical transmissions shall be stopped by means of the StopPeriodical API service.

The mixed transmission mode time offset (I_TMM_TOF). shall be defined at system
generation time.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 34 -

2.2.8 Message reception

2.2.8.1 Reception using message accessor configuration WithCopy

The provision of a message copy affects the operation of the interface interaction layer -
application layer. The provision of a copy located within the application layer requires the
transfer of information between the interaction layer's message object and the message copy
located within the application layer's.

The information encapsulated within a message object shall be transferred to the appropriate
copy whose reference is provided to the reception API service.

This transfer of information between the interaction and application layers shall be applicable
for internal, external and internal-external communication.

2.2.8.2 Reception using message accessor configuration WithoutCopy

No transfer of information can take place between the interaction and the application layers.

A reading of the message object shall be performed each time a message accessor associated
with a specific message is used to supply its data content to another variable or as part of an
operation, e.g. calculation.

2.2.8.3 Unqueued and queued messages

2.2.8.3.1 Queued Message

A queued message behaves like a FIFO.

When the FIFO is empty, the ReceiveMessage() API service is not able to provide any
message data to the application ; the ReceiveMessage API service shall then return the status
code E_COM_NOMSG.

If a new message data arrives from the Network Layer and the FIFO is not full, this new
message is stored into the queue.

If a new message arrives from the Network Layer and the FIFO is full, this message is lost.
The next call to the ReceiveMessage API service shall return the oldest message and the status
code E_COM_LIMIT.

The pictures below illustrates the behaviour of a queued message.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 35 -

Application
Layer

Interaction
Layer

Underlaying
Layer

A B B B C C C C D E
C C D D D D E F

D E E E F
F F

ReceiveMessage ReceiveMessage ReceiveMessage ReceiveMessageReceiveMessage

No message
available
E_COM_NOMSG

A
E_OK

No message
available
E_COM_NOMSG

B
E_OK

C
E_COM_LIMIT

D
E_OK

A B C D E F G

Figure 2-8: Behaviour of Queued Message

The picture below illustrates the behaviour of a queued message with a queue of length equal
to 1 : in that case, once a message data has been stored in the queue, no new message data can
be stored until the old message has been consumed by the ReceiveMessage API service.

Figure 2-9: Behaviour of Queued Message with a queue length equal to 1

Application
Layer

Interaction
Layer

Underlaying
Layer

A

ReceiveMessage ReceiveMessage ReceiveMessage ReceiveMessage ReceiveMessage

No message
available
E_COM_NOMSG

A
E_OK

No message
available
E_COM_NOMSG

B
E_COM_LIMIT

No message
available
E_COM_NOMSG

B C

B B

A

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 36 -

2.2.8.3.2 Unqueued Message

In the case of an unqueued message, no FIFO mechanism shall be implemented. The
ReceiveMessage API service shall not consume the message : a message may be read multiple
times by the application once it has been received by the Interaction layer.

If no message has been received then ReceiveMessage, ReceiveDynamicMessage or
MessageReceiveFrom will return E_OK and the message value set at initialisation.

A message is overwritten by the arrival of a new message data, unless it is locked or BUSY
(the new message data is discarded in this case).

The ReceiveMessage API service shall return E_OK even if no new message has been
received since the last call of this service. In this particular case, the ReceiveMessage shall
provide the same message data to the application than that returned by the last
ReceiveMessage, ReceiveDynamicMessage or ReceiveMessageFrom call.

Figure 2-10: Behaviour of Unqueued message

Remark: the behaviour for an Unqueued Message is not the same than that of a Queued
Message with a length of queue equal to 1.

2.2.8.3.3 Summary of Transmission modes

The following table summarises the applicability of interaction layer items to transmission
modes. � indicates that the transmission mode mentioned in the column header shall be
capable of handling the definition item mentioned in the same row - second column.

Application
Layer

Interaction
Layer

Underlaying
Layer

A

ReceiveMessage ReceiveMessage ReceiveMessage ReceiveMessage

Message value
set at
initialisation

E_OK

A
E_OK

A
E_OK

C
E_OK

A B C C

A CB

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 37 -

Table 2-1: Transmission mode summary

D
IR

E
C

T

P
E

R
IO

D
IC

A
L

M
IX

E
D

Message Unqueued � � �

Queued � � �

Protocol UUDT � � �

USDT �

Addressing

Scheme

Static � � �

Dynamic �

Internal �

Scope External � � �

Int-Ext � �
2

�
3

2 A message can be transmitted periodically and received by an internal receiver.
3 A message can be transmitted periodically and received by an internal receiver.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 38 -

2.2.9 Communication deadline monitoring

This section of the specification defines :

1. mechanisms for monitoring transmission and reception of messages

2. notification mechanisms including services to interface with the OSEK Indirect Network
Management (NM).

Communication deadline monitoring can be used:

• to verify on the sender side that transmission requests (periodical or not) are followed by
transmissions on the network within a given time frame,

• to verify on the receiver side that periodical messages are received within the allowed
time-frame.

Messages to be monitored and respective time-out values shall be defined at system
generation time.

Notification mechanisms attached to monitored messages shall be defined at system
generation time.

Communication Deadline monitoring is restricted to external and internal-external
communication.

2.2.9.1 Definitions

Start Timer: start of measurement of elapsed time.

Timer Running: continuous measurement of elapsed time.

Cancel Timer: stop measurement of elapsed time

Time-out Interval : maximum time allowed for a particular monitored process

Time-out: elapsed time has exceeded the time-out interval .

2.2.9.2 Transmission monitoring

Transmission monitoring is available for any transmission mode.

2.2.9.2.1 Direct Transmission Mode

The Communication Deadline monitoring mechanism monitors that each call to
SendMessage, SendDynamicMessage, or SendMessageTo is followed by a transmission on
the media within a given time interval (I_CDM_TMD_TO).

The monitoring timer is started upon completion of the call to the SendMessage,
SendDynamicMessage or SendMessageTo API service.

The timer is cancelled upon confirmation of the transmission by N_UUData.con or
N_USData.con.

The corresponding monitored time interval (I_CDM_TMD_TO) value shall be defined at
system generation time.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 39 -

SendMessage
Application

Interaction layer level

Start Timer Cancel timer

∇
∇

Timer running

N_UUData.req

N_UUData.con

Figure 2-11: Direct transmission mode: example of a successful transmission in case of
UUDT protocol

If the transmission does not occur, i.e. if there is no confirmation of the message, the time-out
occurs and the application shall be notified using the appropriate notification mechanism.

The interaction layer does not send any additional transmission request to the underlying
communication layer upon occurrence of the time-out. It is up to the application to decide of
the appropriate actions to be taken.

SendMessage Application level

Interaction layer level

Start Timer
Time-out

∇
∇

Timer running
�

N_UUData.req

Figure 2-12: Direct transmission mode: example of a failed transmission in case of
UUDT protocol

The successful transfer of the message or the occurrence of the time-out can be notified to the
application .

2.2.9.2.2 Periodical Transmission Mode

The communication deadline monitoring mechanism monitors that at least one periodical
message is transmitted within a given time interval. The time-out interval of the monitored
time interval (I_CDM_TMP_TO) can be greater than the transmission period, depending on
system design constraints. The time-out interval can be expressed as a number of failed
transmissions I_n_FAILED_TMP multiplied by the time transmission period I_TMP_TPD.
The time-out interval of the monitored time interval shall be defined at system generation
time.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 40 -

The monitoring timer shall be started after each periodical transmission request
N_UUData.req if it is not currently running (i.e. if it is the first start of the timer or if the timer
was previously cancelled).

The timer of the corresponding monitored time interval (I_CDM_TMP_TO) shall be
cancelled by the confirmation of any transmission of the monitored message.

Start Timer

Interaction layer level

N_UUData.req N_UUData.con

Cancel Timer
Start Timer

Cancel Timer

Transmission Period

N_UUData.conN_UUData.req

Figure 2-13: Periodical transmission mode: successful transmission

If no transmission occurs, i.e. if there is no message confirmation, the time-out occurs.

If the duration of the monitored time interval is equivalent to several transmission period
I_n_FAILED_TMP* I_TMP_TPD with I_n_FAILED_TMP>1), the timer shall not be
restarted after each transmission request N_UUData.req : the timer (I_CDM_TMP_TO) shall
be only be restarted upon a N_UUData.req if the previous timer has expired.

The interaction layer shall not send any additional transmission request (N_UUData.request)
to the underlying communication layer upon occurrence of the time-out. Transmission
requests are still performed on the same cycle time basis.

Start timer

Interaction layer level

N_UUData.req

N_UUData.con

Cancel timer Time-out
�

Transmission period Transmission period

Start timer Timer running Start timer

Transmission period

N_UUData.req N_UUData.req N_UUData.req

Figure 2-14: Periodical transmission mode: failed transmissions

The successful transfer of a message within the allowed time interval or the occurrence of the
time out can be notified to the application or to the Indirect network management (see
Network Management specification).

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 41 -

2.2.9.2.3 Mixed Transmission Mode

The Communication Deadline monitoring mechanism monitors that at least one message is
transmitted within a given monitored time interval (I_CDM_TMM_TO). The time-out
"period" can be expressed as a number of failed transmissions I_n_FAILED TMM multiplied
by the time transmission period I_TMM_TPD.

The corresponding time-out "period" (I_CDM_TMM_TO) shall be defined at system
generation time.

The timer (I_CDM_TMM_TO) is started after each transmission request N_UUData.req
(periodical or issued by a relevant change in the message data value) it is not currently
running (i.e. if it is the first start of the timer-out or if the timer was previously cancelled).

The timer is cancelled by the confirmation of any transmission (periodical or relevant change
of message data).

Start Timer

Interaction layer level

N_UUData.req

N_UUData.con

Cancel Timer

Transmission Period

Application level
SendMessage

∇

Relevant change of message value
requesting immediate transmission

N_UUData.req

Cancel Timer

N_UUData.con

N_UUData.req

Start Timer

N_UUData.con

Cancel Timer

Start Timer

Figure 2-15: Mixed transmission mode: successful transmissions

If the duration of the monitored time interval is equivalent to several transmission period
I_n_FAILED_TMM * I_TMM_TPD with I_n_FAILED_TMM>1), the timer shall not be
restarted after each transmission request N_UUData.req : the timer shall be only restarted
upon a N_UUData.req if the previous the timer has expired.

The interaction layer shall not send any additional transmission request (N_UUData.req) to
the underlying communication layer upon occurrence of the time-out. Transmission requests
are still performed on the same cycle time basis or upon a relevant change.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 42 -

Start timer

Interaction layer level

N_UUData.req

N_UUData.con

Cancel timer

Transmission Period

Application level

SendMessage

∇

Relevant change

Timer running

Transmission Period

Time-out

�

N_UUData.req

N_UUData.req

Start timer

N_UUData.req

Figure 2-16: Mixed transmission mode: failed transmissions

The successful transfer of a message within the allowed time interval or the expiration of the
time out can be notified to the application or to the Indirect Network management (see
Network Management specification).

2.2.9.3 Periodical reception monitoring

The communication deadline monitoring mechanism monitors that a cyclic message is
received within a given time interval (I_CDM_RX_TO).

The time-out interval of the monitored time interval (I_CDM_RX_TO) shall be defined at
system generation time.

The monitoring timer is cancelled and restarted upon each new reception of the message by
N_UUData.ind.

If there is no reception and the time-out occurs, the timer shall be immediately restarted.

First time-out

The timer of the first monitored time interval (I_CDM_RX_TO) shall be started once message
object initialisation tasks are performed, i.e. after the MessageInit() API has completed.

Depending on system design constraints, a specific value (I_CMD_FRX_TO) can be chosen
for the first the time-out interval. This value shall be defined at system generation time.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 43 -

MessageInit

Interaction layer levelReception period

Cancel running timer
and restart new timer

N_UUData.ind

Timer running

N_UUData.ind

∇
∇

Start first timer Cancel running timer
and restart new timer

Time between COM start-up and first
N_UUData.ind of the message

Timer running with first value

Application level

Figure 2-17: Periodical reception: correct and missing receptions

The use of this mechanism is not restricted to monitor the reception of messages transmitted
using the periodical transmission mode. The expiration of the time out can be notified to the
application or to the Indirect Network management (see Network Management specification).

2.2.10 Notification mechanisms

This section defines notification mechanisms for the application to determine the final status
of a previously called send or receive operation.

The notification of the application is performed as soon as a specific event has occurred, e.g.
the user does not need to call a specific OSEK COM API service in advance to ensure that the
notification scheme is active.

The notification mechanisms are defined at system generation time and cannot be changed at
system run-time.

2.2.10.1 Notification classes

OSEK COM supports the following notification classes:

1. Notification Class 1 : Message Reception
In case of internal, external or internal-external communication a message has been
successfully received.

In case of internal communication, the appropriate notification mechanism shall be set
after the message transmission has been performed : the notification mechanism provides
an indication of the current condition.
In case of external or internal-external communication, the appropriate notification
mechanism shall be set upon the occurrence of the network layer service primitives
„indication“ and provided that the BUSY flag of the specific message does not indicate
that it is in use :

• For messages using UUDT, the applicable notification mechanism shall be set upon
occurrence of N_UUData.indication with N_Result_UUDT = N_OK.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 44 -

• For messages using USDT, the applicable notification mechanism shall be set upon
occurrence of N_USData.indication with N_Result_USDT = N_OK.

2. Notification Class 2 : Message Transmission
In case of external or internal-external communication the interaction layer has been
notified by the network layer that a message has been successfully transmitted.

The appropriate notification mechanism shall be set upon the occurrence of the network
layer service primitives „confirmation“ depending on the protocol used :

• For messages using UUDT, the applicable notification mechanism shall be set upon
occurrence of N_UUData.confirmation with N_Result_UUDT = N_OK.

• For messages using USDT, the applicable notification mechanism shall be set upon
occurrence of N_USData.confirmation with N_Result_USDT = N_OK.

3. Notification Class 3 : Message Reception Error
In case of external or internal-external communication a message reception error has been
detected either by the deadline monitoring function or via an error code provided by the
indication service primitive of the underlying layer :

• For messages using UUDT, the applicable notification mechanism shall be set upon
occurrence of N_UUData.indication with N_Result_UUDT different from N_OK.

• For messages using USDT, the applicable notification mechanism shall be set upon
occurrence of N_USData.indication with N_Result_USDT different from N_OK.

4. Notification Class 4 : Message Transmission Error
In case of external or internal-external communication a message transmission error has
been detected either by the deadline monitoring function or via an error code provided by
the confirmation service primitive of the underlying layer :

• For messages using UUDT, the applicable notification mechanism shall be set upon
occurrence of N_UUData.confirmation with N_Result_UUDT different from N_OK.

• For messages using USDT, the applicable notification mechanism shall be set upon
occurrence of N_USData.confirmation with N_Result_USDT different from N_OK.

5. Notification Class 5: USDT First Frame Indication
In case of external communication, the applicable notification mechanism shall be set
upon occurrence of N_USData_FF.indication service primitive.

2.2.10.2 Notification mechanisms requiring an operating system

The following notification mechanisms requiring the support of an OSEK operating system
shall be provided:

1. Task
The interaction layer activates a task of the application.

The “Task” notification mechanism shall support notification classes 1 to 5.

2. Event

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 45 -

The interaction layer sets an event to a task of the application.

The “Event” notification mechanism shall support notification classes 1 to 5.

Only one type of notification mechanism can be defined for a given task and a given message,
e.g. a given task A using a given message B can make use of either task activation or event
setting.

2.2.10.3 Notification mechanisms not requiring an operating system

The following notification mechanisms which do not require the support by an underlying
operating system shall be provided:

1. Callback routine
The interaction layer calls a callback routine provided by the application.
The “Callback” notification mechanism shall support notification classes 1 to 5.

2. Flag
The interaction layer sets a flag which can be checked by the application on a cyclic basis
by means of the ReadFlag() API service. Resetting of the flag is performed by the
application by means of the ResetFlag() API service.
The "Flag" notification mechanism shall support the notification classes 1 to 5.

The use of OSEK-COM API functions in callback routines are restricted as documented in the
usage restriction chapter of the interaction layer.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 46 -

2.2.10.4 Conditional notification

Application

Interaction Layer

Network Layer

t

N_ UUData.ind
or N_USData.ind

Notification

No relevant
change detected

Relevant
change detected

No relevant
change detected

N_ UUData.ind
or N_USData.ind

N_ UUData.ind
or N_USData.ind

Figure 2-18: Conditional notification data flow

Conditional notification applies to notification class1 only. All notification mechanisms are
applicable.

The interaction layer shall perform the following steps if a message arrives (s. flow chart
below):

1. Check if conditional notification is enabled for this message

2. If yes, check if there is a relevant change in the message value

3. If there is a relevant change perform the notification mechanism

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 47 -

begin

conditional
notification

enabled?

end

relevant
change

detected?

TestMessageValue

NotifyApplication

y

y

n

n

Conditional Notification

Notify Application

Figure 2-19: Conditional notification flow chart

Relevant changes shall be described at system generation time.

For a definition of relevant changes refer to section 2.7.3 (Mixed Transmission Mode).

2.2.10.5 Summary of notification classes and mechanisms

The following table summarizes the notification classes and mechanisms specified in the
previous sections:

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 48 -

Table 2-2: Notification classes and mechanisms

Notification Conditional Notification mechanisms

Classes Notification

ta
sk

ev
en

t

ca
llb

ac
k

fl
ag

1 Message Reception ✔
✔ ✔ ✔ ✔

2 Message Transmission
✔ ✔ ✔ ✔

3 Message Reception Error
✔ ✔ ✔ ✔

4 Message Transmission Error
✔ ✔ ✔ ✔

5 USDT First Frame
Indication

✔ ✔ ✔ ✔

The following table summarises the applicability of interaction layer items to notification
mechanisms. � indicates that the service mentioned in the column header shall be capable of
handling the definition item mentioned in the same row - second column.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 49 -

Table 2-3: Summary of notification classes and notification mechanisms

C
la

ss
1

C
on

di
ti

on
al

C
la

ss
1

C
la

ss
2

C
la

ss
3

C
la

ss
4

C
la

ss
5

Message Unqueued � � � � � �

Queued � � � � �

Protocol UUDT � � � � �

USDT � � � � � �

Internal �

Scope External � � � � � �

Int-Ext � � � � �

Direct � �

Tx Mode Periodical � �

Mixed � �

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 50 -

2.2.11 Interface to OSEK Indirect Network Management

The following services have to be provided to the OSEK Indirect Network Management.

This services are used by OSEK COM to inform Indirect Network Management of the
communication deadline monitoring results.

2.2.11.1 Messages transfer indication

Service name: I_MessageTransfer

Syntax: internal service

Indication: I_MessageTransfer.ind (<Sender>)

Parameter(in):

<Sender> Uniquely identifies the sending entity.

Parameter(out): none

Description: OSEK COM informs OSEK Indirect NM via the service primitive
I_MessageTransfer.ind (<Sender>) provided by OSEK NM that a
monitored message has been received from a remote node or that a
monitored message has been transmitted by the own node.

2.2.11.2 Time-out indication

Service name: I_MessageTimeOut

Syntax: internal service

Indication: I_MessageTimeOut.ind (<Sender>)

Parameter(in):

<Sender> Uniquely identifies the sending entity.

Parameter(out): none

Description: OSEK COM informs OSEK Indirect NM via the service primitive
I_MessageTimeOut.ind (<Sender>) provided by NM that a time-out
has occurred for a monitored message.

Particularities: none

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 51 -

2.2.12 Application programming interface

2.2.12.1 Service parameter type

This chapter describes API services in/out parameter types.

2.2.12.1.1 StatusType

Reference : Refer to the OSEK binding specification

Description :

Each call to an API service shall return a status code, giving thus an information on the
completion or failure of the operation.

OSEK COM defines communication specific error codes. The system designer can also
add implementation specific error codes.

The following naming convention shall apply :

All return values of OSEK COM API and Start Up services shall start with E_.

Return values of OSEK COM specific services shall begin with begin with E_COM_.

All implementation specific error codes shall start with E_COM_SYS_, e.g.
E_COM_SYS_DISCONNECTED.

The communication specific error codes are given in the following table :

Table 2-4:Error codes defined by OSEK COM

StatusCode Description

E_OK No error, service call has succeeded.

E_COM_BUSY Message in use by application task/function.

E_COM_ID Invalid message name passed as parameter.

E_COM_LIMIT Overflow of FIFO associated with queued messages.

E_COM_LOCKED Rejected service call, message object is locked.

E_COM_NOMSG No message available.

E_COM_RX_ON On-going message reception.

There is only one error code used throughout the OSEK system (error code common to
all specifications) : E_OK.

The implementation vendor has to ensure that the names and values of those errors do
not overlap with the OSEK or OSEK COM specific error codes defined above.

To ensure portability of application code, the programmer has to use the symbolic
names of the reserved StatusCodes as defined in the table above.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 52 -

2.2.12.1.2 SymbolicName

Type :

Scalar

Range :

Set to support all OSEK messages of a specific application.

Description :

A SymbolicName is a type that shall provide a range of possible values for identification
of all application specific OSEK message.

2.2.12.1.3 AccessNameRef

Type:

Reference

Range:

Set to support all OSEK messages of a specific application.

Description:

AccessNameRef is the address of the message data field:

In case of WithCopy configuration:

AccessNameRef points to the message copy associated with the message
identified by the SymbolicName specified in the given API service.

In case of WithoutCopy configuration:

AccessNameRef points to the message object identified by the SymbolicName
specified in the given API service.

2.2.12.1.4 DataLengthRef

Type:

Reference to scalar

Range :

DataLength(Ref) is a scalar reference to a variable that can hold a maximum value equal
to 4095 bytes.

Description :

DataLengthRef range is set according to the maximum length known of an OSEK
dynamic length message.

2.2.12.1.5 ParamValue

Type :

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 53 -

Scalar

Range :

0 to +127

Description :

ParamValue is a value type item whose range is set to an octet.

ParamValue is an unsigned type.

2.2.12.1.6 AddressRef

Type :

Scalar reference

Range :

0 to +127

Description :

AddressRef is a reference type to an item whose size is equal to an octet.

2.2.12.1.7 FlagValue

Type :

Enumeration

Range :

FALSE, TRUE

Description :

FlagValue is an enumeration ndicating the current state of a message flag.

2.2.12.1.8 FlagType

Type :

Scalar

Range :

Set to support all OSEK messagesflag of a specific application

Description :

AddressRef is a reference type to an item whose size is equal to an octet.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 54 -

2.2.12.2 Configurations

Two configurations are supported:

Table 2-5: Configurations of the interaction layer

Configurations Protocols Supported configurations

Message
Length

Addressing
scheme

UUDT USDT

Static Static ✔ ✔ SM/SA

Dynamic Dynamic ✔ DM/DA

Static Dynamic Not supported

Dynamic Static ✔ DM/SA

The purpose of "static message length & static addressing scheme" (SM/SA) is to support
transfer of static length message (maximum message length of 4095 bytes).

The purpose of "dynamic message length & dynamic addressing scheme" (DM/DA) is to
support transfer of dynamic length message (maximum message length of 4095 bytes) that can
be attached to multiple set of data link layer attributes.

The purpose of "dynamic message length & static addressing scheme" (DM/SA) is to support
the transfer of dynamic length message (maximum message length of 4095 bytes) attached to
a single set of data link layer attributes, e.g a single CAN identifier.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 55 -

2.2.12.3 Start-up services

2.2.12.3.1 InitCOM

Service name: InitCOM

Syntax: StatusType InitCOM (void)

Parameter(In): none

Parameter(Out): none

Description: This service exists to initialise all hardware and low-level resources
used by COM. It may be called before starting the OSEK/VDX kernel,
or from within any kernel startup hook routines.

Caveats: It is not possible to call InitCOM from an OSEK/VDX task level
without first masking all interrupts. Calling InitCOM while COM is
running will result in undefined behaviour.

Particularities: The returned StatusType is handled by the application software and
is outside the scope of OSEK COM.

Status:

Standard and Extended:

• A1 : The service shall return E_OK if the initialisation completed
successfully.

• A2 : The service shall return an implementation or application
specific error code if the initialisation did not complete successfully.

2.2.12.3.2 CloseCOM

Service name: CloseCOM

Syntax: StatusType CloseCOM (void)

Input Parameters: none

Output Parameters: none

Description: This low-level service releases hardware resources used by the
OSEK/VDX COM module. It will not release OS resources, which
must be returned using StopCOM.

CloseCOM must not be called from OSEK/VDX task level unless
interrupts are masked. CloseCOM may be called from shutdown
hooks or after the OSEK/VDX kernel has been stopped.

Caveats: All COM operations will cease immediately and hardware will be de-
initialised as appropriate. Data will be lost.

It is legal to call CloseCOM without calling StopCOM, but OS
resources allocated by StartCOM will not be released and COM will
be left in an undefined state. Such action would normally only be
taken in the event of a critical error, prior to a complete system re-
initialisation.

Status :

Standard and Extended:

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 56 -

• A1: The service shall return E_Ok if OSEK COM was shut down
successfully

• A2 : The service shall return an implementation or application
specific error code if the initialisation did not complete
successfully.

2.2.12.3.3 StartCOM

Service name: StartCOM

Syntax: StatusType StartCOM (void)

Parameter(In): none

Parameter(Out): none

Description: The StartCOM service starts the OSEK communication module. This
routine shall perform the initialisation of OSEK COM implementation
specific internal states and variables. StartCOM may call the
MessageInit function provided by the application programmer if the
latter is used to initialise the application specific message objects.

If StartCOM or one of the routines called fail then initialisation of the
OSEK COM module shall abort and StartCOM shall return a status
code as specified below.

StartCOM must be called from within a task if an OSEK-compliant
operating system is used.

Caveats: InitCOM must be called to initialise hardware before StartCOM can
be called. Failure to call InitCOM before StartCOM will result in
undefined behaviour.

Status:

Standard and Extended:
• A1 : The service shall return E_OK if the initialisation completed

successfully.
• A2 : The service shall return an implementation or application

specific error code if the initialisation did not complete
successfully.

2.2.12.3.4 StopCOM

Service name: StopCOM

Syntax: StatusType StopCOM (Scalar <ShutdownMode>)

Input Parameters: ShutdownMode:

COM_SHUTDOWN_IMMEDIATE

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 57 -

The shutdown will occur immediately without waiting for pending
operations to complete.

Output Parameters: none

Description: This services causes all OSEK COM activity to cease and all
resources used by COM to be returned or left in an inactive state. All
operations will cease immediately and hardware will be de-initialised
as appropriate. By implication, data will be lost. StopCOM will not
return until all pending COM operations have completed and
their resources can be released.

When StopCOM has completed successfully the system shall be left
in a state in which StartCOM can be called to re-initialise OSEK
COM.

Particularities : None.

Status:

Standard and Extended:
• A1 : The service shall return E_OK if OSEK COM was shut

down successfully

• A2: The service shall return E_COM_BUSY if OSEK COM could
not shut down because an application (task) is currently using a
resource owned by OSEK COM.

2.2.12.3.5 MessageInit

Service name: MessageInit

Syntax: StatusType MessageInit (void)

Parameter(In): none

Parameter(Out): none

Description: This routine initialises all application specific message objects.

Particularities: This function has to be provided by the application programmer and
shall be called by the StartCOM routine only. Any other way to
initialise application specific message object is allowed provided it
does not hinder the functionality of the API services defined in this
specification.

Status:

Standard and Extended:
• A1 : The service shall return E_OK if the initialisation of the

application specific message object has completed
successfully.

• A2 : The service shall return an implementation or application
specific error code if the initialisation did not complete
successfully.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 58 -

2.2.12.3.6 StartPeriodical

Service name: StartPeriodical
Syntax: StatusType StartPeriodical (void)

Parameter (In): none

Parameter(Out): none

Description: This service shall initiate periodical transmission of messages. This
service shall support the periodical transfer of messages using either
the periodical or mixed transmission modes. This service shall also
be capable to resume periodical transmission of messages if it had
been stopped previously by means of StopPeriodical() service.

Particularities: none

Status:

Standard and Extended:
• A1 : The service shall return E_OK if the initiation of the

periodical transmission of messages has completed
successfully.

• A2 : The service shall return an implementation or application
specific error code if the initialisation did not complete
successfully.

2.2.12.3.7 StopPeriodical

Service name: StopPeriodical
Syntax: StatusType StopPeriodical (void)

Parameter (In): none

Parameter(Out): none

Description: This service shall stop periodical transmission of messages. This
service shall stop the periodical transfer of all messages using either
the periodical or mixed transmission modes.

Particularities: none

Status:

Standard and Extended:
• A1 : The service shall return E_OK if the initialisation completed

successfully.
• A2 : The service shall return an implementation or application

specific error code if the initialisation did not complete
successfully.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 59 -

2.2.12.4 Notification mechanism support services

2.2.12.4.1 ReadFlag

Service name: ReadFlag

Syntax: FlagValue ReadFlag (FlagType FlagName)

Parameter(In):

FlagName Message flag name

Parameter(Out):

FlagValue State of the flag <FlagName>

Description: This service returns the value of the specified notification flag
<FlagName>.

Particularities: This service is provided so that appropriate mechanism can be
implemented to ensure flag data consistency whilst enabling portable
access to the message notification flag. The flag meaning depends
to which notification class the specified flag <FlagName> is
associated with, eg Flag associated with Notification class 1 and set
at TRUE indicates that a message has arrived.

Status:

Standard and Extended::
• A1 : The service shall return TRUE if the conditions associated

to the notification class to which the flag is associated are met.
• A2 : The service shall return FALSE if the conditions associated

to the notification class to which the flag is associated are not
met.

2.2.12.4.2 ResetFlag

Service name: ResetFlag

Syntax: StatusType ResetFlag (FlagType FlagName)

Parameter(In):

FlagName Message flag name

Parameter(Out): none

Description: This service set the specified notification flag <FlagName> to FALSE.

Particularities: This service is provided so that appropriate mechanism can be
implemented to ensure flag data consistency whilst enabling portable
access to the message notification flag.

Status:

Standard and Extended:
• A1 : The service shall return E_OK if the flag reset completed

successfully.
• A2 : The service shall return an implementation or application

specific error code if the initialisation did not complete
successfully.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 60 -

2.2.12.5 Communication services

2.2.12.5.1 SendMessage

Service name: SendMessage

Syntax: StatusType SendMessage (

SymbolicName <Message>,

AccessNameRef <Data>

)

Parameter (In):

Message Symbolic name of the message

Data Reference to the message data field to be transmitted

Parameter (Out): none

Description: The service shall update the message object identified by
<Message> depending on the message copy configuration and
request transmission of the message object depending on the
transmission mode specified. The service shall not verify whether the
message object has been initialised.

1. In case of WithCopy :
The service shall update the message object identified by
<Message> with the message copy referenced by the <Data>
parameter.

2. In case of WithoutCopy :
No update of the message object shall be performed since no
message copy is used to interface with the message object
identified by <Message>.

Particularities: None

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message object identified by <Message> is locked. This
condition has higher precedence over all other conditions
defined in section A2 to A3 of this section.

• A2 : The service shall return E_COM_LOCKED if the copy
configuration of <Data> is WithCopy and the message is set
BUSY.

• A3 : The service shall return E_OK if the service operation has
completed successfully.

Extended:
• A1 to A3 status codes defined under the "Standard" section

shall be supported.
• A4 : The service shall return E_COM_ID if the parameter

<Message> is invalid.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 61 -

2.2.12.5.2 ReceiveMessage

Service name: ReceiveMessage

Syntax: StatusType ReceiveMessage (

SymbolicName <Message>,

AccessNameRef <Data>

)

Parameter (In):

Message Symbolic name of the message

Parameter (Out):

Data Reference to the message data field to store the received data

Description: The service shall deliver the message data associated with the
message object <Message> depending on the message copy
configuration.

1. In case of WithCopy :
The service shall update the message referenced by <Data>
with the message object identified by <Message>.

2. In case of WithoutCopy :
The service shall return only a service status since the
application accesses directly the message object.

The service shall return message data according to the behaviour
specified in the message chapter of the interaction layer.

Particularities: None

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message object identified by <Message> is locked. This
condition has higher precedence over all other conditions
defined in section A2 to A5 of this section.

• A2 : The service shall return E_COM_LOCKED if the copy
configuration of <Data> is WithCopy and the message is set
BUSY.

• A3 : The service shall return E_OK if data of a queued or
unqueued message identified by <Message> is available and
returned to the application successfully.

• A4 : The service shall return E_COM_NOMSG if the queued
message identified by <Message> is empty.

• A5 : The service shall return E_COM_LIMIT if an overflow of
the FIFO of the queued message identified by <Message>
occurred since the last call to “Service_Name” for that particular
<Message>, E_COM_LIMIT indicates that at least one queued
message has been lost and discarded since the FIFO was full
upon the queued message arrival.

Extended:
• A1 to A5 status codes defined under the "Standard" section

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 62 -

shall be supported.
• A6 : The service shall return E_COM_ID if the parameter

<Message> is invalid.

2.2.12.5.3 GetMessageResource

Service name: GetMessageResource

Syntax: StatusType GetMessageResource (

SymbolicName <Message>

)

Parameter (In):

Message Symbolic name of the message object

Parameter (Out): none

Description: The service GetMessageResource shall set the message object
<Message> status as busy.

Particularities: It is recommended that corresponding calls to Get- and
ReleaseMessageResource should appear within the same function
on the same function level. Before terminating the task or entering
the wait state the corresponding service ReleaseMessageResource
shall be called by the application layer.

This service can only be used to support the transfer of a message
identified by <Message> whose copy configuration is "WithoutCopy".

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message identified by <Message> is locked. This condition has
higher precedence over all other conditions defined in section
A2 to A3 of this section.

• A2 : The service shall return E_OK if the message identified by
<Message> has been set to BUSY successfully.

• A3 : The service shall return E_COM_BUSY if the message
identified by <Message> is already set to BUSY.

Extended:
• A1 to A3 status codes defined under the "Standard" section

shall be supported.
• A4 : The service shall return E_COM_ID if the <Message>

parameter is invalid.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 63 -

2.2.12.5.4 ReleaseMessageResource

Service name: ReleaseMessageResource

Syntax: StatusType ReleaseMessageResource (

SymbolicName <Message>

)

Parameter (In):

Message Symbolic name of the message object

Parameter (Out): none

Description: The service ReleaseMessageResource shall unconditionally set the
message object <Message> to NOT_BUSY.

Particularities: It is recommended that corresponding calls to Get- and
ReleaseMessageResource appear within the same function on the
same function level. Before terminating the task or entering the wait
state the corresponding service ReleaseMessageResource shall be
used.

This service can only be used to support the transfer of a message
identified by <Message> whose copy configuration is "WithoutCopy".

Status:

Standard:
• A1 : The service shall return E _OK after the message has

been set to NOT_BUSY.

Extended:
• A1 status code defined under the "Standard" section shall be

supported.
• A2 : The service shall return E_COM_ID if the <Message>

parameter is invalid.

2.2.12.5.5 SendMessageTo

Service name: SendMessageTo

Syntax: StatusType SendMessageTo (

SymbolicName <Message>,

AccessNameRef <Data>,

LengthRef <DataLength>,

AddressRef <Recipients>

)

Parameter (In):

Message Symbolic name of the message.

Data Reference to the message data field to be transmitted.

DataLength Length of the message.

Recipient Identifier of application receiver of the message.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 64 -

Parameter (Out): none

Description: The service shall update the message object identified by
<Message> depending on the message copy configuration and
request transmission of the message object depending on the
transmission mode specified. The service shall not verify whether the
message object has been initialised. The length (DataLength) and
identifier of the application receiver(s) of the message shall be
transmitted to the underlying communication layer.

1. In case of WithCopy :
The service shall update the message object identified by
<Message> with the message copy referenced by the <Data>
parameter.

2. In case of WithoutCopy :
No update of the message object shall be performed since no
message copy is used to interface with the message object
identified by <Message>.

Particularities: This service shall interface with unqueued message only.

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message identified by <Message> is locked. This condition has
higher precedence over all other conditions defined in section
A2 to A3 this section.

• A2 : The service shall return E_COM_LOCKED if the copy
configuration of <Data> is WithCopy and the message is set
BUSY.

• A3 : The service shall return E_OK if the service operation has
completed successfully.

Extended:
• A1 to A3 status codes defined under the "Standard" section

shall be supported
• A4 : invalid parameter <Message>, E_COM_ID

2.2.12.5.6 ReceiveMessageFrom

Service name: ReceiveMessageFrom

Syntax: StatusType ReceiveMessageFrom (

SymbolicName <Message>,

AccessNameRef <Data>,

LengthRef <DataLength>,

AddressRef <Sender>

)

Parameter (In):

Message Symbolic name of the message

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 65 -

Parameter (Out):

Data Reference to the message data field to host the received data

DataLength Reference to the length of the message

Sender Reference to the identifier of the application sender of message

Description: The service shall deliver the message data associated with the
message object <Message> depending on the message copy
configuration. The length of the received message data
(DataLength) and the identifier of the application sender (Sender)
shall be delivered to the application.

1. In case of WithCopy :
The service shall update the message referenced by <Data>
with the message object identified by <Message>.

2. In case of WithoutCopy :
The service shall return only a service status since the
application accesses directly the message object.

The service shall return message data according to the behaviour
specified in the message chapter of the interaction layer.

Particularities: This service shall interface with unqueued message only.

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message object identified by <Message> is locked. This
condition has higher precedence over all other conditions
defined in section A2 to A3 this section.

• A2 : The service shall return E_COM_LOCKED if the copy
configuration of <Data> is WithCopy and the message is set
BUSY.

• A3 : The service shall return E_OK if data of an unqueued
message identified by <Message> is available and returned to
the application successfully.

Extended:
• A1 to A3 status codes defined under the "Standard" section

shall be supported.
• A4 : The service shall return E_COM_ID if the parameter

<Message> is invalid.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 66 -

2.2.12.5.7 SendDynamicMessage

Service name: SendDynamicMessage

Syntax: StatusType SendDynamicMessage (

SymbolicName <Message>,

AccessNameRef<Data>,

LengthRef <DataLength>

)

Parameter (In):

Message Symbolic name of the message

Data Reference to the message data field to be transmitted

DataLength Length of the message

Parameter (Out): none

Description: The service shall update the message object identified by
<Message> depending on the message copy configuration and
request transmission of the message object depending on the
transmission mode specified. The service shall not verify whether the
message object has been initialised. The length (DataLength) of the
message data shall be transmitted to the underlying communication
layer.

1. In case of WithCopy :
The service shall update the message object identified by
<Message> with the message copy referenced by the <Data>
parameter.

2. In case of WithoutCopy :
No update of the message object shall be performed since no
message copy is used to interface with the message object
identified by <Message>.

Particularities: This service shall interface with unqueued message only.

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message identified by <Message> is locked. This condition has
higher precedence over all other conditions defined in section
A2 to A3 this section.

• A2 : The service shall return E_COM_LOCKED if the copy
configuration of <Data> is WithCopy and the message is set
BUSY.

• A3 : The service shall return E_OK if the service operation has
completed successfully.

Extended:
• A1 to A3 status codes defined under the "Standard" section

shall be supported
• A4 : The service shall return E_COM_ID if the parameter

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 67 -

<Message> is invalid.

2.2.12.5.8 ReceiveDynamicMessage

Service name: ReceiveDynamicMessage

Syntax: StatusType ReceiveDynamicMessage (

SymbolicName <Message>,

AccessNameRef <Data>,

LengthRef <DataLength>,

)

Parameter (In):

Message Symbolic name of the message

Parameter (Out):

Data Reference to the message data field to host the received data

DataLength Reference to the length of the message

Description: The service shall deliver the message data associated with the
message object <Message> depending on the message copy
configuration. The length of the received message data
(DataLength) and the identifier of the application sender (Sender)
shall be delivered to the application.

1. In case of WithCopy :
The service shall update the message referenced by <Data>
with the message object identified by <Message>.

2. In case of WithoutCopy :
The service shall return only a service status since the
application accesses directly the message object.

The service shall return message data according to the behaviour
specified in the message chapter of the interaction layer
specification.

Particularities: This service shall interface with unqueued message only.

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message object identified by <Message> is locked. This
condition has higher precedence over all other conditions
defined in section A2 to A4 this section.

• A2 : The service shall return E_COM_LOCKED if the copy
configuration of <Data> is WithCopy and the message is set
BUSY.

• A3 : The service shall return E_OK if data of an unqueued
message identified by <Message> is returned to the application
successfully.

Extended:

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 68 -

• A1 to A3 status codes defined under the "Standard" section
shall be supported.

• A4 : The service shall return E_COM_ID if the parameter
<Message> is invalid.

2.2.12.5.9 GetMessageStatus

Service name: GetMessageStatus

Syntax: StatusType GetMessageStatus (

SymbolicName <Message>

)

Parameter (In):

Message Symbolic name of the message object

Parameter (Out): none

Description: The service GetMessageStatus shall return the current status of the
message object <Message>. If this service call fails, it shall return an
implementation specific error code that shall be distinguishable from
all other return values.

Particularities: none

Status:

Standard:
• A1 : The service shall return E_COM_LOCKED whenever the

message identified by <Message> is locked. This condition has
higher precedence over all other conditions defined in section
A2 to A6 this section.

• A2 : The service shall return E_COM_BUSY if the message is
currently set to BUSY.

• A3 : The service shall return E_COM_NOMSG if the FIFO of
the queued message identified by <Message> is empty.

• A4 : The service shall return E_COM_LIMIT if an overflow of
the FIFO of the queued message identified by <Message>
occurred.

• A5 : The service shall return E_OK if none of the conditions
specified in A1 to A6 of this section is applicable nor fulfilled
and no indication of error is present.

Extended:
• A1 to A5 status codes defined under the "Standard" section

shall be supported.
• A7 : The service shall return E_COM_ID if the <Message>

parameter is invalid.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 69 -

2.2.12.5.10 ChangeProtocolParameters

Service name: ChangeProtocolParameters

Syntax: StatusType ChangeProtocolParameters (

SymbolicName <Message>,

ParamValue <BS_Value>

ParamValue <ST_Value>

)

Parameter (In):

Message Symbolic name of the message

BS_Value value to be assigned to the BS parameter of the network layer.

ST_Value value to be assigned to the STmin parameter of the network layer.

Parameter (Out): none

Description: This service shall modify the network layer parameter BS and STmin
of the message identified by <Message>. This service shall use the
network layer interface service N_ChangeParameter.request.

The API service parameter BS_Value shall be assigned to the
interface network service parameter N_BS_Value.

The API service parameter ST_Value shall be assigned to the
interface network service parameter N_ST_Value.

Status:

Standard:
• A1 : The service shall return E_OK if the parameters change

completed successfully.
• A2 : The service shall return E_COM_RX_ON if the parameters

change failed due to an on-going message reception.

Extended:
• A1 to A2 status codes defined under the "Standard" section

shall be supported.
• A3 : The service shall return E_COM_ID if the parameter

<Message> is invalid.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 70 -

2.2.12.5.11 Summary of API services

The following table summarises the applicability of interaction layer items to API services. �
indicates that the service mentioned in the column header shall be capable of handling the
definition item mentioned in the same row - second column.

Table 2-6: Summary of API communication services

Se
nd

M
es

sa
ge

R
ec

ei
ve

M
es

sa
ge

Se
nd

D
yn

am
ic

M
es

sa
ge

R
ec

ei
ve

D
yn

am
ic

M
es

sa
ge

Se
nd

M
es

sa
ge

T
o

R
ec

ei
ve

M
es

sa
ge

F
ro

m

Message Unqueued � � � � � �

Queued � �

Message Static � �

length Dynamic � � � �

Addressing Static � � � �

Scheme Dynamic � �

Protocol UUDT � �

USDT � � � � � �

Internal � �

Scope External � � � � � �

Int-Ext � �

Direct � � �

Tx Mode Periodical �

Mixed �

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 71 -

2.2.13 Usage of OSEK COM services

The OSEK COM specification does not make any restrictions regarding the usage of services
provided by the OSEK operating system. The services that can be used by OSEK COM can be
found in the OSEK Operating System specification.

The table below lists usage requirements of OSEK COM services within different type of
OSEK activities (task, function, ISR or Callback).

Table 2-7: COM services available for TASK and ISR

Communication API Activities

Services

T
as

k

F
un

ct
io

n

IS
R

C
al

lb
ac

k

SendMessage Unqueued Yes Yes Yes
WithCopy

only

Yes
WithCopy

only

Queued Yes Yes No Yes
WithCopy

only

ReceiveMessage Unqueued Yes Yes Yes
WithCopy

only

Yes
WithCopy

only

Queued Yes Yes No Yes
WithCopy

only

GetMessageStatus Yes Yes Yes Yes

GetMessageResource Yes Yes No No

ReleaseMessageResource Yes Yes No No

SendDynamicMessage Yes Yes Yes
WithCopy

only

Yes
WithCopy

only

ReceiveDynamicMessage Yes Yes Yes
WithCopy

only

Yes
WithCopy

only

SendMessageTo Yes Yes Yes
WithCopy

only

Yes
WithCopy

only

ReceiveMessageFrom Yes Yes Yes
WithCopy

only

Yes
WithCopy

only

No OSEK COM runtime services are allowed to be called from within OSEK OS hook
routines.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 72 -

2.2.14 Mapping of interaction layer to network layer services

The interaction layer shall use the services provided by the OSEK network layer. This section
documents the interface between the interaction layer and the network layer (see network layer
chapter).

The message identifier <SymbolicName> is assigned to a specific <N_Handle>.

The application data stored in a message object <Data> is assigned to the network layer
service parameter <N_User_Data>.

The length of a dynamic length message <DataLength> is assigned to the network layer
service parameter <N_Length>.

The application receiver address <Recipients> is assigned to the network layer service
parameter <N_TA>. The <N_TA> parameter shall only be used if interaction layer’s Dynamic
Addressing scheme (DA) is used.

The application sender address <sender> is assigned to the network layer service parameter
<N_SA>. The <N_SA> parameter shall only be used if interaction layer’s Dynamic
Addressing scheme (DA) is used.

The value of the BS parameter <BS_Value> is assigned to the network layer service
parameter <N_BS_Value>.

The value of the ST parameter <ST_Value> is assigned to the network layer service parameter
<N_ST_Value>.

Table 2-8: Interaction layer / Network layer interface

Interaction layer / Network layer interface

Interaction layer parameters Network layer service parameters

SymbolicName N_Handle

Recipients N_TA

Sender N_SA

BS_Value N_BS_Value

ST_Value N_ST_Value

Data N_User_Data

Length N_Length

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 73 -

3 Network layer

This chapter states the requirements of the network layer.

Requirements for the provision of network layer functionality are stated in the communication
conformance class section of the OSEK COM specification.

3.1 Network layer overview

The network layer provides services to the interaction layer for the transfer of messages to the
underlying data link layer. Two communication protocols are defined: Unacknowledged
Unsegmented Data Transfer (UUDT) and Unacknowledged Segmented Data Transfer
(USDT). The network layer provides flow control mechanisms to enable interfacing of
communication entities featuring different levels of performance and capabilities. The
network layer uses services provided by the data link layer.

3.1.1 Network Layer operation

The main purpose of the network layer is to transfer messages to and from the underlying data
link layer. Messages within the data link layer must conform to the data link layer data unit
size, so messages that are larger than the data link layer data unit size are split up by the
network layer and transferred to the data link layer for transmission as multiple frame
messages. Multiple frame messages that are received from the data link layer are reassembled
by the network layer and presented to the interaction layer as a complete message. A flexible
flow control scheme is implemented in the network layer to enable message receivers to
regulate the rate of frame arrival within multiple frame messages.

3.1.2 Unacknowledged Unsegmented Data Transfer

Unacknowledged Unsegmented Data Transfer supports the transmission of single frame
messages, i.e. messages whose data fits within the data link layer service data unit size. The
receiver does not confirm the reception of the message to the sender.

3.1.2.1 UUDT Services

The transmission of a UUDT message is requested by calling the network layer service
N_UUData.request. The result of the transmission request is indicated to the sender by the
service N_UUData.confirmation and the reception of the single frame message is indicated to
the receiver by the service N_UUData.indication.

3.1.2.2 UUDT Frame Format

Each transmitted frame consists of two parts: a network address field and a network data field.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 74 -

3.1.2.3 UUDT Message Transmission

NWL interface ���� DLL interface ���� Bus ���� DLL interface ���� NWL interface

N_UUData.req()� D_UUData.req() �

N_UUData.con()� D_UUData.con() � � D_UUData.ind() �N_UUData.ind()

Figure 3-1: UUDT message transmission

The figure above illustrates the sequence of service calls for a UUDT message transmission,
where the receiver is on a different ECU to the sender. A single frame is transmitted on the
bus.

3.1.3 Unacknowledged Segmented Data Transfer

Unacknowledged Unsegmented Data Transfer supports the transmission of messages with up
to 4095 bytes of data. If the size of the message is such that the data will fit within the data
link layer data unit size, a single frame message transmission will result. This has a maximum
of 15 bytes although the actual size may be less due to the data field size of the bus protocol
frame. A USDT single frame message differs from a UUDT message due to the inclusion of a
Network Protocol Control Information (NPCI) field. This results in one less byte being
available for data. If the size of the message is such that the data will not fit within the data
link layer data unit size, a multiple frame message transmission will occur. The receiver does
not confirm the reception of the message to the sender.

3.1.3.1 USDT Services

The transmission of a UUDT message is requested by calling the network layer service
N_USData.Request. The arrival of the first frame of the message is indicated to the receiver
by the service N_USData_FF.indication. The final result of the transmission request is
indicated to the sender by the service N_USData.confirmation and the reception of the
complete message is indicated to the receiver by the service N_USData.indication. Specific
internal parameters of the network layer may be changed by the service
N_ChangeParameter.request and the result confirmed by the service
N_ChangeParameter.confirmation.

3.1.3.2 USDT Frame Format

Each transmitted frame consists of three parts: a network addressing information field, a
network protocol control information field and a network data field.

3.1.3.3 USDT Flow Control

In the case of USDT message transmission, the network layer transfers each frame of the
message to the data link layer by a separate call to the data link layer services. The rate of
transmission of the message consecutive frames is controlled by means of flow control frames

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 75 -

transmitted by the message receiver. The first flow control frame indicates the minimum
separation time (STmin) of subsequent frames to be transmitted by the sender and the block
size (BS). The Block Size is the number of Consecutive Frames that may be transmitted by
the sender after which another Flow Control frame must be transmitted by the receiver. Only
the first flow control frame contains valid values for STmin and BS. All flow control frames
contain the network protocol control information Clear To Send or Wait. Clear To Send
indicates that the sender may transmit the next Consecutive Frame. Wait tells the sender not to
send any more frames to the receiver until a flow control Clear To Send frame is received.
The receiver may transmit multiple flow control Wait frames.

3.1.3.4 USDT Dynamic Parameter Change

The network layer protocol parameters STmin and BS (Block Size) are specific to each
message object which may be received and may be changed during run time. A change is only
possible while the specific message is not being received, i.e. before the reception of a First
Frame and after the reception of the entire message. The change is effected by the
N_ChangeParameter.request service.

3.1.3.5 USDT Single Frame Message Transmission

NWL interface ���� DLL interface ���� Bus ���� DLL interface ���� NWL interface

N_USData.req()� D_UUData.req() �

SF_NPDU
N_USData.con()� D_UUData.con() � � D_UUData.ind() �N_USData.ind()

Figure 3-2: USDT single frame message transmission

The figure above illustrates the sequence of service calls for a USDT single frame message
transmission where the receiver is on a different ECU to the sender. The value in brackets
indicates the value of the network protocol control information field of the transmitted frame.
A single frame is transmitted on the bus.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 76 -

3.1.3.6 USDT Multiple Frame Message Transmission

NWL interface���� DLL interface���� Bus ���� DLL interface ���� NWL interface

1)
N_USData.req()� D_UUData.req() �

FF_NPDU

2) D_UUData.con() � � D_UUData.ind() �N_USData_FF.ind()

3) � D_UUData.req()

FC_NPDU_CTS

4) D_UUData.ind() � � D_UUData.con()

5) D_UUData.req () �

CF_NPDU

6) D_UUData.con () � � D_UUData.ind()

7) D_UUData.req () �

CF_NPDU

8) D_UUData.con () � � D_UUData.ind()

9) D_UUData.req () �

CF_NPDU

10) D_UUData.con () � � D_UUData.ind()

11) � D_UUData.req()

FC_NPDU_WT

12) D_UUData.ind() � � D_UUData.con()

13) � D_UUData.req()

FC_NPDU_CTS
14) D_UUData.ind() � � D_UUData.con()

15) D_UUData.req () �

16) CF_NPDU
N_USData.con()� D_UUData.con () � � D_UUData.ind() � N_USData.ind()

Figure 3-3: USDT multiple frame message transmission

The figure above illustrates an example of the sequence of service calls for a USDT multiple
frame message transmission, where the receiver is on a different ECU to the sender. The value
in brackets indicates the value of the network protocol control information field of the
transmitted frame.

In this example, the following events occur:

1. The sender transmits a First Frame (FF_NPDU). This contains the message data length
field in the network protocol control information.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 77 -

2. The sender receives notification of successful transmission and the receiver receives
notification of the arrival of the First Frame.

3. The receiver transmits a Flow Control frame (FC_NPDU_CTS). This contains the
network protocol control information that the flow status is Clear To Send, the minimum
separation time (STmin) of subsequent frames to be transmitted by the sender, and the
block size (BS). In this example, the block size is 3.

4. The sender receives notification of the arrival of the Flow Control frame and the receiver
receives notification of the successful transmission of the Flow Control frame.

5. The sender transmits the first Consecutive Frame (CF_NPDU) of the block. This frame
contains a Sequence Number (SN) equal to one in the network protocol control
information.

6. The sender receives notification of successful transmission and the receiver receives
notification of the arrival of the Consecutive Frame.

7. The sender transmits the second Consecutive Frame (CF_NPDU) of the block. The
transmission occurs at least STmin milliseconds after the transmission of the first
Consecutive Frame. This frame contains a Sequence Number (SN) equal to two in the
network protocol control information.

8. The sender receives notification of successful transmission and the receiver receives
notification of the arrival of the Consecutive Frame.

9. The sender transmits the third Consecutive Frame (CF_NPDU) of the block. The
transmission occurs at least STmin milliseconds after the transmission of the second
Consecutive Frame. This frame contains a Sequence Number (SN) equal to three in the
network protocol control information.

10. The sender receives notification of successful transmission and the receiver receives
notification of the arrival of the Consecutive Frame.

11. The receiver now transmits a Flow Control frame (FC_NPDU_WT) as the three
Consecutive Frames that make a block have now been received. In this example, the
Flow Control frame contains the network protocol control information that the flow
status is Wait. The sender must not send any further frames until it receives a Flow
Control frame with a flow status of Clear To Send.

12. The sender receives notification of the arrival of the Flow Control frame and the receiver
receives notification of the successful transmission of the Flow Control frame.

13. In this example, the receiver now transmits a Flow Control frame (FC_NPDU_CTS).
This contains the network protocol control information that the flow status is Clear To
Send.

14. The sender receives notification of the arrival of the Flow Control frame and the receiver
receives notification of the successful transmission of the Flow Control frame.

15. The sender now transmits the first Consecutive Frame (CF_NPDU) of the second block.
This frame contains a Sequence Number (SN) equal to four in the network protocol
control information. In this example this frame contains the last byte of data.

16. The sender receives notification of successful transmission of the Consecutive Frame and
the receiver receives notification that the complete message has been received.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 78 -

3.1.4 Network layer timing constraints

If desired, timers may be enabled to monitor the time between specific events, such as the
time to transmit a frame, or the time to receive the next Flow Control or Consecutive Frame.
If a timeout occurs, i.e. the expected event did not occur within the specified period, the
transmission or reception will be aborted and an error code returned to the interaction layer.

3.1.5 Interleaving of messages

The USDT protocol supports the interleaving of different messages. This means that multiple
messages may be transmitted and received simultaneously, with the individual frames of the
different messages being transmitted as determined by the bus access privilege of each frame.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 79 -

3.2 Network layer specification

3.2.1 Definitions

Protocol : a set of defined rules to co-ordinate the exchange of information in a predefined
way.

Protocol layer : a domain that defines a protocol in accordance with the OSI basic reference
model standard.

Service data unit : an amount of information whose identity is preserved when transferred by
a protocol layer and which is not interpreted by the said protocol layer.

Network layer : a specification of a protocol layer corresponding to the layer number three
(3) of the OSI basic reference model.

Network service data unit : a service data unit that is defined for and belongs to the Network
layer.

Protocol entity : an active and executable element of a specific protocol layer that performs
the exchange of information in accordance with the protocol of that layer.

Network protocol entity : an active and executable element of the Network layer that
performs the exchange of information in accordance with the protocol of that layer.

Network service user : a protocol entity that uses a service provided by a network protocol
entity.

Protocol data unit : a unit of data specified in a protocol layer that is used to both support
the exchange of information and co-ordinate the joint operation of the protocol entities.

Receiving network entity : a protocol entity of the network layer that receives information
using the network layer protocol.

Sending network entity : a protocol entity of the network layer that sends information using
the network layer protocol.

Network layer message : a network service data unit that is transferred, i.e. sent and
received, by network layer entities.

Network User Data : the information transferred between network protocol entities on behalf
of the network service user entities for whom the network protocol entities are providing
services.

Multiple frame message : a network layer message that is segmented by a sending network
entity and transmitted to a remote receiving network entity using services provided by the data
link layer.

Single frame message : a network layer message that is be transmitted to a (or multiple)
remote receiving network entity(ies) using services provided by the data link layer.

1:1 communication : communication supported by a protocol that enables the transmission
of network layer message between exactly one sending network entity and exactly one
receiving network entity.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 80 -

1: N communication : communication supported by a protocol that enables the transmission
of network layer messages between exactly one sending network entity and several receiving
network entities.

3.2.2 Generality

The protocol layer defines two communication protocols :

1. Unacknowledged Unsegmented Data Transfer (UUDT) : this protocol supports the
exchange of single frame message (only) with no network protocol control information
(NPCI).

2. Unacknowledged Segmented Data Transfer (USDT) : this protocol supports the exchange
of multiple and single frame messages. Network layer messages exchanged using the
Unacknowledged Segmented Data Transfer (USDT) protocol are transferred with
network protocol control information (NPCI).

Requirements for the provision of implemented communication protocols are stated in the
communication conformance class section of the OSEK COM specification.

The mapping of service user elements (e.g. protocol data units) to the respective parameters of
the interface services of the network layer is defined in the service user's protocol layer section
of the OSEK COM specification.

3.2.3 Unacknowledged Unsegmented Data Transfer

3.2.3.1 Service data units

3.2.3.1.1 <N_Handle>

Type :

scalar

Range :

Application specific.

Description :

A N_Handle identifies a specific network layer message. A N_Handle is mono-
directional, it shall either support the transmission or the reception of a network layer
message. A N_Handle is associated with exactly one message of the interaction layer.

A N_Handle shall be mapped to a distinct and mono-directional D_Handle of the data
link layer interface. A D_Handle that shall be used to support the transfer of network
service data unit.

The picture below illustrates the relationship between a N_Handle with the interaction
layer and the data link layer interface for a network message that is to be transmitted. A
message of the interaction layer identified by a SymbolicName (i.e. SymbolicName_1)
is associated with a mono-directional N_Handle (N_Handle_1) that support the

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 81 -

transmission of a network message relying on a single mono-directional data link handle
(D_Handle_11).

SymbolicName_1

D_Handle_11

frame identifier_11

Interaction layer

Network layer

DLL interface

N_Handle_1

Figure 3-4: N_Handle (UUDT)

3.2.3.1.2 <N_TA>

Type :

scalar

Range :

(Decimal) : 0-255

Description :

The N_TA service parameter is optional and applicable as defined in the interaction
layer. If used, this service data unit shall be assigned to the D_TA service data unit of
the data link layer.

3.2.3.1.3 <N_SA>

Type :

scalar

Range :

(Decimal) : 0-255

Description :

The N_SA service parameter is optional and applicable as defined in the interaction
layer. If used, the D_TA service data unit of the data link layer shall be assigned to the
N_SA service data unit.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 82 -

3.2.3.1.4 <N_User_Data>

Type :

string of bytes

Range :

The maximum length of this parameter shall be equal to the maximum length of the data
link layer user data (D_User_Data).

Description :

N_User_Data is the network user data that shall be transferred by the sending network
entity to the receiving network entity via a single call to the data link layer transmission
request service (D_UUData.request).

3.2.3.2 Interface control information

3.2.3.2.1 <N_Result_UUDT>

Type :

enumeration

Range :

N_OK ,

N_NM

Description :

This parameter contains the status of the execution of the interface service
N_UUData.request.

N_OK : this parameter indicates successful completion of the associated service called
previously. This parameter can be issued to a service user on either both the sender or
receiver side.

N_NM : this parameter shall be associated with a network layer message delivered by
D_UUData.indication with D_Result_UUDT equal to D_NM.

3.2.3.3 Interface services

3.2.3.3.1 N_UUData.request

The service primitive requests transmission of the network user data <N_User_Data>
identified by <N_Handle>.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 83 -

N_UUData.request (

<N_Handle>

<N_User_Data>

)

3.2.3.3.2 N_UUData.confirmation

The service primitive confirms the completion (successful or not) of a N_UUData.request
service for a specific <N_Handle>.

The parameter <N_Result_UUDT> provides the status of the executed service request.

N_UUData.confirmation (

<N_Handle>

<N_Result_UUDT>

)

3.2.3.3.3 N_UUData.indication

The service primitive delivers the user data <N_User_Data> identified by <N_Handle>.

The parameter <N_Result_UUDT> provides the status of the service indication.

N_UUData.indication (

<N_Handle>

<N_User_Data>

<N_Result_UUDT>

)

3.2.3.4 Protocol Data units

The network protocol data unit (NPDU) consists of various fields that enable each protocol
entity to operate in conformance with a set of communication rules as defined in this
document.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 84 -

3.2.3.4.1 Network protocol data unit fields description

3.2.3.4.1.1 Network addressing information

The network addressing information (N_AI) field contains the N_Handle, N_TA (optionnal)
and N_SA (optional) of a single frame message.

3.2.3.4.1.2 Network data field

The network data field (N_Data) contains the network user data to be exchanged.

The length of the network data field (N_Data) shall be equal to the length of the applicable
data link layer user data (D_User_Data).

The length of the network data field (N_Data) shall be user defined at system generation time.
The length of the network data field (N_Data) shall be referred to as N_Data_Length.

N _Data

Data Link Service Data Unit (D_User_Data)

N_Data_Length

Figure 3-5: Network data field structure (UUDT)

3.2.3.4.2 Sequencing of interface services for single frame message transmission

Each network interface service interacts with the service user layer in a predefined way.

The request for transmission of a single frame message (N_UUData.request) shall be
confirmed (N_UUData.confirmation) on the sending network entity.

A single frame message shall be delivered to the network service user (N_UUData.indication)
on the receiving network entity.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 85 -

NetworkInteraction Interaction

Sender Receiver

N_UUData.req

N_UUData.indN_UUData.con

t

Figure 3-6: Single frame message transmission

3.2.3.5 Communication model

The transmission of a single frame message shall be supported by both 1:N and 1:1
communication models.

The communication model associated with a single frame message shall be defined at system
generation time by specifying which network receiving entities shall receive a particular
single frame message identified by its addressing information.

3.2.3.6 Mapping of the network layer to the Data link layer service

This chapter sets out the requirements for the mapping of the network protocol
unacknowledged unsegmented data transfer (UUDT) parameters.

N_Handle is assigned to a specific D_Handle that shall be assigned to the corresponding data
link layer service parameter, i.e. D_Handle.

If applicable, N_TA shall be assigned to D_TA service parameter.

N_Data shall be assigned to D_User_Data.

The following figure depicts the relationship between the network layer parameters and data
link layer service parameters.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 86 -

Network Layer (UUDT) :

N_Handle N_User_Data

N_Data

DLL interface :

D_UUData.req (<D_Handle >, <D_User_Data >)

D_Handle D_User_Data

DLL.request (<Frame_Id >, <DLL_Data >,<DLL_Length >)

Select frame
identifier

Select D_Handle

Select frame
length

N_AI

Figure 3-7: Mapping-out (UUDT)

3.2.3.7 Mapping of Data link service data units to network protocol data units

D_Handle is assigned to a specific N_Handle that shall be assigned to N_AI field of the
network protocol data unit (NPDU).

If applicable, D_SA shall be mapped to N_SA.

D_User_Data shall be assigned to N_ Data.

D_Result_UUDT shall be assigned to N_Result_UUDT.

The following figure depicts the relationship between the data link layer service parameters
and the network layer parameters.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 87 -

Network Layer (UUDT) :

N_Handle N_User_Data

N_Data

DLL interface :

D_UUData.ind (<D_Handle >, <D_User_Data >, <D_Result_UUDT>)

D_Handle D_User_Data

DLL.ind (<Frame_Id >, <DLL_Data >,<DLL_Length >)

Select
D_Handle

Select N_Handle

N_AI

D_Result_UUDT

N_Result_UUDT

Figure 3-8: Mapping-in (UUDT)

3.2.4 Unacknowledged Segmented Data Transfer

3.2.4.1 Service data units

3.2.4.1.1 <N_Handle>

Type :

scalar

Range :

Application specific.

Description :

A N_Handle identifies a specific network layer message. A N_Handle is mono-
directional, it shall either support the transmission or the reception of a network layer
message. A N_Handle is associated with exactly one message of the interaction layer.

A N_Handle shall be mapped to two distinct and mono-directional D_Handle's of the

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 88 -

data link layer interface. A D_Handle shall be used to support the transfer of Single
Frame (SF_NPDU), First Frame (FF_NPDU) and Consecutive Frame (CF_NPDU)
network protocol data units. A second D_Handle shall be used to support the transfer of
Flow Control (FC_NPDU) network protocol data units.

The picture below illustrates the relationship between a N_Handle with the interaction
layer and the data link layer interface for a message that is to be transmitted. A message
of the interaction layer identified by a SymbolicName (i.e. SymbolicName_1) is
associated with a mono-directional N_Handle (N_Handle_1) that support the
transmission of that message relying on two mono-directional data link handles
(D_Handle_11 and D_Handle_12).

D_Handle_11 is associated with a bus frame identifier in order to support the
transmission of Single Frame (SF_NPDU), First Frame (FF_NPDU) and Consecutive
Frame (CF_NPDU) network protocol data units.

D_Handle_12 is associated with a bus frame identifier in order to support the reception
of Flow Control network protocol data units Frame (FC_NPDU).

SymbolicName_1

D_Handle_11 D_Handle_12

frame identifier_11 frame identifier_12

Interaction layer

Network layer

DLL interface

N_Handle_1

Figure 3-9: N_Handle (USDT)

3.2.4.1.2 <N_TA>

Type :

scalar

Range :

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 89 -

(Decimal) : 0-255

Description :

The N_TA service parameter is optional and applicable as defined in the interaction
layer. If used, this service data unit shall be assigned to the D_TA service data unit of
the data link layer.

3.2.4.1.3 <N_SA>

Type :

scalar

Range :

(Decimal) : 0-255

Description :

The N_SA service parameter is optional and applicable as defined in the interaction
layer. If used, the D_TA service data unit of the data link layer shall be assigned to the
N_SA service data unit.

3.2.4.1.4 <N_User_Data>

Type :

string of bytes

Range :

(Decimal) : Up to four thousand ninety five (4095) bytes maximum

Description :

N_User_Data is the network user data that shall be transferred by the sending network
entity to the receiving network entity. This parameter includes all data the higher layer
entities exchange.

3.2.4.2 Interface control information

3.2.4.2.1 <N_Length>

Type :

scalar

Range :

(Decimal) : 0-4095

Description :

This parameter indicates the length of the network user data (N_User_Data) to be
transmitted/received by the network layer.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 90 -

3.2.4.2.2 <N_BS_Value>

Type :

scalar

Range :

(Decimal) : 0-255

Description :

The N_BS_Value service parameter contains the value of the BS (block size) parameter
that defines the number of consecutive frame network protocol data unit (CF_NPDU)
that can be sent in a row.

This parameter value shall be assigned to the internal network layer parameter BS
(block size) by means of the service N_ChangeParameter.request.

3.2.4.2.3 <N_ST_Value>

Type :

scalar

Range :

(Decimal) : 0-255

Description :

The N_ST_Value service parameter value shall be assigned to the internal network layer
parameter STmin (Separation time) by means of the service
N_ChangeParameter.request.

3.2.4.2.4 <N_Result_USDT>

Type :

enumeration

Range :

N_OK ,

N_TIMEOUT_A,

N_TIMEOUT_Bs,

N_TIMEOUT_Cr,

N_WRONG_SN ,

N_UNEXP_NPDU,

N_WFT_OVRN

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 91 -

Description :

This parameter contains the status relating to the outcome of the execution of the
interface service N_USData.request and is provide to the network service user by
N_USData.indication.

N_OK : this parameter shall be issued to the protocol user immediately after successful
completion of the associated service. This parameter can be issued to a service user on
both the sender and the receiver side. If a single frame message has been received then
the only permitted value for N_Result_USDT shall be N_OK.

N_TIMEOUT_A : this parameter shall be issued to the service user upon occurrence of
the N_Ar_max or N_As_max time-out's. This parameter can be issued to service user on
both the sender and receiver side.

N_TIMEOUT_Bs : this parameter shall be issued to the service user upon occurrence of
the N_Bs_max time-out. This parameter shall be issued to the service user on the sender
side only.

N_TIMEOUT_Cr : this parameter shall be issued to the service user upon occurrence of
the timer N_Cr_max time-out. This parameter shall be issued to the service user on the
receiver side only.

N_WRONG_SN : this parameter shall be issued to the service user upon reception of an
unexpected sequence number (NPCI.SN) value. This parameter shall be issued to the
service user on the receiver side only.

N_UNEXP_NPDU : this parameter shall be issued to the service user upon reception of
an unexpected protocol data unit. This parameter can be issued to the service user on
both the sender and receiver side.

N_WFT_OVRN : this parameter shall be issued to the service user upon reception of a
Flow Control network protocol data unit Wait (FC_NPDU_WT) that exceeds the
maximum number of permitted reception of Flow Control network protocol data unit
Wait (FC_NPDU_WT) in a row (N_WFTmax).

3.2.4.2.5 <N_Result_ChangeParameter>

Type :

enumeration

Range :

N_OK ,

N_RX_ON,

N_WRONG_PARAMETER,

N_WRONG_VALUE

Description :

This parameter contains the status relating to the outcome of the execution of the service
N_ChangeParameter.request.

N_OK : this parameter means that the service execution has completed successfully.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 92 -

This parameter shall be issued to the service user on both the receiver and sender side.

N_RX_ON : this parameter shall be issued to the service user to indicate that the service
did not execute since a reception of the network layer message identified by
<N_Handle> was taking place. This parameter can be issued to the service user on the
receiver side only.

N_WRONG_VALUE : this parameter shall be issued to the service user to indicate that
the service did not execute due to an out of range <N_ST_Value> or <N_BS_Value>.
This parameter can be issued to the service user on both the receiver and sender side.

3.2.4.3 Interface services

3.2.4.3.1 N_USData.request

The service primitive requests transmission of <N_User_Data> identified by <N_Handle>
with <N_Length> bytes.

N_USData.request (

<N_Handle>

<N_TA>

<N_User_Data>

<N_Length>

)

3.2.4.3.2 N_USData.confirmation

The service primitive confirms the completion (successful or not) of a N_USData.request
service for a specific <N_Handle>.

The parameter <N_Result_USDT> provides the status of the executed service request.

N_USData.confirmation (

<N_Handle>

<N_TA>

<N_Result_USDT>

)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 93 -

3.2.4.3.3 N_USData.indication

The service primitive delivers the network user data <N_User_Data>, with length
<N_Length>, identified by <N_Handle>.

The parameter <N_Result_USDT> provides the status of the service indication.

N_USData.indication (

<N_Handle>

<N_SA>

<N_User_Data>

<N_Length>

<N_Result_USDT>

)

3.2.4.3.4 N_USData_FF.indication

The service primitive indicates arrival of a First Frame network protocol data unit
(FF_NPDU) of a multiple frame message identified by <N_Handle>.

This indication shall be performed upon reception of the First Frame network protocol data
unit (FF_NPDU) of a multiple frame message.

N_USData_FF.indication (

<N_Handle>

<N_SA>

<N_Length>

)

3.2.4.3.5 N_ChangeParameter.request

The service primitive requests the change of the values of specific internal parameters of the
local network protocol layer entity.

In case of reception, a change shall be possible before the indication of arrival of the First
Frame network protocol data unit (FF_NPDU) and after the indication of the reception of a
complete network layer message (N_User_Data) indicated by <N_USData.indication>

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 94 -

N_ChangeParameter.request (

<N_Handle>

<N_BS_Value>

<N_ST_Value>

)

3.2.4.3.6 N_ChangeParameter.confirmation

The service primitive confirms the completion (successful or not) of a
N_ChangeParameter.request service applying to a network layer message identified by
<N_Handle>.

N_ChangeParameter.confirmation (

<N_Handle>

<N_Result_ChangeParameter>

)

3.2.4.3.7 Sequencing of interface services for multiple frame message transmission

Each network interface service interacts with the service user layer in a predefined way.

The request for transmission of a multiple frame message (N_USData.request) shall be
confirmed (N_USData.confirmation) on the sending network entity.

The network service user shall be indicated upon arrival of a First Frame network protocol
data unit (FF_NPDU) by means of the service N_USData_FF.indication on the receiving
network entity. If a N_USData_FF.indication has been issued then the network service user
shall expect a subsequent N_USData.indication belonging to the same multiple frame
message.

A multiple frame message shall be delivered to the network service user
(N_USData.indication) on the receiving network entity after the entire multiple frame
message has arrived or upon time-out of N_Ar or N_Cr.

If a N_USData_FF.indication has been issued, then only one N_USData.indication shall be
sent to the network service user regardless if the reception has terminated successfully or not.
This N_USData.indication means that the reception has terminated with a status as reported in
N_Result_USDT.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 95 -

NetworkInteraction Interaction

Sender Receiver

N_USData.req N_USData_FF.ind

N_USData.indN_USData.con

t

Figure 3-10: Multiple frame message transmission

3.2.4.3.8 Sequencing of interface services for single frame message transmission

Each network interface service interacts with the service user layer in a predefined way.

The request for transmission of an single frame message (N_USData.request) shall be
confirmed (N_USData.confirmation) on the sending network entity.

An single frame message shall be delivered to the network service user
(N_USData.indication) on the receiving network entity.

NetworkInteraction Interaction

Sender Receiver

N_USData.req

N_USData.indN_USData.con

t

Figure 3-11: Single frame message transmission

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 96 -

3.2.4.4 Communication model

The transmission of a multiple frame message shall be supported by the 1:1 communication
model only.

The transmission of a single frame message can be supported by both 1:N and 1:1
communication models.

The communication model associated with a single frame message shall be defined at system
generation time by specifying which network receiving entities shall receive a particular
single frame message identified by its addressing information.

3.2.4.5 Protocol Data units

The network protocol data unit (NPDU) consists of various fields that enable each protocol
entity to operate in conformance with a set of communication rules as defined in this
document.

3.2.4.5.1 Protocol data unit fields

All network protocol data unit (NPDU) consist of three (3) fields:

Table 3-1: NPDU format

Address Information Protocol Control Information Data Field

N_AI NPCI N_Data

3.2.4.5.1.1 Network addressing information

The network addressing information (N_AI) field contains the N_Handle, N_TA (optional)
and N_SA (optional) of a multiple or single frame message.

3.2.4.5.1.2 Network Protocol Control Information

The network protocol control information (NPCI) identifies the type of network protocol data
unit (NPDU) exchanged. This field is exchanged between sending/receiving network entities
to co-ordinate their joint operation.

The following network protocol control information (NPCI) shall be supported:

1. Single Frame protocol control information (SF_NPCI)

2. First Frame protocol control information (FF_NPCI)

3. Consecutive Frame protocol control information (CF_NPCI)

4. Flow Control protocol information (FC_NPCI)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 97 -

3.2.4.5.1.3 Network data field

The network data field (N_Data) is used to transmit the service user data provided by the
network user data (N_User_Data) parameter of the N_USData.request service call. The
network user data (N_User_Data), if needed, is segmented into smaller parts that each fit into
the network data field (N_Data) before they are transmitted over the network.

The length of the network data field (N_Data) is depending on the type of network protocol
data unit and the length of the underlying data link layer protocol data unit.

The length of the network data field (N_Data) shall be user defined at system generation time.
The length of the network data field (N_Data) and all NCPI bytes , i.e. three (3) bytes, shall
be referred to as N_Data_Length.

NPCI N_Data

Data Link Service Data Unit (D_User_Data)

N_Data_Length

Figure 3-12: N_Data and NPCI fields to data link user data

3.2.4.5.2 Protocol data units specification

3.2.4.5.2.1 Single Frame

The Single Frame network protocol data unit (SF_NPDU) is identified by the Single Frame
network protocol control information (SF_NPCI).

The Single Frame (SF_NPDU) consists of : a network addressing field (N_AI), network
protocol control information (NPCI) field and a network data field (N_Data).

The Single Frame (SF_NPDU) shall be sent by the sending network entity and shall be
received by one or multiple receiving network entities.

The Single Frame (SF_NPDU) shall be sent out to transfer a service data unit that can be
transferred via a single service request to the data link layer (D_UUData.request). Single
Frame's shall be sent to transfer single frame message only.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 98 -

3.2.4.5.2.2 First Frame

The First Frame network protocol data unit (FF_NPDU) is identified by the First Frame
network protocol control information (FF_NPCI).

The First Frame (FF_NPDU) consists of : a network addressing field (N_AI), network
protocol control information (NPCI) field and a network data field (N_Data).

The First Frame (FF_NPDU) shall be sent by the sending network entity and received by a
unique receiving network entity for the duration of the multiple frame message transmission.

The First Frame (FF_NPDU) identifies the first network protocol data unit (NPDU) of a
multiple frame message transmitted by a sending network entity and received by a receiving
network entity.

The receiving network entity shall start assembling the multiple frame message on receipt of a
First Frame (FF_NPDU).

3.2.4.5.2.3 Consecutive Frame

The Consecutive Frame network protocol data unit (CF_NPDU) is identified by the
Consecutive Frame network protocol control information (CF_NPCI).

The Consecutive Frame (CF_NPDU) transfers segments (N_Data) of the network user data
(N_User_Data).

The Consecutive Frame (CF_NPDU) consists of : a network addressing field (N_AI),
network protocol control information (NPCI) field and a network data field (N_Data).

The Consecutive Frame (CF_NPDU) shall be sent after reception of a Flow Control Clear To
Send (FC_NPDU_CTS).

All network protocol data units (NPDU's) transmitted after the First Frame (FF_NPDU) shall
be encoded as Consecutive Frames (CF_NPDU's).

The receiving entity shall pass the assembled network layer message to the service user of the
receiving network entity after the last Consecutive Frame (CF_NPDU) has been received.

The Consecutive Frame (CF_NPDU) shall be sent by the sending network entity and received
by a unique receiving network entity for the duration of the multiple frame message
transmission.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 99 -

3.2.4.5.2.4 Flow Control Clear To Send

The Flow Control network protocol data unit Clear To Send (FC_NPDU_CTS) is identified
by the Flow Control (FlowStatus equal to Clear To Send) network protocol control
information (FC_NPCI).

The Flow Control Clear To Send (FC_NPDU_CTS) consists of : a network addressing field
(N_AI) and network protocol control information (NPCI) field.

The Flow Control Clear To Send (FC_NPDU_CTS) instructs a sending network entity to
resume transmission of CF_NPDU's.

The Flow Control Clear To Send (FC_NPDU_CTS) shall be sent by the receiving network
entity and shall be received by a unique sending network entity for the duration of the multiple
frame message transmission.

The Flow Control Clear To Send (FC_NPDU_CTS) shall be sent by the receiving network
entity to the sending network entity after correct reception of :

1. a First Frame (FF_NPDU)

2. the last Consecutive Frame (CF_NPDU) of a block of Consecutive Frames (CF_NPDU)
if further Consecutive Frame (CF_NPDU) need(s) to be sent.

The sending network entity shall take into account the flow control parameters, i.e. STmin and
BS, provided by the Flow Control Clear To Send (FC_NPDU_CTS) that follows the
transmission of a First Frame (FF_NPDU) only. Flow control parameters provided by Flow
Control Clear To Send (FC_NPDU_CTS) received after transmission of Consecutive Frame's
(CF_NPDU's) shall be ignored by the sending network entity for the duration of the network
message transmission.

3.2.4.5.2.5 Flow Control Wait

The Flow Control network protocol data unit Wait (FC_NPDU_WT) is identified by the Flow
Control (FlowStatus equal to Wait) network protocol control information (FC_NPCI).

The Flow Control Wait (FC_NPDU_WT) consists of : a network addressing field (N_AI) and
network protocol control information (NPCI) field.

The Flow Control Wait (FC_NPDU_WT) instructs a sending network entity to pause
transmission of Consecutive Frame's (CF_NPDU's).

The Flow Control Wait (FC_NPDU_WT) shall be sent by the receiving network entity and
shall be received by a unique sending network entity for the duration of the multiple frame
message transmission.

The Flow Control Wait (FC_NPDU_WT) may be sent by the receiving network entity to the
sending network entity after correct reception of :

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 100 -

1. a First Frame (FF_NPDU)

2. the last Consecutive Frame (CF_NPDU) of a block of Consecutive Frames (CF_NPDU)
if further Consecutive Frame (CF_NPDU) need(s) to be sent in a new block.

3.2.4.5.2.5.1 Maximum number of Flow Control Wait network protocol data unit

The N_WFTmax parameter shall indicate how many Flow Control Wait (FC_NPDU_WT)
can be transmitted by the receiving network entity in a row.

The N_WFTmax parameter upper limit shall be user defined at system generation time.

The N_WFTmax parameter shall only be used on the receiving network entity during message
reception.

If N_WFTmax parameter value is set to zero (0) then flow control shall rely upon flow control
clear to send (FC_NPDU_CTS) only. Flow Control Wait (FC_NPDU_WT) shall not be
supported.

A N_USData.indication with N_Result_USDT set to N_WFT_OVRN shall be issued to the
service user of the receiving network entity upon reception of a flow Control Wait
(FC_NPDU_WT) that exceeds the maximum counter N_WFTmax.

3.2.4.6 Protocol Control Information

Each network protocol data unit (NPDU) is identified by means of a Network Protocol
Control Information (NPCI) as illustrated below :

Table 3-2: Encoding of Network Protocol Control Information (NPCI) bytes

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

SingleFrame SF_NPCI 0 0 0 0 SF_DL N/A N/A

FirstFrame FF_NPCI 0 0 0 1 FF_DL N/A

ConsecutiveFrame CF_NPCI 0 0 1 0 SN N/A N/A

FlowControl FC_NPCI 0 0 1 1 FS BS STmin

Reserved $40 through $FF reserved reserved

3.2.4.6.1 Single Frame

The Single Frame protocol control information (SF_NPCI) shall be encoded by setting the
upper nibble bits of SF_NPCI byte #1 to zero (0).

3.2.4.6.1.1 Single Frame .DataLength

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 101 -

Table 3-3: Definition of Network Protocol Control Information (NPCI) : SF_NPCI . DL

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

SingleFrame SF_NPCI 0 0 0 0 SF_DL N/A N/A

The single frame message length is encoded out of the NPCI byte #1 low nibble value.

The single frame message length field (SF_DL) shall be assigned the value of the service
parameter N_Length.

3.2.4.6.2 First Frame

The First Frame protocol control information (FF_NPCI) shall be encoded by setting the
upper nibble bits of FF_NPCI byte #1 to zero (0) except the bit four (4) that shall be set to one
(1).

3.2.4.6.2.1 First Frame .DataLength

Table 3-4: Definition of Network Protocol Control Information (NPCI) : FF_NPCI . DL

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

FirstFrame FF_NPCI 0 0 0 1 FF_DL N/A

The encoding of the multiple frame message length (N_Length) results into a twelve (12) bit
length value where the least significant bit (LSB) is specified to be bit zero (0) of the NPCI
byte #2 and the most significant bit (MSB) is bit three (3) of the NPCI byte #1 byte.

The maximum multiple frame message length supported is equal to four thousand and ninety
five (4095) bytes of user data.

The multiple frame message length field (FF_DL) shall be assigned the value of the service
parameter N_Length.

3.2.4.6.3 Flow Control

The purpose of Flow Control is to regulate the rate at which Consecutive Frame (CF_NPDU)
are sent to the receiver. Two distinct types of Flow Control protocol data units are specified to
support this function. The type is indicated by a field of the protocol control information
called Flow Status (FS) as defined hereafter.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 102 -

3.2.4.6.3.1 Flow Control .FlowStatus

Table 3-5: Definition of Network Protocol Control Information (NPCI) : FC_NPCI . FS

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

Flow Control FC_NPCI 0 0 1 1 FS BS STmin

The Flow Status (FS) indicates whether the sending network entity can proceed the multiple
frame message transmission.

The Flow Status (FS) shall be encoded in the low nibble of the NPCI-byte #1 byte of the Flow
Control network protocol control information (FC_NPCI).

3.2.4.6.3.1.1 Flow Control .FlowStatus (ClearToSend)

Table 3-6: Definition of Network Protocol Control Information (NPCI) : FC_NPCI .
FS(CTS)

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

Flow Control FC_NPCI 0 0 1 1 0 0 0 0 BS STmin

The Flow Control Clear To Send (FC_NPDU_CTS) shall be encoded by setting all bits of the
FC_NPCI byte #1 to zero (0) except the bit five (5) and four (4) that shall be set to one (1).

The Flow control parameters BS and STmin shall be taken into account by the sending
network entity upon reception of the Flow Control Clear To Send (FC_NPDU_CTS) that
follows the First Frame (FF_NPCU) only.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 103 -

3.2.4.6.3.1.2 Flow Control .FlowStatus (Wait)

Table 3-7: Definition of Network Protocol Control Information (NPCI) : FC_NPCI .
FS(WT)

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

Flow Control FC_NPCI 0 0 1 1 0 0 0 1 BS STmin

The Flow Control Wait (FC_NPDU_WT) shall be encoded by setting all bits of the FC_NPCI
byte #1 to "0" except the bit five (5), bit four (4) and bit zero (0) that shall be set to one (1).

The sending network entity shall not send further Consecutive Frame (CF_NPDU)) upon
reception of a Flow Control Wait (FC_NPDU_WT) and until reception of a Flow Control
Clear To Send (FC_NPDU_CTS).

3.2.4.6.3.2 Flow Control .BlockSize

Table 3-8: Definition of Network Protocol Control Information (NPCI) : FC_NPCI . BS

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

Flow Control FC_NPCI 0 0 1 1 FS BS STmin

The Block Size (BS) parameter shall be encoded in byte#2 of the Flow Control network
protocol information (FC_NPCI).

The Block Size (BS) parameter specifies transmission of BlockSize (BS) number of
Consecutive Frame s (CF_NPDU's) in a row.

The Block Size (BS) parameter shall be within the range of zero (0) to two hundred fifty five
(255).

The units of Block Size (BS) are absolute number of Consecutive Frame s (CF_NPDU's) per
block : e.g. if BS is equal to twenty (20) (decimal) then the block shall consists of twenty (20)
(decimal) Consecutive Frame’s (CF_NPDU's).

If the Block Size (BS) parameter value is set to zero (0) then transmission of a single Flow
Control Clear To Send (FC_NPDU_CTS) is permitted after reception of a First Frame
(FF_NPDU) for the duration of the multiple frame message transfer. No further flow control
using Flow Control protocol data unit (FC_NPDU_CTS or FC_NPDU_WT) shall be
performed during the transmission of subsequent Consecutive Frame (CF_NPDU's) for the
duration of the multiple frame message transmission.

If the Block Size (BS) parameter value is set to a value within the range of one (1) to two
hundred fifty five (255) then flow control shall be performed accordingly. This range of

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 104 -

values shall be used to indicate to the sender the maximum number of Consecutive Frame’s
(CF_NPDU's) that can be received without an intermediate Flow Control (FC_NPDU) by the
receiving network entity.

The Block Size (BS) shall be defined at system generation time on the receiving network entity
side.

3.2.4.6.3.3 Flow Control .SeparationTime

Table 3-9: Definition of Network Protocol Control Information (NPCI) : FC_NPCI .
STmin

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

Flow Control FC_NPCI 0 0 1 1 FS BS STmin

The Separation Time (STmin) parameter shall be encoded in byte#3 of the Flow Control
network protocol control information (FC_NPCI).

The SeparationTime (STmin) specifies the minimum time gap allowed between the reception
of Consecutive Frame s (CF_NPDU's).

The SeparationTime (STmin) shall be within the range of zero (0) to two hundred fifty five
(255).

This time is specified by the receiving entity and shall be kept by the sending network entity
for the duration of a multiple frame message transmission.

The units of the Separation Time (STmin) are absolute milliseconds (ms) : e.g. if STmin is
equal to 10 (decimal) then the minimum Separation Time authorised between Consecutive
Frame s (CF_NPDU's) is equal to ten (10) milliseconds.

The measurement of the Separation Timer (Stmin) starts after completion of transmission of a
Consecutive Frame (CF_NPDU) and ends at the request for the transmission of the next
Consecutive Frame (CF_NPDU).

The Separation Time (STmin) shall be defined at system generation time on the receiving
network entity side.

3.2.4.6.4 Consecutive Frame

The Consecutive Frame protocol control information (CF_NPCI) shall be encoded by setting
all the upper nibble bits of the Consecutive Frame protocol control information (CF_NPCI)
byte #1 to zero (0) except the bit five (5) that shall be set to one (1).

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 105 -

3.2.4.6.4.1 Consecutive Frame .SequenceNumber

Table 3-10: Definition of Network Protocol Control Information (NPCI) : CF_NPCI .
SN

USDT NPCI encoding Network Protocol Control Information (NPCI)

Byte #1 Byte #2 Byte #3

NPCI name Mnemonic 7 6 5 4 3 2 1 0

ConsecutiveFrame CF_NPCI 0 0 1 0 SN N/A N/A

The SequenceNumber (SN) shall be encoded in the lower nibble bits of CF_NPCI byte #1.

The following rules apply to the SequenceNumber (SN):

1. The SequenceNumber (SN) shall start with zero (0) for all segmented messages. The First
Frame shall be assigned the value zero (0). It does not include an explicit
SequenceNumber in the N_PCI field but it shall be treated as the segment number zero
(0).

2. The SequenceNumber (SN) of the first Consecutive Frame that immediately follows the
First Frame shall be set to one (1).

3. The SequenceNumber (SN) shall be incremented by one (1) for each new Consecutive
Frame (CF) that is transmitted during a multiple frame message transmission.

4. The SequenceNumber (SN) value shall not be affected by any Flow Control (FC_NPDU).

5. When the SequenceNumber (SN) reaches the value of fifteen (15), it shall wraparound and
be set to zero (0) for the ConsecutiveFrame (CF).

This shall lead to the following sequence:

Table 3-11: Summary of SequenceNumber (SN) definition

NPDU FF_NPDU CF_NPDU CF_NPDU CF_NPDU CF_NPDU CF_NPDU CF_NPDU CF_NPDU

SN (hex) 0 1 … E F 0 1 …

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 106 -

3.2.4.7 Protocol layer timings

The following figure depicts the time intervals of the network layer specified in this section of
the specification.

Network layer Network layer
Data Link Layer interface ���� Bus ���� Data Link Layer interface

D_UUData.req(FF_NPDU) �

N_As
D_UUData.con(FF_NPDU) � � D_UUData.ind(FF_NPDU)

N_Br
N_Bs � D_UUData.req(FC_NPDU)

N_Ar
D_UUData.ind(FC_NPDU) � � D_UUData.con(FC_NPDU)

N_Cs
D_UUData.req (CF_NPDU) �

N_Cr
N_As

D_UUData.con (CF_NPDU) � � D_UUData.ind(CF_NPDU)

N_Cs
D_UUData.req (CF_NPDU) �

N_Cr
N_As

D_UUData.con (CF_NPDU) � � D_UUData.ind(CF_NPDU)

Figure 3-13: Placement of time intervals

3.2.4.7.1 N_As, N_As_max

N_As is the time to transmit a network protocol data unit (NPDU). N_As is defined on the
sending network entity side between D_UUData.req(NPDU) and D_UUData.con(NPDU).

N_As_max is the maximum time allowed by a sending network entity for the transmission of
a network protocol data unit (NPDU). For a successful transmission of network protocol data
unit (NPDU) to occur it is necessary that N_As be smaller than N_As_max.

max___ AsNAsN <

3.2.4.7.2 N_Ar, N_Ar_max

N_Ar is the time to transmit a network protocol data unit (NPDU). N_Ar is defined on the
receiving network entity side between D_UUData.req(NPDU) and D_UUData.con(NPDU).

N_Ar_max is the maximum time allowed by a receiving network entity for the transmission
of a network protocol data unit (NPDU). For a successful transmission of network protocol
data unit (NPDU) to occur it is necessary that N_Ar be smaller than N_Ar_max.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 107 -

max___ ArNArN <

3.2.4.7.3 N_Bs, N_Bs_max

N_Bs is the time to receive the next Flow Control (FC_NPDU). N_Bs is defined on the
sending network entity side between D_UUData.con(FF_NPDU or CF_NPDU or
FC_NPDU_WT) and D_UUData.ind(FC_NPDU).

N_Bs_max is the maximum time allowed by a sending network entity for the reception of the
next Flow Control (FC_NPDU). For a successful reception of the next Flow Control
(FC_NPDU) to occur it is necessary that N_Bs be smaller than N_Bs_max.

max___ BsNBsN <

3.2.4.7.4 N_Br

N_Br is the time to transmit the next Flow Control (FC_NPDU). N_Br is defined on the
receiving network entity side between D_UUData.ind(FF_NPDU or CF_NPDU or
FC_NPDU_WT) and D_UUData.req (FC_NPDU). The sum of N_Br and N_Ar (FC_NPDU)
times shall be smaller than N_Bs_max. It is recommended that the addition of N_Br and
N_Ar(FC_NPDU) amounts at most to ninety per cent (90%) of N_Bs_max.

9.0max*__)_(__ BsNNPDUFCArNBrN <+

3.2.4.7.5 N_Cs

N_Cs is the time to transmit the next Consecutive Frame (CF_NPDU). N_Cs is defined on the
sending network entity side between either :

1. D_UUData.ind(FC_NPDU) and D_UUData.req(CF_NPDU)

2. D_UUData.con(CF_NPDU) and D_UUData.req(CF_NPDU)

The sum of N_Cs and N_As(CF_NPDU) shall be smaller than the corresponding N_Cr_max.
It is recommended that the addition of N_Cs and N_As(CF_NPDU) amounts at most to ninety
per cent (90%) of N_Cr_max.

9.0max*__)_(__ CrNNPDUCFAsNCsN <+

3.2.4.7.6 N_Cr, N_Cr_max

N_Cr is the time to receive the next Consecutive Frame (CF_NPDU) after transmission of a
Flow Control Clear To Send (FC_NPDU_CTS). N_Cr is defined on the receiving network
entity side between either :

D_UUData.con(FC_NPDU) and D_UUData.ind(CF_NPDU)

D_UUData.ind(CF_NPDU) and D_UUData.ind(CF_NPDU)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 108 -

N_Cr_max is the maximum time allowed by a receiving network entity for the reception of
the next Consecutive Frame (CF_NPDU) after transmission of a Flow Control Clear To Send
(FC_NPDU_CTS). For a successful reception of the next Consecutive Frame (CF_NPDU) to
occur it is necessary that N_Cr be smaller than N_Cr_max.

max___ CrNCrN <

3.2.4.7.7 Time intervals summary

The following table summarises the time intervals :

Table 3-12: Time intervals definition

Timing Description Data Link Layer service Timeout Performance

Parameter Start End (ms) requirement (ms)

N_As Time for transmission of any
NPDU on the sender side

D_UUDATAData.request D_UUDATAData.confirm N_As_max N/A

N_Ar Time for transmission of any
NPDU on the receiver side

D_UUData.request D_UUData.confirm N_Ar_max N/A

N_Bs Time until reception of the next
Flow Control.

D_UUData.confirm (FF),
D_UUData.confirm (CF),
D_UUData.indication (FC)

D_UUData.indication
(FC)

N_Bs_max N/A

N_Br Time until transmission of the
next Flow Control

D_UUData.indication (FF),
D_UUData.confirm (FC),
D_UUData.indication (CF)

D_UUData.request (FC) N/A (N_Br + N_Ar) <
(0.9 * N_Bs_max)

N_Cs Time until transmission of the
next Consecutive Frame

D_UUData.indication (FC),
D_UUData.confirm (CF)

D_UUData.request (CF) N/A (N_Cs + N_As) <
(0.9 * N_Cr_max)

N_Cr Time until reception of the next
Consecutive Frame

D_UUData.confirm (FC),
D_UUData.indication (CF)

D_UUData.indication
(CF)

N_Cr_max ---

Note :

The small letters “s” and “r” are interpreted as follows : “s” = sender of the message and “r” =
receiver of the message.

3.2.4.8 Wait frame handling

The following table defines conditions for the transmission of a Flow Control Wait protocol
data unit by the receiving network entity, provided that N_WFTmax is greater than zero (0).

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 109 -

Table 3-13— Wait frame handling

Paramet
er

Conditions Action

N_Br N_Br has elapsed on the receiving network
entity and the number of Flow Control
transmitted in a row does not exceed
N_WFTmax

Transmit Flow Control Wait
protocol data unit

3.2.4.9 Network layer error handling

The network layer shall issue an appropriate service primitive to the network service user
upon detection of an error condition. Each service primitive shall provide the N_Handle of the
related network layer message and specific values to the N_Result_USDT parameters as
defined in the service parameter section of this document.

3.2.4.9.1 Monitored time intervals expiry

This chapter specifies actions that shall be performed by the appropriate network entities upon
expiry of the specific monitored time interval :

N_As_max :

N_USData.confirmation with N_Result_USDT equal to N_TIMEOUT_A shall be issued to
the service user of the sending network entity upon occurrence of N_As_max time-out.

The sending network entity shall abort network layer message transmission upon occurrence
of N_As_max time-out.

N_Ar_max :

N_USData.indication with N_Result_USDT set to N_TIMEOUT_A shall be issued to the
service user of the receiving network entity upon occurrence of N_Ar_max time-out.

The receiving network entity shall abort the network layer message reception upon occurrence
of N_Ar_max time-out.

N_Bs_max :

N_USData.confirmation with N_Result_USDT set to N_TIMEOUT_Bs shall be issued to the
service user of the sending network entity upon occurrence of N_Bs_max time-out..

The sending network entity shall abort the network layer message transmission upon
occurrence of N_Bs_max time-out.

N_Cr_max :

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 110 -

N_USData.indication with Result_USDT set to N_TIMEOUT_Cr shall be issued to the
service user of the receiving network entity upon occurrence of N_Cr_max time-out.

The receiving network entity shall abort the network layer message reception upon occurrence
of N_Cr_max time-out.

The following table summarises the above requirements :

Table 3-14: Error handling

Timeout Cause Action

N_As_max Any NPDU not transmitted on time on the sender side Abort network layer message
transmission and issue

N_USData.con (N_TIMEOUT_A)

N_Ar_max Any NPDU not transmitted on time on the receiver
side

Abort network layer message
reception and issue

N_USData.ind (N_TIMEOUT_A)

N_Bs_max Flow Control lost (overwritten) on the sender side or
preceding First Frame or Consecutive Frame lost
(overwritten) on the receiver side.

Abort network layer message
transmission and issue

N_USData.con
(N_TIMEOUT_Bs)

N_Cr_max Consecutive Frane lost (overwritten) on the receiver
side or preceding Flow Control lost (overwritten) on
the sender side.

Abort network layer message
reception and issue

N_USData.ind (N_TIMEOUT_Cr)

3.2.4.9.2 Unexpected arrival of network protocol data unit

Depending on the network layer design decision to support full- or half- duplex
communication, the interpretation of “unexpected” differs.

• Half-duplex : 1:1 communication is only possible in one direction at a time.

• Full-duplex : 1:1 communication is possible in both directions at a time.

In addition to the network layer design decision it has to be considered if a reception or
transmission from and to a node, with the same address information (N_AI) as contained in
the received unexpected NPDU, is in progress.

As a general rule, arrival of an unexpected network protocol data unit from any network entity
shall be ignored, with the exception of single frames (SF N_PDU) and first frames (FF
N_PDU).

The table below defines the network layer behaviour in case of the reception of unexpected
frames, in consideration of the actual network layer internal status (NWL status) and the
design decision to support half- or full-duplex communication. It has to be understood, that
the received NPDU contains the same address information (N_AI) as the reception or
transmission which may be in progress at the time the N_PDU is received.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 111 -

Table 3-15— Handling of an unexpected arrival of a network layer NPDU

NWL Reception of

status SF_NPDU FF_NPDU CF_NPDU FC_NPDU Unknown
NPDU

Transmit
in

progress

Full-duplex:
Process the
SF_NPDU as the
start of a new
reception

Full-duplex:
Process the FF_N_PDU
as the start of a new
reception

Full-duplex:
If a reception is in
progress, see
corresponding cell
below in this table

If awaited, process
the FC_N_PDU,
otherwise ignore it.

Ignore

Half-duplex:
ignore

Half-duplex:
ignore

Half-duplex:
ignore

Receive
in

progress

Terminate the
current reception,
report an
N_USData.indicatio
n, with
<N_Result_USDT>
set to
N_UNEXP_PDU, to
the upper layer,
and process the
SF_NPDU as the
start of a new
reception

Terminate the current
reception, report an
N_USData.indication,
with <N_Result_USDT>
set to N_UNEXP_PDU,
to the upper layer, and
process the FF_NPDU
as the start of a new
reception

Process the CF_
NPDU in the on-going
reception and
perform the required
checks (e.g. SN in
right order)

Full-duplex:
If a transmission is
in progress, see
corresponding cell
above in this table

Ignore

Half-duplex:
Ignore

Idle Process the
SF_NPDU as the
start of a new
reception

Process the FF_NPDU
as the start of a new
reception

Ignore Ignore Ignore

Note :

“Idle” means, that neither a transmission nor reception is in progress.

3.2.4.10 Wait frame error handling

The receiving network entity shall abort the message reception and issue to the higher layer a
N_USData.indication with <N_Result_USDT> set to N_WFT_OVRN upon the (N_WFTmax
+ 1) occurrence in a row of N_Br_max.

The sending network entity shall consequently issue to the higher layer a N_USData.confirm
with <N_Result_USDT> set to N_TIMEOUT_Bs due to the missing Flow Control Wait
network protocol data unit.

3.2.4.11 Interleaving of network layer messages

The USDT protocol shall be capable to carry out parallel transmission of different network
layer messages that are not mapped onto the same N_Handle.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 112 -

This is necessary to ensure that the receiving peer is able to reassemble in a consistent manner
the received network protocol data units. This scheme e.g. enables gateway operation that
needs to handle different network layer message transmissions concurrently across distinct
sub-networks.

3.2.4.12 Mapping of network layer to Data link layer protocol data units

This chapter sets out the requirements for the mapping of the network protocol
unacknowledged segmented data transfer (USDT) parameters.

The N_Handle shall be utilised to select a specific D_Handle that shall be assigned to the
corresponding service parameter.

The N_TA (if applicable) shall be assigned to the D_TA service parameter.

The network protocol control information (NPCI) and network Data field (D_Data) shall be
assigned to the Data link user data (D_User_Data).

The following figure depicts the relationship between the network layer parameters and data
link layer service parameters.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 113 -

Network Layer (USDT) :

N_Handle N_User_Data N_Length

N_Data

DLL interface :

D_UUData.req (<D_Handle >, <D_User_Data >)

D_Handle D_User_Data

N_PCI

DLL.request (<Frame_Id >, <DLL_Data >,<DLL_Length >)

Select frame
identifier

Select D_Handle

Select frame
length

N_AI

Segment NSDU

Figure 3-14: Mapping-out (USDT)

3.2.4.13 Mapping of data link service data units to network protocol data units

D_Handle is utilised to select a specific N_Handle that shall be assigned to the N_AI field of
the network protocol data unit (NPDU).

D_SA (if applicable).shall be mapped to N_SA.

D_User_Data shall be re-assembled and delivered to the network service user N_User_Data.

D_Result_UUDT shall be processed by the network layer ultimately leading to
N_Result_USDT.

The following figure depicts the relationship between the data link layer service parameters
and the network layer parameters.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 114 -

Network Layer (USDT) :

N_Handle N_User_Data N_Length

DLL interface :

D_UUData.ind (<D_Handle >, <D_User_Data >, <D_Result_UUDT>)

D_Handle D_User_Data

DLL.ind (<Frame_Id >, <DLL_Data >,<DLL_Length >)

Select
D_Handle

Select N_Handle

Application
specific
procedure

Re-assemble

N_Result_USDT

Figure 3-15: Mapping-in (USDT)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 115 -

4 Data link layer interface

4.1 Data link layer overview
The data link layer interface provides abstract services for unacknowledged and unsegmented
transfer of individual data frames over a network. The size of these data frames depends on
the underlying network and is not specified by the OSEK COM specification. Additionally,
the data link layer specification defines services that are referred to in the network
management specification (e.g. configuration, initialisation, status request).

A distinction is made between the following types of data link layer services:

• Services provided to the upper OSEK COM layers only.

• Services provided to the OSEK network management only.

• Services provided to both of the above.

Note:

These services are internal services of the OSEK COM module : their interface (API) is not
shown in full detail. This means that the name of these services and the name and usage of the
parameters can differ from one OSEK COM implementation to another.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 116 -

4.2 Data link layer specification

4.2.1 Definitions

Data link layer : a specific definition of a protocol layer corresponding to the layer number
two (2) of the ISO/OSI basic reference model.

Data link layer frame : a bus protocol specific frame that is used to transfer information, e.g.
CAN bus frame.

Data link layer frame identifier : a bus protocol specific identifier that is used to identify
data link layer frames, e.g. CAN bus frame identifier.

Data link protocol data unit (DPDU) : a unit of data specified in the data link layer that is
used to both support the exchange of information and co-ordinate the joint operation of the
data link layer protocol. Data link protocol data units are encapsulated within data link layer
frames, e.g. CAN frame.

Data link service data unit (DSDU) : an amount of information provided by the network
layer, i.e. D_User_Data, whose identity is preserved and is not interpreted when transferred by
the data link layer.

Addressing formats : a set of conventions that defines the positioning of the data link
protocol data unit fields within the data link layer frame. These conventions are application
specific and are consequently not specified by this specification.

Acceptance criteria : a set of criteria that are utilized to determine whether a received data
link protocol data unit is to be forwarded to the network layer. These criteria and their
respective implementation are application specific and are consequently not specified by this
specification.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 117 -

4.2.2 Services for the network layer

4.2.2.1 Transfer of data

Service name: D_UUData

Syntax: internal service

Request: D_UUData.req (<D_Handle>, <D_TA>, <D_User_Data>)

Confirmation: D_UUData.con (<D_Handle>, <D_TA>, <D_SA>,
<D_Result_UUDT>)

Indication: D_UUData.ind (<D_Handle>, <D_SA>, <D_User_Data>,
<D_Result_UUDT>)

Parameter:
<D_Handle> Reference to frame transfer path. A D_Handle is assigned to a single

<N_Handle> service parameter. A D_Handle is monodirectional : the
data link service data unit attached to a specific D_Handle can either
be transmitted or received by the data link layer.

<D_TA> Target address (only used if Interaction layer’s Dynamic Adressing
scheme is used). This service parameter is optional and shall be
defined if the network service parameter N_TA is utilised. The D_TA
service parameter shall be utilised to support the selection of the data
link layer frame identifier (e.g. CAN frame identifier) associated with
the D_Handle. This specification does not define nor mandate any
particular scheme for the definition or selection of data link layer
frame identifier.

<D_SA> Source address (only used if Interaction layer’s Dynamic Adressing
scheme is used). This service parameter is optional and shall be
defined if the network service parameter N_SA is utilised. The D_SA
service parameter is retrieved from the received data link layer frame
identifier (e.g. CAN frame identifier) in conformance with
standardised or proprietary schemes. This specification does not
define nor mandate any particular scheme for the definition or
selection of data link layer frame identifier.

<D_User_Data>

<D_User_Data> is the data link user data that contains data received
or to be transmitted by the data link layer. The length of
<D_User_Data> is bus specific. The length depends on the type of
underlying bus used and scheme adopted for the transfer of data.

<D_Result_UUDT>

Result of the requested service. The parameter <D_Result_UUDT>
represents one of the following code :

• D_OK : this parameter shall be issued upon successful
reception or transmission of a data link layer frame.

• D_NM (optional) : this parameter shall be supported only for
data link layer frames that are monitored by the indirect
OSEK network management only. This parameter shall be
associated with a data link layer frame received that does
not fulfil some or all acceptance criteria.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 118 -

Description: The service primitive D_UUData.req sends the data <D_User_Data>
over the network, using the physical (network) address associated to
this frame transfer path referenced by the parameter <D_Handle>
(and <D_TA> if applicable).

The service primitive D_UUData.con contains the confirmation
regarding the execution of a previously called D_UUData.req service
primitive.

The service primitive D_UUData.ind informs the receiver that a
message corresponding to the frame transfer path referenced by
<D_Handle> (and <D_SA> if applicable) has been received and
provides the associated <D_User_Data>.

DLLNetwork Network

Sender Receiver

D_UUData.req

D_UUData.indD_UUData.con

t

Figure 4-1: Sequencing of D_UUData service primitives

4.2.2.2 Handle status request

Service name: D_GetHandleStatus

Syntax: internal service

Parameter (In):

<D_Handle> Reference to frame transfer path. A D_Handle is assigned to a single
<N_Handle> service parameter. A D_Handle is monodirectional : the
data link service data unit attached to a specific D_Handle can either
be transmitted or received by the data link layer.

Parameter(Out):
StatusData implementation specific status information

Description: The service D_GetHandleStatus provides the status information of
the handle object referenced by <D_Handle>. <StatusData> contains
implementation specific status information, e.g. overflow, transfer
status and so on.

Particularities: none

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 119 -

4.2.3 Services for the network management

The following services are provided to the OSEK network management only and are not
available to „normal“ applications.

4.2.3.1 Transfer of Network Management Messages

Service name: D_WindowData

Syntax: internal service

Request: D_WindowData.req (<D_NetId>,<D_NMPDU>, D_NMPDU_Length)

Indication: D_WindowData.ind (<D_NetId>, <D_NMPDU>, D_NMPDU_Length)

Confirmation: D_WindowData.con (<D_NetId>, <D_ Result_WindowData>)

Parameter:
<D_NetId> reference to a particular data link layer

<D_NMPDU> network management protocol data unit that shall be formatted as
specified in the OSEK NM specification.

<D_NMPDU_Length>

length of network management protocol data unit (D_NMPDU)

<D_Result_WindowData>

local confirmation (implementation specific)

Description: The service primitive D_WindowData.req sends the given
<D_NMPDU> over a specific sub-network, referenced by <NetId>,
after using the mechanism described in the OSEK NM specification
to encode the message.

The service primitive D_WindowData.con provides a local
confirmation regarding the execution of the previously called
D_WindowData.req service. The parameter <
D_Result_WindowData> represents an implementation specific
status information.

The service primitive D_WindowData.ind indicates the arrival of a
network management message at the receivers station. It decodes
the received message according to the mechanism given in the
OSEK NM specification and provides the corresponding
<D_NMPDU>.

Particularities: these service primitives are not affected by blocking the data link
layer (see below).

4.2.3.2 Disabling the data link layer

Service name: D_Offline

Syntax: internal service

Parameter (in):
<D_NetId> Reference to a sub-network

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 120 -

Description: The service D_Offline disables (blocks of) the user communication on
the data link layer. Thus the D_UUData.req service is disabled while
the D_UUData.indication remains enabled.

This service does not affect network management communication
enacted via the D_WindowData service primitives (see above).

The current state (Online/Offline) is part of the status of the data link
layer, which is provided as result of the service D_GetStatus (see
below).

Particularities: Affects D_UUData.req but not D_UUData.indication and
D_WindowData service primitives.

4.2.3.3 Enabling the data link layer

Service name: D_Online

Syntax: internal service

Parameter (in):
<NetId> Reference to a sub-network

Description: The service D_Online enables the user communication on the data
link layer. Thus the D_UUData.request service is re-enabled, other
services are not affected.

Particularities: none

4.2.3.4 Layer status request

Service name: D_GetLayerStatus

Syntax: internal service

Parameter (In):
<D_NetId> reference to a particular data link layer

<D_Handler> specific algorithm to manage individual status of the hardware, e.g.
acknowledges an interrupt or read the status of the protocol circuit.

Parameter (Out):
<D_GetLayerStatusInformation>

implementation (hardware) specific status information

Description: The service D_GetLayerStatus provides the status information of the
data link layer :

- Interrupt acknowledge to the protocol circuit

- Get the status of the protocol circuit

Besides the states Online/Offline (set by the corresponding services
described above), <Status> contains implementation specific status
information of the communication hardware (e.g. BusOff).

Particularities: none

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 121 -

4.2.3.5 Error indication

Service name: D_Status

Syntax: internal service

Indication: D_Status.ind (<D_ErrorStatus>)

Parameter (out):
<D_ErrorStatus>

implementation specific error status

Description: The service D_Status.ind indicates to the network management that
an event has occurred in the data link layer during communication.
Such event may be recognised as “Errors” by the Network
Management only.

Particularities: none

4.2.4 Services for the network layer and network management

4.2.4.1 Initialisation

Service name: D_Init

Syntax: internal service

Parameter (in):
<D_NetId> Reference to a sub-network

<D_Action> function to be performed

Parameter (out):
<D_Result_Init>

Result of the requested service

Description: The service primitive D_Init initialises the communication hardware.
This routine is called once from the StartCOM function when the
network is starting-up and subsequently, if the communication has to
be re-initialised (i.e. after a hardware related communication error,
e.g. BusOff), by the network management.

The possible <D_Action> are :

BUS_INIT : initialise the physical layer

BUS_SHUT_DOWN : shutdown physical layer communication

BUS_RESTART : restart physical layer communication

BUS_SLEEP : physical layer to enter into sleep mode

BUS_AWAKE : physical layer to leave sleep mode

Particularities: none

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 122 -

4.2.4.2 Addressing formats

It is the responsibility of the system designer to define the application specific addressing
format that shall be utilised to transfer data link protocol data units (DPDU's) identified by the
D_Handle.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 123 -

5 System generation requirements

This section defines the system generation requirements necessary to support an OSEK COM
implementation. These requirements are provided to support the development of the OIL
COM specification that will be finally enable the declaration and spoecification of OSEK
COM based applications. The requirements are summarized following each header using the
following format :

ENTITY_NAME { -- this is a comment

Is :

Attribute_name = attribute_type (allowed attribute value | ..)

VERB :

ENTITY_NAME Entity_Instance

(minimum number of Entity_Instance ….. to maximum number of Entity_Instance)

XOR, AND …

}(minimum number of Entity_Name instance … to maximum of Entity_Name instance per application)

1. The token ENTITY_NAME is an enumeration.

2. The token "Is :" introduces the ENTITY_NAME attributes.

3. The token "VERB :" introduces associations of ENTITY_NAME with other
ENTITY_NAME's extracted from the above list.

4. The "minimum number of Entity instance" and "maximum number of Entity instance" are
of type scalar.

5. The reserved token „XOR“ specifies that token „VERB“ applies either to the entity
declared on the left side of the reserved token „XOR“ or on the right side of the reserved
token „XOR“

6. The reserved token „XOR (Optional AND)“ specifies that both entities on left and right
sides of that reserved token may be supported in the relationship if required.

7. The reserved token „--„ introduces a one line comment.

8. The reserved token „|„ separate allowed attribute values of a particular “Attribute_name”.

9. The reserved token „AND“ specifies that token „VERB“ applies either to both the entity
declared on the left side of the reserved token „AND“ and that declared on the right side
of the reserved token „AND“.

Note: The entity EVENT does not refer to the OIL object EVENT. It rather relates to a
combination of the OIL objects EVENT and TASK.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 124 -

5.1 Conformance class

This section defines the system generation requirements applicable to the conformance class.

CONFORMANCE_CLASS {

Is :

CCC = enumeration (A | B | 0 | 1 | 2)

} (1…1)

5.1.1 Entity requirements

An OSEK COM implementation shall conform to a specific conformance class as defined in
the OSEK COM specification.

An OSEK COM implementation shall provide all features defined in the supported
conformance class.

5.1.2 Entity attributes requirements

CCC :

1. The type of "CCC" is enumeration.

2. The reserved values of the "CCC" enumeration type are "A", "B", "0", "1", "2".

3. A conformance class shall be identified with a single reserved value of the "CCC"
attribute.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 125 -

5.2 Unqueued message

This section defines the system generation requirements applicable to unqueued message.

UNQUEUED_MESSAGE {

Is :

SymbolicName = enumeration

Length = scalar

Scope = enumeration (internal | external | internal_external)

Is_Sent_by :

TASK TaskName

(0…1) XOR

ISR IsrName

(0…1) XOR

FUNCTION FunctionName

(0…1) XOR

CALLBACK CallbackName

(0…1)

DIRECT_TRANSMISSION_MODE DirectTransmissionModeName

(0…1) XOR

PERIODICAL_TRANSMISSION_MODE PeriodicalTransmissionModeName

(0…1) XOR

MIXED_TRANSMISSION_MODE MixedTransmissionModeName

(0…1)

TRANSMISSION_DEADLINE_MONITOR TransmissionMonitorName

(0…1)

Is_Received_by :

TASK TaskName

(0…MAX_Task)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 126 -

ISR IsrName

(0…MAX_ISR)

FUNCTION FunctionName

(0…MAX_FUNCTION)

CALLBACK CallbackName

(0…MAX_CALLBACK)

RECEPTION_DEADLINE_MONITOR Scheme

(0…Max_RDM)

Is_Accessed_by :

ACCESSOR AccessName

(0…MAX_Accessor)

Activates_Unconditionally_On_Successful_Reception_Or_Transmission,

Activates_Conditionnally_On_Successful_Reception_Or_Transmission,

Activates_On_Unsuccessful_Reception_Or_Transmission,

Activates_On_First_Frame_Indication :

FLAG FlagName

(0…MAX_Flag) XOR (optional AND)

CALLBACK CallbackName

(0…MAX_Callback) XOR (optional AND)

EVENT EventName

(0…MAX_Event) XOR (optional AND)

TASK TaskName

(0…MAX_Task)

Is_Connected_to :

N_HANDLE N_HandleName

(0…1)

} (0…MAX_Unqueued_Message)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 127 -

5.2.1 Entity requirements

The number of Unqueued messages per application is application specific.
„MAX_Unqueued_Message“ shall document the maximum number of unqueued messages
supported by an OSEK COM implementation.

5.2.2 Entity attributes requirements

5.2.2.1 SymbolicName :

1. The symbolic name (SymbolicName) of an unqueued message shall be defined at
system generation time.

2. The type of "SymbolicName" is enumeration.

5.2.2.2 Length :

1. The length (Message_Length) of an unqueued message identified by
"SymbolicName" shall be defined at system generation time.

2. The type of "Message_Length" is scalar.

5.2.2.3 Scope:

1. The scope of an unqueued message (Scope) identified by "SymbolicName" shall be
defined at system generation time.

2. The type of "Scope" is enumeration.

3. The reserved values of the "Scope" enumeration type are "internal", "external",
"internal_external".

4. An unqueued message identified by "SymbolicName" shall be assigned a single
reserved value of the "Scope" attribute.

5.2.3 Entity association requirements

5.2.3.1 is_sent_by:

1. An unqueued message identified by "SymbolicName“ shall be transmitted as a
minimum by no application sender (TASK, ISR, FUNCTION, CALLBACK).

2. An unqueued message identified by "SymbolicName" shall be transmitted by as a
maximum one application sender (TASK, ISR, FUNCTION, CALLBACK) identified
byits name.

3. An unqueued message identified by "SymbolicName" shall be using one of the
following transmission modes :

• DirectTransmissionMode identified by "DirectTransmissionModeName", or

• PeriodicalTransmissionMode identified by
"PeriodicalTransmissionModeName", or

• MixedTransmissionMode identified by "MixedTransmisionModeName"

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 128 -

The PeriodicalTransmissionMode and MixedTransmissionMode are applicable if
the "Scope" is "external" or "internal_external".

4. An unqueued message identified by "SymbolicName" can use a
Transmission_Deadline_Monitor identified by "TransmissionMonitorName" if the
"Scope" is "external" or "internal_external".

5. An unqueued message identified by "SymbolicName" shall be using as a minimum
no Transmission_Deadline_Monitor.

6. An unqueued message identified by "SymbolicName" shall be using as a maximum
one Transmission_Deadline_Monitor identified by "TDM_Name".

5.2.3.2 is_received_by:

1. An unqueued message identified by "SymbolicName" shall be received as a
minimum by no internal application receiver (TASK, ISR, FUNCTION,
CALLBACK).

2. An unqueued message identified by "SymbolicName" shall be received as a
maximum by "MAX_Task" internal application receiver's TASK identified by
"TaskName" or by "MAX_ISR" internal application receiver's ISRs identified by
"IsrName" or by "MAX_FUNCTION" internal application receiver's FUNCTIONS
identified by "FunctionName" or by "MAX_CALLBACK" internal application
receiver's CALLBACKs identified by "Callback"

3. An unqueued message identified by "SymbolicName" can use a
Reception_Deadline_Monitor if the "Scope" is "external" or "internal_external".

4. An unqueued message identified by "SymbolicName" shall be using as a minimum
no Reception_Deadline_Monitor .

5. An unqueued message identified by "SymbolicName" shall be using as a maximum
“Max_RDM" one Reception_Deadline_Monitor identified by "RDM_Name".

5.2.3.3 is_accessed_by:

1. An unqueued message identified by "SymbolicName" shall be accessed as a
minimum by one accessor.

2. An unqueued message identified by "SymbolicName" shall be accessed as a
maximum by "MAX_Accessor" accessors identified by "AccessName"

5.2.3.4 activates_unconditionally_on_successful_reception_or_transmission,

5.2.3.5 activates_on_unsuccessful_reception_or_transmission,

5.2.3.6 activates_on_first_frame_indication :

1. An unqueued message identified by "SymbolicName" shall be assigned as a
minimum to no FLAG, no CALLBACK , no EVENT or no TASK.

2. An unqueued message identified by "SymbolicName" shall be assigned as a
maximum to „MAX_Flag“ FLAG identified by their respective "FlagName",
„MAX_Callback“ CALLBACK identified by their respective "CallbackName",

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 129 -

„MAX_Event“ EVENT identified by "EventName" or„MAX_Task“ TASK identified
by their respective "TaskName".

5.2.3.7 activates_conditionally_on_successful_reception_or_transmission:

1. An unqueued message identified by "SymbolicName" shall be assigned as a
minimum to no FLAG, no CALLBACK , no EVENT or no TASK.

2. An unqueued message identified by "SymbolicName" shall be assigned as a
maximum to „MAX_Flag“ FLAG identified by their respective "FlagName",
„MAX_Callback“ CALLBACK identified by their respective "CallbackName",
„MAX_Event“ EVENT identified by "EventName" or„MAX_Task“ TASK identified
by their respective "TaskName".

3. A relevant change condition shall be maintained as described in „relevantChange“
of „Mixed Transmission Mode Specification“.

5.2.3.8 is_connected_to_handle:

1. An unqueued message identified by "SymbolicName" shall not be assigned to any
network handle (N_Handle) if the "scope" is "internal".

2. An unqueued message identified by SymbolicName shall be assigned to one
network handle (N_Handle) if the "scope" is either "external" or
"internal_external".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 130 -

5.3 Queued message

This section defines the system generation applicable requirements to queued message.

QUEUED_MESSAGE {

Is :

SymbolicName = enumeration

Length = scalar

Scope = enumeration (internal | external | internal_external)

Is_Sent_by :

TASK TaskName

(0…1) XOR

FUNCTION FunctionName

(0…1)

DIRECT_TRANSMISSION_MODE Mode

(0…1) XOR

PERIODICAL_TRANSMISSION_MODE Mode

(0…1) XOR

MIXED_TRANSMISSION_MODE Mode

(0…1)

TRANSMISSION_DEADLINE_MONITOR TransmissionMonitoringName

(0…1)

Is_Received_by :

TASK TaskName WITH FIFO_Depth = scalar

(0…1)

FUNCTION FunctionName WITH FIFO_Depth = scalar

(0…1)

RECEPTION_DEADLINE_MONITOR ReceptionMonitoringName

(0…MAX_RDM)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 131 -

Uses :

ACCESSOR AccessName

(1…1)

Activates_Unconditionally_On_Successful_Reception_Or_Transmission,

Activates_Conditionnally_On_Successful_Reception_Or_Transmission,

Activates_On_Unsuccessful_Reception_Or_Transmission :

FLAG FlagName

(0…MAX_Flag) XOR (optional AND)

CALLBACK CallbackName

(0…1) XOR (optional AND)

EVENT EventName

(0…1) XOR (optional AND)

TASK TaskName

(0…1)

Connected_to :

N_HANDLE N_HandleName

(0…1)

} (0…MAX_QUEUED_MESSAGE)

5.3.1 Entity requirements

The number of queued messages per application is application specific.
„MAX_Queued_Message“ shall document the maximum number of queued message
supported by an OSEK COM implementation.

5.3.2 Entity attributes requirements

5.3.2.1 SymbolicName :

1. The symbolic name (SymbolicName) of a queued message shall be defined at
system generation time.

2. The type of "SymbolicName" is enumeration.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 132 -

5.3.2.2 Length :

1. The length (Message_Length) of a queued message identified by "SymbolicName"
shall be defined at system generation time.

2. The type of "Message_Length" is scalar.

5.3.2.3 Scope :

1. The scope of a queued message (Scope) identified by "SymbolicName" shall be
defined at system generation time.

2. The type of "Scope" is enumeration.

3. The reserved values of "Scope" are : "internal", "external", "internal_external".

4. A queued message identified by "SymbolicName" shall be assigned a single
reserved value of the "Scope" attribute.

5.3.3 Entity association requirements

5.3.3.1 is_sent_by:

1. A queued message identified by "SymbolicName" shall be transmitted as a
minimum by no application sender (TASK, FUNCTION).

2. A queued message identified by "SymbolicName" shall be transmitted by as a
maximum one application sender TASK identified by "TaskName" or FUNCTION
identified by “FunctionName”.

3. A queued message identified by "SymbolicName" shall be using one of the
following transmission modes :

• DirectTransmissionMode identified by "DirectTransmissionModeName", or

• PeriodicalTransmissionMode identified by
"PeriodicalTransmissionModeName", or

• MixedTransmissionMode identified by "MixedTransmisionModeName"

The PeriodicalTransmissionMode and MixedTransmissionMode shall be
applicable if the "Scope" is "external" or "internal_external".

4. A queued message identified by "SymbolicName" can use a
Transmission_Deadline_Monitor if the "Scope" is "external" or
"internal_external".

5. A queued message identified by "SymbolicName" shall be using as a minimum no
Transmission_Deadline_Monitor .

6. A queued message identified by "SymbolicName" shall be using as a maximum one
Transmission_Deadline_Monitor identified by "TDM_Name".

5.3.3.2 is_received_by:

1. A queued message identified by "SymbolicName" shall be received as a minimum
by no internal application receiver (TASK, FUNCTION).

2. A queued message identified by "SymbolicName" shall be received as a maximum

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 133 -

by one application receiver's TASK identified by "TaskName" interfacing with a
specific queued message with depth of the corresponding logical FIFO queue
equal to "FIFO_Depth" or as a maximum by one application receiver's
FUNCTIONs identified by "FunctionName" interfacing with a specific queued
message with depth of the corresponding logical FIFO queue equal to
"FIFO_Depth"

3. A queued message identified by "SymbolicName" can use a
Reception_Deadline_Monitor if the "Scope" is "external" or "internal_external".

4. A queued message identified by "SymbolicName" shall be using as a minimum no
Reception_Deadline_Monitor.

5. A queued message identified by "SymbolicName" shall be using as a maximum
“Max_RDM” Reception_Deadline_Monitor identified by "RDM_Name".

5.3.3.3 is_accessed_by:

1. A queued message identified by "SymbolicName" shall be accessed as a minimum
by one accessor.

2. A queued message identified by "SymbolicName" shall be accessed as a maximum
by one accessor's identified by "AccessName".

5.3.3.4 activates_unconditionally_on_successful_reception_or_transmission,

5.3.3.5 activates_on_unsuccessful_reception_or_transmission :

1. A queued message identified by "SymbolicName" shall be assigned as a minimum
to no FLAG , no CALLBACK , no EVENT or no TASK.

2. A queued message identified by "SymbolicName" shall be assigned as a maximum
to „MAX_Flag“ FLAG identified by their respective "FlagName", one CALLBACK
identified by their respective "CallbackName", one EVENT identified by
"EventName" or one TASK identified by their respective "TaskName".

5.3.3.6 activates_conditionally_on_successful_reception_or_transmission :

1. A queued message identified by "SymbolicName" shall be assigned as a minimum
to no FLAG , no CALLBACK , no EVENT or no TASK.

2. A queued message identified by "SymbolicName" shall be assigned as a maximum
to „MAX_Flag“ FLAG identified by their respective "FlagName", one CALLBACK
identified by their respective "CallbackName", one EVENT identified by
"EventName" or one TASK identified by their respective "TaskName".

3. A relevant change condition shall be maintained as described in „relevantChange“
of „Mixed Transmission Mode Specification“.

5.3.3.7 is_connected_to_handle :

1. A queued message identified by "SymbolicName" shall be assigned to no network
handle (N_Handle) if the "scope" is "internal".

2. A queued message identified by SymbolicName shall be assigned to one network

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 134 -

handle (N_Handle) if the "scope" is either "external" or "internal_external".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 135 -

5.4 Message accessor

This section defines the system generation requirements applicable to message accessor.

ACCESSOR {

Is :

AccessName = enumeration

Copy = enumeration (WithCopy | WithoutCopy)

Accesses_message :

UNQUEUED | QUEUED _MESSAGE SymbolicName

(1…1)

Is_used_by_Task:

TASK TaskName

(1…1)

Is_used_by_Function:

FUNCTION FunctionName

(1…1)

Is_used_by_Callback:

CALLBACK CallbackName

(1…1)

Is_used_by_Isr:

ISR IsrName

(1…1)

} (0…MAX_ACCESSOR)

5.4.1 Entity requirements

The number of message accessor per application is application specific. „MAX_Accessor“
shall document the maximum number of message accessor supported by an OSEK COM
implementation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 136 -

5.4.2 Entity attributes requirements

5.4.2.1 AccessName :

1. The name of a message accessor (AccessName) shall be defined at system
generation. The type of "AccessName" is enumeration.

5.4.2.2 Copy :

1. The specification of a message accessor copy (Copy) identified by "AccessName"
shall be specified at system generation time.

2. The type of "Copy" is enumeration.

3. The reserved values of the "Copy" enumeration type are "WithCopy",
"WithoutCopy".

4. A message accessor identified by "AccessName" shall be assigned a single
reserved value of the "Copy" attribute.

5. If "Copy" is set to "WithCopy" then a copy shall be associated with the Accessor
identified by "AccessName". If "Copy" is set to "WithoutCopy" then no copy shall
be associated with Accessor identified by "AccessName".

6. "Copy" shall be set to "WithCopy" for Accessors identified by "AccessName"
associated with queued messages.

5.4.3 Entity association requirements

5.4.3.1 accesses_message :

1. An accessor identified by "AccessName" shall be used to access a message (queued
or unqueued) identified by "SymbolicName".

5.4.3.2 is_used_by_task :

1. An accessor identified by "AccessName" can be used by one task identified by
"TaskName" only.

5.4.3.3 is_used_by_function:

1. An accessor identified by "AccessName" can be used by one function identified by
"FunctionName" only.

5.4.3.4 is_used_by_callback :

1. An accessor identified by "AccessName" can be used by one Callback identified by
"CallbackName" only.

5.4.3.5 is_used_by_isr :

1. An accessor identified by "AccessName" can be used by one interrupt sub routine
(ISR) identified by "IsrName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 137 -

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 138 -

5.5 Direct transmission mode specification

This section defines the system generation requirements applicable to direct transmission
mode specification.

DIRECT_TRANSMISSION_MODE {

Is :

DirectTransmissionModeName = enumeration

Transmits :

QUEUED | UNQUEUED_MESSAGE SymbolicName

(1…1)

} (0…MAX_Direct_Transmission_Mode)

5.5.1 Entity requirements

The number of transmission mode specification per application is application specific.
„MAX_Direct_Transmission_Mode“ shall document the maximum number of transmission
mode specification supported by an OSEK COM implementation.

5.5.2 Entity attributes requirements

5.5.2.1 TransmissionModeName:

1. The name of a transmission mode specification (DirectTransmissionModeName)
shall be defined at system generation.

2. The type of "DirectTransmissionModeName" is enumeration.

5.5.3 Entity association requirements

5.5.3.1 Transmits :

1. A transmission mode specification identified by" DirectTransmissionModeName"
shall specify as a minimum no message (queued or unqueued).

2. A transmission mode specification identified by "DirectTransmissionModeName"
shall specify as a maximum "MAX_Unqueued_Message" or
"MAX_Queued_Message" messages identified by their respective "SymbolicName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 139 -

5.6 Periodical transmission mode specification

This section defines the system generation requirements applicable to periodical transmission
mode specification.

PERIODICAL_TRANSMISSION_MODE {

Is :

PeriodicalTransmissionModeName = enumeration

I_TMP_TPD = scalar

I_TMP_TOFF = scalar

Transmits :

QUEUED | UNQUEUED_MESSAGE SymbolicName

(1…1)

} (0…MAX_Periodical_Transmission_Mode)

5.6.1 Entity requirements

The number of periodical transmission mode specification per application is application
specific. „MAX_Periodical_Transmission_Mode“ shall document the maximum number of
periodical transmission mode specification supported by an OSEK COM implementation.

5.6.2 Entity attributes requirements

5.6.2.1 TransmissionModeName :

1. The name of a periodical transmission mode specification
(PeriodicalTransmissionModeName) shall be defined at system generation.

2. The type of "PeriodicalTransmissionModeName" is enumeration.

5.6.2.2 I_TMP_TPD attribute :

1. The value of the periodical transmission mode time period (I_TMP_TPD) shall be
defined at system generation.

2. The type of "I_TMP_TPD" is scalar; unit is millisecond.

5.6.2.3 I_TMP_TOFF attribute :

1. The value of the periodical transmission mode time offset (I_TMP_TOFF) shall be
defined at system generation.

2. The type of "I_TMP_TOFF" is scalar; units is milliseconds.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 140 -

5.6.3 Entity association requirements

5.6.3.1 Transmits :

1. A periodical transmission mode specification identified by
"PeriodicalTransmissionModeName" shall specify as a minimum no message
(queued or unqueued).

2. A periodical mode specification identified by "PeriodicalTransmissionModeName"
shall specify as a maximum "MAX_Unqueued_Message" or
"MAX_Queued_Message" messages identified by their respective "SymbolicName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 141 -

5.7 Mixed transmission mode specification

This section defines the system generation requirements applicable to mixed transmission
mode specification.

MIXED_TRANSMISSION_MODE {

Is :

MixedTransmissionModeName = enumeration

I_TMM_TPD = scalar

I_TMM_TOFF = scalar

RelevantChange specification

Transmits :

QUEUED | UNQUEUED_MESSAGE SymbolicName

(1…1)

} (0…MAX_Mixed_Transmission_Mode)

5.7.1 Entity requirements

The number of mixed transmission mode specification per application is application specific.
„MAX_Mixed_Transmission_Mode“ shall document the maximum number of mixed
transmission mode specification supported by an OSEK COM implementation.

5.7.2 Entity attributes requirements

5.7.2.1 TransmissionModeName :

1. The name of a mixed transmission mode specification
(MixedTransmissionModeName) shall be defined at system generation.

2. The type of "MixedTransmissionModeName" is enumeration.

5.7.2.2 I_TMM_TPD :

1. The value of the mixed transmission mode time period (I_TMM_TPD) shall be
defined at system generation.

2. The type of "I_TMM_TPD" is scalar ; unit is millisecond.

5.7.2.3 I_TMM_TOFF:

1. The value of the mixed transmission mode time offset (I_TMM_TOFF) shall be
defined at system generation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 142 -

2. The type of "I_TMM_TOFF" is scalar ; unit is millisecond.

5.7.2.4 RelevantChange :

The RelevantChange attribute contains the specification that determines whether an
intermediate transmission shall take place or not.

A relevant change of the message value is detected when the message value matches a
specific condition.

A list of possible "relevant changes" is given below ("Value" is an abbreviation for
message data value and "Oldvalue" is an abbreviation for old message data value) :

a) Value less than constant

A relevant change is detected if the message value is less than a constant which is
defined at system generation time.

Example: temperature < MIN_TEMPERATURE

b) Value greater than constant

A relevant change is detected if the message value is greater than a constant
which is defined at system generation time.

Example: temperature > MAX_TEMPERATURE

c) Value equal to constant

A relevant change is detected if the message value is equal to a constant which is
defined at system generation time.

Example: temperature == REF_TEMPERATURE

d) (Value-Oldvalue) less than constant

A relevant change is detected if the change of the message value is less than a
constant which is defined at system generation time.

Example: (temperature-temperature_old) < MIN_TEMPERATURE_CHANGE

e) (Value-Oldvalue) greater than constant

A relevant change is detected if the change of the message value is greater than a
constant which is defined at system generation time.

Example: (temperature-temperature_old) > MAX_TEMPERATURE_CHANGE

f) (Value-Oldvalue) equal to constant

A relevant change is detected if the change of the message value is equal to a

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 143 -

constant which is defined at system generation time.

Example: (temperature-temperature_old) == REF_TEMPERATURE_CHANGE

g) always „true„

A relevant change is always detected regardless of the message value. Therefore
each update of the message object issues an intermediate transmission.

OSEK COM also provides the means to implement user defined "relevant"
changes.

5.7.3 Entity association requirements

5.7.3.1 transmits :

1. A mixed transmission mode specification identified by
"MixedTransmissionModeName" shall specify as a minimumno message (queued
or unqueued).

2. A mixed mode specification identified by "MixedTransmissionModeName" shall
specify as a maximummultiple "MAX_Unqueued_Message" or
"MAX_Queued_Message" messages identified by "SymbolicName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 144 -

5.8 Reception deadline monitoring specification

This section defines the system generation requirements applicable to reception deadline
monitoring specification.

RECEPTION_MONITORING {

Is :

ReceptionMonitoringName = enumeration

Is_used_by_message :

UNQUEUED | QUEUED _MESSAGE SymbolicName

(1…MAX_Unqueued_Message | MAX_Queued_Message)

Activates:

TASK TaskName

(1…MAX_Task) XOR (optional AND)

EVENT EventName

(1…MAX_Event) XOR (optional AND)

CALLBACK CallbackName

(1…MAX_Callback) XOR (optional AND)

FLAG FlagName

(1…MAX_Flag)

NM NMName

} (0…MAX_Reception_Monitoring)

5.8.1 Entity requirements

The number of reception monitoring specification per application is application specific.
„MAX_Reception_Monitoring“ shall document the maximum number of reception monitoring
specification supported by an OSEK COM implementation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 145 -

5.8.2 Entity attributes requirements

5.8.2.1 ReceptionMonitoringName :

1. The name of a reception monitoring specification (ReceptionMonitoringName)
shall be defined at system generation.

2. The type of "ReceptionMonitoringName" is enumeration.

5.8.3 Entity association requirements

5.8.3.1 is_used_by_message :

1. A reception monitoring specification identified by " ReceptionMonitoringName "
shall specify as a minimum one message (queued or unqueued) identified by
"SymbolicName".

2. A reception monitoring specification identified by " ReceptionMonitoringName "
shall specify as a maximum "MAX_Unqueued_Message" or
"MAX_Queued_Message" messages identified by their respective
"SymbolicName".

5.8.3.2 activates :

1. A reception monitoring specification identified by "ReceptionMonitoringName"can
activate as a minimum no CALLBACK, no FLAG, no EVENT and no TASK.

2. A reception monitoring specification identified by "ReceptionMonitoringName"can
activate as a maximum „MAX_Callback“ CALLBACK identified by their
respective "CallbackName" or „MAX_Flag“ FLAG identified by „FlagName” or
„MAX_Event“ EVENT identified by "EventName" and „MAX_Task“ TASK
identified by their respective "TaskName".

3. The indirect Network Management shall be interfaced as a minimum by one
reception monitoring specification identified by "ReceptionMonitoringName".

4. The indirect Network Management shall be interfaced as a maximum by multiple
reception monitoring specification identified by "ReceptionMonitoringName".

5. At least one of the mechanisms defined in this section shall be utilized to process
the events generated by the monitoring entity.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 146 -

5.9 Transmission deadline monitoring specification

This section defines the system generation requirements applicable to transmission deadline
monitoring specification.

TRANSMISSION_MONITORING {

Is :

TransmissionMonitoringName = enumeration

Is_used_by_message :

UNQUEUED | QUEUED _MESSAGE SymbolicName

(1…MAX_Unqueued_Message | MAX_Queued_Message)

Activates :

TASK TaskName

(1…MAX_Task) XOR (optional AND)

EVENT EventName

(1…MAX_Event) XOR (optional AND)

CALLBACK CallbackName

(1…MAX_Callback) XOR (optional AND)

FLAG FlagName

(1...MAX_Flag)

NM NMName

} (0…MAX_Transmission_Monitoring)

5.9.1 Entity requirements

The number of transmission monitoring specification per application is application specific.
„MAX_Transmission_Monitoring“ shall document the maximum number of transmission
monitoring specification supported by an OSEK COM implementation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 147 -

5.9.2 Entity attributes requirements

5.9.2.1 TransmissionMonitoringName :

1. The name of a transmission monitoring specification
(TransmissionMonitoringName) shall be defined at system generation.

2. The type of "TransmissonMonitoringName" is enumeration.

5.9.3 Entity association requirements

5.9.3.1 is_used_by_message :

1. A transmission monitoring specification identified by
"TransmissionMonitoringName" shall specify as a minimum one message (queued
or unqueued) identified by "SymbolicName".

2. A reception monitoring specification identified by "TransmissionMonitoringName"
shall specify as a maximum "MAX_Unqueued_Message" or
"MAX_Queued_Message" messages identified by their respective "SymbolicName".

5.9.3.2 activates :

1. A transmission monitoring specification identified by
"ReceptionMonitoringName"can activate as a minimum no FLAG , no CALLBACK
, no EVENT and no TASK.

2. A transmission monitoring specification identified by
"ReceptionMonitoringName"can activate as a maximum „MAX_Callback“
CALLBACK identified by their respective "CallbackName" or „MAX_Flag“ FLAG
identified by „FlagName” or „MAX_Event“ EVENT identified by "EventName"
and „MAX_Task“ TASK identified by their respective "TaskName".

3. The indirect Network Management shall be interfaced with as a minimum by one
transmission monitoring specification identified by
"TransmissionMonitoringName".

4. The indirect Network Management shall be interfaced with as a maximum by
"MAX_Transmission_Monitoring" transmission monitoring specification identified
by "TransmissionMonitoringName".

5. At least one of the mechanisms defined in this section shall be utilized to process
the events generated by the monitoring entity.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 148 -

5.10Task

This section defines the system generation requirements applicable to Task.

TASK {

Is :

ActivityName = enumeration

Is_Activated_Unconditionally_On_Successful_Reception_Or_Transmission,

Is_Activated_Conditionnally_On_Successful_Reception_Or_Transmission,

Is_Activated_On_Unsuccessful_Reception_Or_Transmission,

Is_Activated_On_First_Frame_Indication :

UNQUEUED SymbolicName

(1…MAX_Unqueued_Message)

QUEUED _MESSAGE SymbolicName

(1… MAX_Queued_Message)

Is_activated_by_reception_deadline_monitor :

RECEPTION_ MONITOR RDM_Name

(1…MAX_Reception_Monitor)

Is_activated_by_transmission_deadline_monitor :

TRANSMISSION_MONITOR TDM_Name

(1…MAX_Transmission_Monitor)

}(0…MAX_Task)

5.10.1 Entity requirements

The number of task per application is application specific. „MAX_Task“ shall document the
maximum number of task supported by an OSEK COM implementation.

5.10.2 Entity attributes requirements

5.10.2.1 TaskName:

1. The name of a Task (TaskName) shall be defined at system generation. The type of
"TaskName" is enumeration.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 149 -

5.10.3 Entity association requirements

5.10.3.1 is_activated_unconditionally_on_successful_reception_or_transmission,

5.10.3.2 is_activated_on_unsuccessful_reception_or_transmission,

5.10.3.3 is_activated_on_first_frame_indication :

1. A Task identified by "TaskName" shall be activated as a minimum by one message
(queued or unqueued) identified by "SymbolicName".

2. A Task identified by "TaskName" shall be activated as a maximum by
"MAX_Unqueued_Message" or "MAX_Queued_Message" messages identified by
their respective "SymbolicName".

5.10.3.4 is_activated_conditionnally_on_successful_reception_or_transmission :

1. A Task identified by " TaskName " shall be activated as a minimum by one message
(queued or unqueued) identified by "SymbolicName".

2. A Task identified by " TaskName " shall be activated as a maximum by
"MAX_Message" messages (queued or unqueued) identified by their respective
"SymbolicName".

3. A relevant change condition shall be maintained as described in „relevantChange“
of „Mixed Transmission Mode Specification“.

5.10.3.5 is_activated_by_reception_deadline _monitor :

1. A Task identified by "TaskName" shall be activated as a minimumby one
Reception_Deadline_Monitor identified by "RDM_Name".

2. A Task identified by "TaskName" shall be activated as a maximumby
"MAX_Reception_Monitor" Reception_Deadline_Monitor's identified by their
respective "RDM_Name".

5.10.3.6 is_activated_by_transmission_deadline _monitor :

1. A Task identified by "TaskName" shall be activated as a minimumby one
Transmission_Deadline_Monitor identified by "TDM_Name".

2. A Task identified by "TaskName" shall be activated as a maximumby
"MAX_Transmission_Monitor" Transmission_Deadline_Monitor's identified by
"TDM_Name".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 150 -

5.11Function

This section defines the system generation requirements applicable to Function.

FUNCTION {

Is :

ActivityName = enumeration

Is_Activated_Unconditionally_On_Successful_Reception_Or_Transmission,

Is_Activated_Conditionnally_On_Successful_Reception_Or_Transmission,

Is_Activated_On_Unsuccessful_Reception_Or_Transmission,

Is_Activated_On_First_Frame_Indication :

UNQUEUED SymbolicName

(1…MAX_Unqueued_Message)

QUEUED _MESSAGE SymbolicName

(1… MAX_Queued_Message)

Is_activated_by_reception_deadline_monitor :

RECEPTION_ MONITOR RDM_Name

(1…MAX_Reception_Monitor)

Is_activated_by_transmission_deadline_monitor :

TRANSMISSION_MONITOR TDM_Name

(1…MAX_Transmission_Monitor)

}(0…MAX_Function)

5.11.1 Entity requirements

The number of Function per application is application specific. „MAX_Function“ shall
document the maximum number of function supported by an OSEK COM implementation.

5.11.2 Entity attributes requirements

5.11.2.1 FunctionName:

2. The name of a Function (FunctionName) shall be defined at system generation.
The type of "FunctionName" is enumeration.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 151 -

5.11.3 Entity association requirements

5.11.3.1 is_activated_unconditionally_on_successful_reception_or_transmission,

5.11.3.2 is_activated_on_unsuccessful_reception_or_transmission,

5.11.3.3 is_activated_on_first_frame_indication :

1. A Function identified by "FunctionName" shall be activated as a minimum by one
message (queued or unqueued) identified by "SymbolicName".

2. A Function identified by "FunctionName" shall be activated as a maximum by
"MAX_Unqueued_Message" or "MAX_Queued_Message" messages identified by
their respective "SymbolicName".

5.11.3.4 is_activated_conditionnally_on_successful_reception_or_transmission :

1. A Function identified by " FunctionName " shall be activated as a minimum by one
message (queued or unqueued) identified by "SymbolicName".

2. A Function identified by " FunctionName " shall be activated as a maximum by
"MAX_Message" messages (queued or unqueued) identified by their respective
"SymbolicName".

3. A relevant change condition shall be maintained as described in „relevantChange“
of „Mixed Transmission Mode Specification“.

5.11.3.5 is_activated_by_reception_deadline _monitor :

1. A Function identified by "FunctionName" shall be activated as a minimumby one
Reception_Deadline_Monitor identified by "RDM_Name".

2. A Function identified by "FunctionName" shall be activated as a maximumby
"MAX_Reception_Monitor" Reception_Deadline_Monitor's identified by their
respective "RDM_Name".

5.11.3.6 is_activated_by_transmission_deadline _monitor :

1. A Function identified by "FunctionName" shall be activated as a minimumby one
Transmission_Deadline_Monitor identified by "TDM_Name".

2. A Function identified by "FunctionName" shall be activated as a maximumby
"MAX_Transmission_Monitor" Transmission_Deadline_Monitor's identified by
"TDM_Name".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 152 -

5.12Callback

This section defines the system generation requirements applicable to callback.

CALLBACK {

Is :

CallbackName = enumeration

Is_Activated_Unconditionally_On_Successful_Reception_Or_Transmission,

Is_Activated_Conditionnally_On_Successful_Reception_Or_Transmission,

Is_Activated_On_Unsuccessful_Reception_Or_Transmission,

Is_Activated_On_First_Frame_Indication :

UNQUEUED SymbolicName

(1…MAX_Unqueued_Message)

QUEUED _MESSAGE SymbolicName

(1… MAX_Queued_Message)

Is_activated_by_reception_deadline_monitor :

RECEPTION_MONITOR RDM_Name

(1…MAX_Reception_Monitor)

Is_activated_by_transmission_deadline_monitor :

TRANSMISSION_MONITOR TDM_Name

(1…MAX_Transmission_Monitor)

}(0…MAX_Callback)

5.12.1 Entity requirements

The number of callback per application is application specific. „MAX_Callback“ shall
document the maximum number of callback supported by an OSEK COM implementation.

5.12.2 Entity attributes requirements

5.12.2.1 CallbackName:

1. The name of a Callback (CallbackName) shall be defined at system generation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 153 -

The type of "CallbackName" is enumeration.

2. The following format of the callback prototype shall apply :

void <CallbackRoutineName> (void);

Example for a callback routine:

void EngineTempIndication(void)
{

// do application specific processing here
}

5.12.3 Entity association requirements

5.12.3.1 is_activated_unconditionally_on_successful_reception_or_transmission,

5.12.3.2 is_activated_on_unsuccessful_reception_or_transmission,

5.12.3.3 is_activated_on_first_frame_indication :

1. 1. A Callback identified by "CallbackName" shall be activated as a minimumby
one message (queued or unqueued) identified by "SymbolicName".

2. 2. A Callback identified by "CallbackName" shall be activated as a maximumby
"MAX_Unqueued_Meesage" or "MAX_Queued-Message" messages identified by
their respective "SymbolicName".

5.12.3.4 is_activated_conditionnally_on_successful_reception_or_transmission :

1. A Callback identified by "CallbackName" shall be activated as a minimumby one
message (queued or unqueued) identified by "SymbolicName".

2. A Callback identified by "CallbackName" shall be activated as a maximumby
"MAX_Unqueued_Meesage" or "MAX_Queued-Message" messages identified by
their respective "SymbolicName".

3. A relevant change condition shall be maintained as described in „relevantChange“
of „Mixed Transmission Mode Specification“.

5.12.3.5 is_activated_by_reception_deadline _monitor :

1. A Callback identified by "CallbackName" shall be activated as a minimum by one
Reception_Deadline_Monitor identified by "RDM_Name".

2. A Callback identified by "CallbackName" shall be activated as a maximum by
"MAX_Reception_Monitor" Reception_Deadline_Monitor's identified by their
respective "RDM_Name".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 154 -

5.12.3.6 is_activated_by_transmission_deadline _monitor:

1. A Callback identified by "CallbackName" shall be activated as a minimum by one
Transmission_Deadline_Monitor identified by "TDM_Name".

2. A Callback identified by "CallbackName" shall be activated as a maximum by
"MAX_Transmission_Monitor" Transmission_Deadline_Monitor's identified by
their respective "TDM_Name".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 155 -

5.13Event

This section defines the system generation requirements applicable to event.

EVENT {

Is :

EventName = enumeration

Is_Activated_Unconditionally_On_Successful_Reception_Or_Transmission,

Is_Activated_Conditionnally_On_Successful_Reception_Or_Transmission,

Is_Activated_On_Unsuccessful_Reception_Or_Transmission,

Is_Activated_On_First_Frame_Indication :

UNQUEUED SymbolicName

(1…MAX_Unqueued_Message)

QUEUED _MESSAGE SymbolicName

(1… MAX_Queued_Message)

Is_activated_by_reception_deadline_monitor :

RECEPTION_MONITOR RDM_Name

(1…MAX_Reception_Monitor)

Is_activated_by_transmission_deadline_monitor :

TRANSMISSION_MONITOR TDM_Name

(1…MAX_Transmission_Monitor)

Is_received_by_Task :

TASK TaskName

(1…MAX_Task)

}(0…MAX_Event)

5.13.1 Entity requirements

The number of event per application is application specific. „MAX_Event“ shall document
the maximum number of event supported by an OSEK COM implementation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 156 -

5.13.2 Entity attributes requirements

5.13.2.1 EventName:

1. The name of an Event (EventName) shall be defined at system generation. The type
of EventName is enumeration.

5.13.3 Entity association requirements

5.13.3.1 is_activated_unconditionally_on_successful_reception_or_transmission,

5.13.3.2 is_activated_on_unsuccessful_reception_or_transmission,

5.13.3.3 is_activated_on_first_frame_indication :

1. an event identified by "eventname" shall be activated as a minimum by one
message (queued or unqueued) identified by "SymbolicName".

2. An Event identified by "EventName" shall be activated as a maximum by
"MAX_Unqueued_Message" or "MAX_Queued_Message" messages identified by
their respective "SymbolicName".

5.13.3.4 is_activated_conditionally_on_successful_reception_or_transmission :

1. An Event identified by " EventName " shall be activated as a minimum by one
message (queued or unqueued) identified by "SymbolicName".

2. An Event identified by " EventName " shall be activated as a maximum by
"MAX_Message" messages (queued or unqueued) identified by their respective
"SymbolicName".

3. A relevant change condition shall be maintained as described in „relevantChange“
of „Mixed Transmission Mode Specification“.

5.13.3.5 is_activated_by_reception_deadline _monitor :

1. An Event identified by "EventName" shall be activated as a minimum by one
Reception_Deadline_Monitor identified by "RDM_Name".

2. An Event identified by EventName shall be activated as a maximum by
"MAX_Reception_Monitor" Reception_Deadline_Monitor identified by their
respective "RDM_Name".

5.13.3.6 is_activated_by_transmission_deadline _monitor:

1. An Event identified by EventName shall be activated as a minimum by one
Transmission_Deadline_Monitor identified by "TDM_Name".

2. An Event identified by EventName shall be activated as a maximum by
"MAX_Transmission_Monitor" Transmission_Deadline_Monitors identified by
their respective "TDM_Name".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 157 -

5.13.3.7 is_received by task :

1. An Event identified by EventName can be received as a minimum by one Task
identified by "TaskName".

2. An Event identified by EventName can be received as a maximum by "MAX_Task"
Task identified by their respective "TaskName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 158 -

5.14Flag

This section defines the system generation requirements applicable to flag.

FLAG {

Is :

FlagName = enumeration

Is_Activated_Unconditionally_On_Successful_Reception_Or_Transmission,

Is_Activated_Conditionnally_On_Successful_Reception_Or_Transmission,

Is_Activated_On_Unsuccessful_Reception_Or_Transmission,

Is_Activated_On_First_Frame_Indication :

UNQUEUED SymbolicName

(1…MAX_Unqueued_Message)

QUEUED _MESSAGE SymbolicName

(1… MAX_Queued_Message)

Is_activated_by_reception_deadline_monitor :

RECEPTION_MONITOR RDM_Name

(1…MAX_Reception_Monitor)

Is_activated_by_transmission_deadline_monitor :

TRANSMISSION_MONITOR TDM_Name

(1…MAX_Transmission_Monitor)

} (0…MAX_Flag)

5.14.1 Entity requirements

The number of flag per application is application specific. „MAX_Flag“ shall document the
maximum number of flag supported by an OSEK COM implementation.

5.14.2 Entity attributes requirements

5.14.2.1 FlagName:

1. The name of a Flag (FlagName) shall be defined at system generation. The type of

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 159 -

"FlagName" is enumeration.

2. The following format of the flag prototype where "FlagType" is a type for Bit
variable shall apply :

FlagType <FlagName>;

Example for the usage of a flag:

if(ARRIVED== ReadFlag(ACC_MSG_FLAG))
{
ResetFlag(ACC_MSG_FLAG); // reset flag
// ... do application specific processing here

}

5.14.3 Entity association requirements

5.14.3.1 is_activated_unconditionally_on_successful_reception_or_transmission,

5.14.3.2 is_activated_on_unsuccessful_reception_or_transmission,

5.14.3.3 is_activated_on_first_frame_indication :

1. A Flag identified by "FlagName" shall be activated as a minimum by one message
(queued or unqueued) identified by "SymbolicName".

2. A Flag identified by "FlagName" shall be activated as a maximum by
"MAX_Message" messages (queued or unqueued) identified by their respective
"SymbolicName".

5.14.3.4 is_activated_conditionally_on_ successful_reception_or_transmission :

1. A Flag identified by "FlagName" shall be activated as a minimum by one message
(queued or unqueued) identified by "SymbolicName".

2. A Flag identified by "FlagName" shall be activated as a maximum by
"MAX_Message" messages (queued or unqueued) identified by their respective
"SymbolicName".

3. A relevant change condition shall be maintained as described in „relevantChange“
of „Mixed Transmission Mode Specification“.

5.14.3.5 is_activated_by_reception_deadline _monitor :

1. An Flag identified by "FlagName" shall be activated as a minimum by one
Reception_Deadline_Monitor identified by "RDM_Name".

2. An Flag identified by FlagName shall be activated as a maximum by
"MAX_Reception_Monitor" Reception_Deadline_Monitor identified by their
respective "RDM_Name".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 160 -

5.14.3.6 is_activated_by_transmission_deadline _monitor:

1. An Flag identified by FlagName shall be activated as a minimum by one
Transmission_Deadline_Monitor identified by "TDM_Name".

2. An Flag identified by FlagName shall be activated as a maximum by
"MAX_Transmission_Monitor" Transmission_Deadline_Monitors identified by
their respective "TDM_Name".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 161 -

5.15Network handle

This section defines the system generation requirements applicable to network handle.

N_HANDLE {

Is :

N_HandleName = enumeration

N_Direction = enumeration (transmit | receive)

N_Id = enumeration

Is_connected_to_message :

UNQUEUED | QUEUED _MESSAGE SymbolicName

(0…1)

Uses_protocol :

UUDT N_UUDT_Name | USDT N_USDT_Name

(0…1)

Is routed_by_address:

APPLICATION_ADDRESS N_Address

(0…MAX_Application_Address)

}(0…MAX_Network_Handle)

5.15.1 Entity requirements

The number of network handle mode per application is application specific.
„MAX_Network_Handle“ shall document the maximum number of network handle supported
by an OSEK COM implementation.

5.15.2 Entity attributes requirements

5.15.2.1 N_HandleName :

1. The name of the network handle (N_HandleName) shall be defined at system
generation.

2. The type of "N_HandleName " is enumeration.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 162 -

5.15.2.2 Direction :

1. The direction of the information transfer (N_Direction) supported by the network
handle (N_Protocol) shall be defined at system generation.

2. The type of "N_Direction" is enumeration.

3. The reserved values of the "N_ Direction" enumeration type are "Transmit",
"Receive".

4. A network handle (N_Handle) identified by "N_HandleName " shall be assigned a
single reserved value of the "N_Direction" attribute. A network handle is attached
to a message that can either be transmitted or received.

5.15.2.3 N_Id :

1. The name of the specific underlying bus utilized (N_Id) to transmit the application
data attached to the network handle (N_Protocol) shall be defined at system
generation.

2. The type of "N_Id" is enumeration.

5.15.3 Entity association requirements

5.15.3.1 is_connected_to_message:

1. A network handle identified by" N_HandleName" shall connect to one message
(queued or unqueued) identified by "SymbolicName".

5.15.3.2 uses_protocol:

1. A network handle identified by" N_HandleName" shall be supported either by a
UUDT protocol entity identified by “N_UUDT_Name” or by a USDT protocol
entity identified by “N_USDT_Name”.

5.15.3.3 is_routed by_address:

1. A network handle identified by" N_HandleName" shall specify as a minimum no
address.

2. A network handle identified by" N_HandleName" shall specify as a maximum (N)
addresses identified by "N_Address".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 163 -

5.16Application address

This section defines the system generation requirements applicable to a application address.

APPLICATION_ADDRESS {

Is :

N_Address = scalar

Routes :

N_HANDLE N_HandleName

(1 …MAX_Network_Handle)

} (0…MAX_Application_Addresses)

5.16.1 Entity requirements

The number of addresses per application is application specific.
„MAX_Application_Addresses“ shall document the maximum number of addresses supported
by an OSEK COM implementation.

5.16.2 Entity attributes requirements

5.16.2.1 N_Address :

1. The name of the network address (N_Address) shall be defined at system
generation.

2. The type of "N_Address" is scalar.

5.16.3 Entity association requirements

5.16.3.1 routes :

1. A network address identified by" N_Address" shall support as a minimum one
N_Handle identified by "N_HandleName".

2. A network address identified by" N_Address" shall support as a maximum (N)
N_Handle identified by "N_HandleName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 164 -

5.17UUDT

This section defines the system generation requirements applicable to the unacknowledged
unsegmented data transfer protocol.

UUDT {

Is :

N_UUDT_Name = enumeration

N_Data_Length = scalar

activates_on_N_UUData.confimation,

activates_on_N_UUData.indication :

TASK TaskName

(1…MAX_Task) XOR (optional AND)

EVENT EventName

(1…MAX_Event) XOR (optional AND)

CALLBACK CallbackName

(1…MAX_Callback) XOR (optional AND)

FLAG FlagName

(1...MAX_Flag) XOR (optional AND)

FUNCTION FunctionName

(1…MAX_Function) XOR (optional AND)

} (0…MAX_UUDT)

5.17.1 Entity requirements

This entity determines the type of protocol used and its corresponding parameters.
„MAX_UUDT“ shall document the maximum number of UUDT protocol specifications
supported by an OSEK COM implementation.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 165 -

5.17.2 Entity attributes requirements

5.17.2.1 N_UUDT_Name :

1. The name of the UUDT protocol specification (N_Address) shall be defined at
system generation.

2. The type of "N_UUDT_Name" is enumeration.

5.17.2.2 N_Data_Length :

1. The length of the data that will be transmitted onto the communication media shall
be defined at system generation.

2. The type of "N_Data_Length" is scalar.

5.17.2.3 activates_on_N_UUData.confirmation,

5.17.2.4 activates_on_N_UUData.indication :

1. The UUDT protocol entity identified by" N_USDT_Name " can activate as a
minimum no FLAG , no CALLBACK , no EVENT, no TASK and no FUNCTION.

2. The UUDT protocol entity identified by" N_USDT_Name "can activate as a
maximum „MAX_Callback“ CALLBACK identified by their respective
"CallbackName" or „MAX_Flag“ FLAG identified by „FlagName” or
„MAX_Event“ EVENT identified by "EventName" or „MAX_Task“ TASK
identified by their respective "TaskName" and „MAX_Function“ FUNCTION
identified by their respective "FunctionName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 166 -

5.18USDT

This section defines the system generation requirements applicable to the unacknowledged
segmented data transfer protocol.

USDT {

Is :

N_USDT_Name = enumeration

N_Data_Length = scalar

BS = scalar

STmin = scalar

N_As_max = scalar

N_Ar_max = scalar

N_Bs_max = scalar

N_Cr_max = scalar

activates_on_N_USData.confirmation,

activates_on_N_USData.indication,

activates_on_N_USData_FF.indication :

TASK TaskName

(1…MAX_Task) XOR (optional AND)

EVENT EventName

(1…MAX_Event) XOR (optional AND)

CALLBACK CallbackName

(1…MAX_Callback) XOR (optional AND)

FLAG FlagName

(1...MAX_Flag) XOR (optional AND)

FUNCTION FunctionName

(1…MAX_Function)

`} (0…MAX_USDT)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 167 -

5.18.1 Entity requirements

This entity determines the type of protocol used and its corresponding parameters.
„MAX_USDT“ shall document the maximum number of USDT protocol specification
supported by an OSEK COM implementation

5.18.2 Entity attributes requirements

5.18.2.1 N_USDT_Name :

1. The name of the USDT protocol specification (N_Address) shall be defined at
system generation.

2. The type of "N_USDT_Name" is enumeration.

5.18.2.2 N_Data_Length :

1. The length of the N_Data filed of the network protocol data unit that is transmitted
onto the communication media shall be defined at system generation.

2. The type of "N_Data_Length" is scalar.

5.18.2.3 BS :

1. „BS“ shall be defined at system generation and assigned to the network protocol
control information BS (FC_NPCI.BS).

2. The type of "BS" is scalar and shall be within the range of zero (0) to two hundred
fifty five (255) decimal.

5.18.2.4 STmin :

1. „STmin“ shall be defined at system generation and assigned to the network
protocol control information STmin (FC_NPCI.STmin).

2. The type of "STmin" is scalar and shall be within the range of zero (0) to two
hundred fifty five (255) decimal.

5.18.2.5 N_As_max, N_Ar_max, N_Bs_max, N_Cr_max :

1. „N_As_max“, „N_Ar_max“, „N_Bs_max“, „N_Cr_max“,shall be defined at
system generation and assigned to their corresponding network protocol timing
parameter.

2. The type of „N_As_max“, „N_Ar_max“, „N_Bs_max“, „N_Cr_max“,is scalar
(milliseconds) with a range that is application specific.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 168 -

5.18.2.6 activates_on_N_USData.confirmation,

5.18.2.7 activates_on_N_USData.indication,

5.18.2.8 activates_on_N_USData_FF.indication :

1. The USDT protocol entity identified by" N_USDT_Name " can activate as a
minimum no FLAG , no CALLBACK , no EVENT, no TASK and no FUNCTION.

2. The USDT protocol entity identified by" N_USDT_Name "can activate as a
maximum „MAX_Callback“ CALLBACK identified by their respective
"CallbackName" or „MAX_Flag“ FLAG identified by „FlagName” or
„MAX_Event“ EVENT identified by "EventName" or „MAX_Task“ TASK
identified by their respective "TaskName" and „MAX_Function“ FUNCTION
identified by their respective "FunctionName".

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 169 -

6 Conformance classes

Various application software requirements and specific system capabilities (e.g.
communication hardware, processor, and memory) require different levels of communication
software functionality.

OSEK COM defines these levels as „Communication Conformance Classes“ (CCCs). The
main purpose of the conformance classes is to ensure that applications which have been for a
particular conformance class are portable across different OSEK implementations and ECUs
featuring that same or higher level of communication functionality. Hence different
implementations of a same communication conformance class provide the same set of
services and functionality to the application.

An OSEK COM implementation conforms to a communication conformance class only if it
provides all the features defined for that conformance class. However, system generation
needs only to link those system services that are required for a specific application. A specific
communication conformance class is selected at system generation time4 and cannot be
changed during execution.

OSEK COM defines five communication conformance classes to provide support from ECU
internal communication only (CCCA) up to inter-ECU external communication (CCC2).

CCCA :

CCCA defines the minimum features to support internal communication only, i.e. no support
for external communication is available. Unqueued message shall be supported. Notification
class 1 shall be supported with a maximum number of one notified consumer (task, callback
or event only) per message identified by “SymbolicName”. No message status information
shall be supported in order to allow for lean implementation of the communication kernel
(note that CCCA requires that data consistency is ensured off line if WithoutCopy
configuration is utilized since no message resource service is available). SendMessage and
ReceiveMessage shall be supported.

CCCB :

CCCB defines features to support internal communication only, i.e. no support for external
communication is available. All features of CCCA shall be supported with the following
extension : full notification class 1, message status information, Queued messages ,
GetMessageStatus, GetMessageResource and ReleaseMessageResource services shall be
supported.

CCC0 :

CCC0 defines minimum features to support internal, external and internal-external
communication. All features of CCCB shall be supported with the exception of queued
messages that are optional in CCC0. Operating system support is not required (but optional),
notification 2 and UUDT shall be supported.

CCC1 :

4 Besides, an OSEK COM implementation can be intrinsically compliant with one of the CCCs.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 170 -

All features of CCC0 shall be supported with then following extensions : Notification class 3
and 4, Mixed and Periodical transmission concepts shall be supported.

CCC2 :

All features of CCC1 shall be supported with the following extensions : USDT protocol shall
be supported in both SM/SA and DM/DA configurations. Queued messages shall be
supported : a CCC2 implementation shall to be capable to support a FIFO depth of at least 8
messages.

Figure 6-1:Conformance classes summary

Conformance Class

Features

C
C

C
A

C
C

C
B

C
C

C
0

C
C

C
1

C
C

C
2

Unqueued message √ √ √ √ √
Direct Transmission mode √ √ √ √ √

SendMessage √ √ √ √ √
ReceiveMessage √ √ √ √ √

Notification Class 1 √ √ √ √ √
Queued message √ * * √

GetMessageResource √ √ √ √
ReleaseMessageResource √ √ √ √

GetMessageStatus √ √ √ √
UUDT protocol √ √ √
Notification Class 2 √ √ √
Periodical √ √
Mixed √ √

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 171 -

Notification Class 3 √ √
Notification Class 4 √ √

StartPeriodical √ √
StopPeriodical √ √

USDT protocol √
Notification Class 5 √

SendDynamicMessage √
ReceiveDynamicMessage √

SendMessageTo √
ReceiveMessageFrom √

ChangeProtocolParameters √

6.1 OSEK OS support

If an underlying OSEK OS is selected to support OSEK COM then event setting, task
activation and alarm activation can be used in CCCA,B,0,1,2 depending on the operating
system conformance class chosen to manage the application (see table below). Multiple
requesting of tasks may only be required in CCC2, with FIFO size > 1.

Table 6-1: Event setting and task activation

Asynchronous mechanisms BCC15 BCC2 ECC1 ECC2

Activate task
on message / on alarm

yes Yes yes yes

Set event
on message / on alarm

no no yes yes

Multiple requesting of tasks
(FIFO > 1) & Activate task

no yes no only for BT

5 BCC and ECC are abbreviations for the two types of the OSEK operating system conformance classes : Basic
Conformance Class and Extended Conformance Class respectively (see OSEK/VDX OS specification)

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 172 -

7 Annex

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 173 -

7.1 CAN bus binding interface (normative)

7.1.1 Scope

This chapter specifies the binding of the OSEK COM data link layer interface (transfer of data
services) to the CAN bus services as defined in the ISO 11898 international standard. This
chapter does not target any particular implementation of the CAN standard as it refers to the
ISO specification only.

7.1.2 D_UUData.req

This OSEK COM service is defined as follows :

Table 7-1 : D_UUData.req summary

Service name Service parameter name

D_UUData.req <D_Handle>

<D_TA>

<D_User_Data>

7.1.2.1 Service binding

D_UUData.req service shall be mapped to L_Data.request service. A call to D_UUData.req
shall therefore result with a call to the L_Data.request service.

7.1.2.2 Parameters binding

The OSEK COM specification does not require a particular mapping of the D_UUData
service parameters which are application specific.

Refer to section 7.2 for the definition of mappings developed to support diagnostic on CAN
(ISO 15765-2).

7.1.3 D_UUData.con

This OSEK COM service is defined as follows :

Table 7-2 : D_UUData.con summary

Service name Service parameter name

D_UUData.con <D_Handle>

D_TA

D_SA

<D_Result_UUDT>

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 174 -

7.1.3.1 Service binding

D_UUData.con service shall be mapped to L_Data.confirm service. A call to D_UUData.con
shall therefore result with a call to L_Data.confirm service.

7.1.3.2 Parameters binding

The OSEK COM specification does not require a particular mapping of the D_UUData
service parameters which are application specific.

Refer to section 7.2 for the definition of mappings developed to support diagnostic on CAN
(ISO 15765-2).

7.1.4 D_UUData.ind

This service is defined as follows :

Table 7-3 : D_UUData.ind summary

Service name Service parameter name

D_UUData.ind <D_Handle>

<D_SA>

<D_User_Data>

<D_Result_UUDT>

7.1.4.1 Service binding

D_UUData.ind service shall be mapped to L_Data.indication service. A call to
D_UUData.ind shall therefore result with a call to L_Data.indication service.

7.1.4.2 Parameters binding

The OSEK COM specification does not require a particular mapping of the D_UUData
service parameters which are application specific.

Refer to section 7.2 for the definition of mapping developed to support diagnostic on CAN
(ISO 15765-2).

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 175 -

7.2 Use of ISO 15765-2 addressing formats (informative)

7.2.1 Scope and concepts

This section describes the mapping of the OSEK COM data link layer service parameters to
support addressing formats defined in the ISO 15765-2 (diagnostics on CAN) international
standard.

The addressing formats refers to the positioning of the network protocol data unit (including
the addressing information) within a CAN bus frame. Several addressing formats are defined
in ISO 15765-2 to support the transmission of message using the USDT protocol only.

Each addressing format requires a different number of CAN frame data bytes to encapsulate
the addressing information associated with the data to be exchanged. Consequently, the
number of data bytes transported within a single CAN frame depends on the type of
addressing format chosen.

The following sections describe the mapping mechanisms for each addressing format based on
the data Link Layer services and service parameters defined in ISO 11898.

7.2.2 CAN frame data length

This specification does not specify any requirements concerning the length of CAN data frame
other than those implied by the size of the network layer protocol data units.

The DLC parameter of the CAN bus frame (as defined in ISO 11898) is set (by the sender)
and read (by the receiver) to determine the number of data bytes per CAN frame to be
processed by the network layer.

The DLC parameter can not be processed to determine the length of the message to be
processed by the network layer : this information shall be extracted from the NPCI byte.

7.2.3 Normal addressing

For each combination of D_Handle, D_TA and D_SA (referenced below as
f(D_TA/SA/Handle)) a unique CAN identifier is assigned.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 176 -

D_User_Data is placed into the CAN frame data field. Note that the size of D_User_Data may
vary depending on the type of NPDU transported.

Table 7-4:Mapping of NPDU parameters into CAN frame - NORMAL addressing

NPDU type CAN Identifier CAN frame data field

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

SF_NPDU f(D_TA/SA/Hand
le)

D_User_Data

FF_NPDU f(D_TA/SA/Hand
le)

D_User_Data

CF_NPDU f(D_TA/SA/Hand
le)

D_User_Data

FC_NPDU f(D_TA/SA/Hand
le)

D_User_Data N/A

7.2.3.1 Normal fixed addressing

Normal fixed addressing is a sub-format of normal addressing where the mapping of the
address information (D_Handle, D_TA, D_SA) into the CAN identifier is further defined. In
the general case of normal addressing, described above, the correspondence between the
addressing information and the CAN identifier is left open.

For normal fixed addressing only 29 bit CAN identifiers are allowed. The following tables
define the mapping of the address information into the CAN identifier, depending on the
D_Handle (D_Handle), two type of target addresses are defined :

• Physical target address : the CAN frame is addressed to a particular and single node.

• Functional target address : the CAN frame is addressed to all nodes connected onto the
CAN bus and shall be processed accordingly

D_User_Data is placed in the CAN frame data field. Note that the size of D_User_Data may
vary depending on the type of NPDU transported.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 177 -

Table 7-5:NORMAL FIXED addressing (physical address)

NPDU type 29 bit CAN Identifier CAN frame data field

bit position byte position

28 26 25 24 23 16 15 8 7 0 1 2 3 4 5 6 7 8

SF_NPDU 011 (bin) 0 0 218 (dec) D_TA D_SA D_User_Data

FF_NPDU 011 (bin) 0 0 218 (dec) D_TA D_SA D_User_Data

CF_NPDU 011 (bin) 0 0 218 (dec) D_TA D_SA D_User_Data

FC_NPDU 011 (bin) 0 0 218 (dec) D_TA D_SA D_User_Data N/A

Table 7-6:NORMAL FIXED addressing, (functional)

NPDU type 29 bit CAN Identifier CAN frame data field

bit position byte position

28 26 25 24 23 16 15 8 7 0 1 2 3 4 5 6 7 8

SF_NPDU 011 (bin) 0 0 219 (dec) D_TA D_SA D_User_Data

FF_NPDU 011 (bin) 0 0 219 (dec) D_TA D_SA D_User_Data

CF_NPDU 011 (bin) 0 0 219 (dec) D_TA D_SA D_User_Data

FC_NPDU 011 (bin) 0 0 219 (dec) D_TA D_SA D_User_Data N/A

7.2.4 Extended addressing

For each combination of D_SA, D_TA and D_Handle (referenced below as
f(D_TA/SA/Handle)) a unique CAN identifier is assigned. D_TA is placed in the first data
byte of the CAN frame data field.

D_User_Data is placed in the CAN frame data field. Note that the size of D_User_Data may
vary depending on the type of NPDU transported. Padding requirement are vehicle
manufacturer specific.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 178 -

Table 7-7:Mapping of NPDU parameters into CAN frame - EXTENDED addressing

NPDU type CAN Identifier CAN frame data field byte position

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8

SF_NPDU f(D_TA/SA/Hand
le)

D_TA D_User_Data

FF_NPDU f(D_TA/SA/Hand
le)

D_TA D_User_Data

CF_NPDU f(D_TA/SA/Hand
le)

D_TA D_User_Data

FC_NPDU f(D_TA/SA/Hand
le)

D_TA D_User_Data N/A

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 179 -

7.3 Use of ISO15765-2 addressing formats with SAE J1939
(informative)

7.3.1 Overview

This annex describes how to map D_Handle, D_SA and D_TA parameters into the CAN-
frame when a data link layer according to SAE J1939 is used.

7.3.2 Rules

7.3.2.1 Normal fixed addressing

The table below shows the mapping of address information parameters into the CAN-frame
when physical addressing as indicated by the D_Handle is used.

Table 7-8:Normal addressing, Physical addressed messages

J1939 name P R DP PF PS SA Data field

Bits 3 1 1 8 8 8 64

Content default 011 (bin) 0 0 218 (dec) D_TA D_SA D_User_Data

CAN Id Bits 26 - 28 25 24 16 - 23 8 - 15 0 - 7

CAN data byte 1 - 8

CAN Field IDENTIFIER Data

The table below shows the mapping of address information parameters into the CAN-frame
when functional addressing as indicated by the D_Handle is used.

Table 7-9:Normal addressing, Functional addressed messages

J1939 name P R DP PF PS SA Data field

Bits 3 1 1 8 8 8 64

Content default 011 (bin) 0 0 219 (dec) D_TA D_SA D_User_Data

CAN Id Bits 26 - 28 25 24 16 - 23 8 - 15 0 - 7

CAN data byte 1 - 8

CAN Field IDENTIFIER Data

7.3.2.2 Priority (P)

The priority is user defined with a default value of three (3).

7.3.2.3 Reserved Bit (R)

The reserved bit shall be set to “0”.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 180 -

7.3.2.4 Data Page (DP)

The data page bit shall be set to “0”.

7.3.2.5 Protocol Data Unit Format (PF)

The format is of the type PDU1, “Destination Specific”. Diagnostic messages shall use the
following parameter group numbers (PGN):

 55808 (dec) for physical addressing, which gives PF = 218 (dec),

 56064 (dec) for functional addressing, which gives PF = 219 (dec).

7.3.2.6 PDU Specific (PS)

The PDU specific field shall contain the target address (D_TA).

7.3.2.7 Source Address (SA)

The source address field shall content the source address (D_SA).

7.3.2.8 Update rate

Update rate according to user requirements.

7.3.2.9 Data length

Data length shall be eight (8) bytes.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 181 -

7.4 Format of service primitives (normative)

All network layer services have the same general structure. To define the services, three types
of service primitives are specified :

• a service request primitive, used by higher communication layers or the application, to pass
control information and data that shall be transmitted to the protocol layer;

• a service indication primitive, used by the network layer, to pass status information and
received data to upper communication layers or the application;

• a service confirmation primitive used by the protocol layer to pass status information to
higher communication layers or the application.

This service specification does not specify an application programming interface. It only
specifies a set of service primitives that are independent of any implementation.

All network layer services have the same general format. Service primitives are written in the
form :

service_name.primitive (

parameter A,

parameter B,

parameter C, …

)

where :

"service_name" is the name of the service,

"primitive" indicates the sort of service type. There are only four types of primitives : request,
indication, Response and confirmation. The service primitives define how a service user co-
operates with a service provider.

The following service primitives are distinguished:

request :

Using the service primitive request (service_name.request) a service user
requests a service from the service provider.

indication :

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 182 -

Using the service primitive indication (service_name.indication), the service
provider informs a service user about

1. an internal event of the network layer or

2. the service request of a peer protocol entity service user, e.g. reception of
message in the data link layer: D_UUData.ind.

Response :

The service primitive Response (service_name.Response) is used by a service
user in order to reply to a preceding "indication" from the service provider.

This service primitive is not used by the network layer.

confirmation :

With the service primitive confirmation (service_name.confirmation) the
service provider informs the service user about the result of a preceding service
request of the service user.

"

parameter A,

parameter B,

parameter C …"

is the N_SDU (Network layer Service Data Unit) as a list of values passed by the service
primitive.

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 183 -

7.5 Definition of timing symbols (normative)

�

N_UxData.req
Transmission request

N_UxData.con
Transmission confirmation

Start time-out

Cancel time-out

Time-out elapsed

Time period

Time-out running

∇
∇ Transmission request from application

∇ Update of a message object

N_UxData.ind
Reception indication

Figure 7-1: Legend of communication deadline monitoring

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 184 -

8 History
Version Date Authors Remarks
1.00 1995-09-11 Initial release

Jörg Graf Adam Opel AG
Ferdinand Lersch BMW AG
Karl Joachim Neumann IIIT, University of Karlsruhe
Willy Roche Renault
Hans-Jörg Mathony Robert Bosch GmbH
Jürgen Schiemann Robert Bosch GmbH
Uwe Zurmühl Robert Bosch GmbH
Oliver Friedrichsohn Siemens AG
Christoph Hoffmann Volkswagen AG

2.00 1997-09-30 Release version 2.0
Ferdinand Lersch BMW AG
Martin Huber Daimler-Benz AG
Helmar Kuder Daimler-Benz AG
Martin Reimann Hella
Dirk John IIIT - University of Karlsruhe
Ansgar Maisch IIIT - University of Karlsruhe
Thomas Pietsch ITT Automotive
Laurent Roy LucasVarity
Andrea Borin Magneti Marelli
Sven Larsson Mecel, / Delco Electronics
Ken Tindell NRTT / Volvo
Eric Farges Renault
Lise Massimelli Renault
Willy Roche Renault
Hans-Jörg Mathony Robert Bosch GmbH
Uwe Zurmühl Robert Bosch GmbH
Reinhard Laing S&P MEDIA
Patrick Palmieri Siemens Automotive
Paul Correia Texas Instruments
Dietmar Menden UTA

2.0a 1997-10-10
Review according to OSEK COM, OSEK OS and MODISTARC remarks:

- Requirements note

- Chap 3.4 - remove sub-network remarks

- Chap 3.5, 3.6 - remove multiple reading remarks

- Table 2 - first column renaming

- Table 3 - foot note

- Table 4 -E_COM_PENDING

- Chap 4.1- DataRefType

- GetMessageStatus

- DefineMessageAlarm

- D_GetHandleStatus

2.1 r1 1998-06-17 Release version 2.1
Andrew Stirling C&C
Martin Huber Daimler-Benz AG
Helmar Kuder Daimler-Benz AG
Martin Reimann Hella
Dirk John IIIT - University of Karlsruhe
Laurent Roy LucasVarity
Lise Mathieu Renault
Stephane Korzin Renault
Jörg Jehlicka Robert Bosch GmbH
Patrick Palmieri Siemens Automotive
Gunnar Bennemann S&P Media
Fabrice Mendes S&P Media
Yves Blanpain Texas Instruments

OSEK/VDX Communication

Specification

OSEK/VDX COM 2.2.2 � by OSEK - 185 -

Changes from 2.1 to 2.1r1 :
Typing errors corrected

2.2 J 2000-01-25 Release version 2.2 draft J
Andrew Stirling Cambridge Consultants
Frank Leonhardt Hitachi Micro Systems Europe
Dirk John IIIT - University of Karlsruhe
Carsten Thierer IIIT - University of Karlsruhe
Laurent Roy LucasVarity
Stuart Robb Motorola
Jurgen Hofmann Porsche
Lise Mathieu Renault
Stephane Korzin Renault
Jörg Jehlicka Robert Bosch GmbH
Hans-Åke Gustafsson Stenkil
Patrick Palmieri Siemens Automotive
Fabrice Mendes Telelogic
Jerome Charousset Trialog
Hartmut Hörner Vector Informatik
Michael Burke Visteon

2.2-c-1 2000-07-21 Version 2.2 candidate release 1
Generated from working group document “Cspec2.2 Draft N” with the following amendments:
1. OSEK TC comment : renaming of CCC3 into CCC2, p:17, 172, 173.
2. ISO comment : correct that N_OK can be generated on both the sender and receiver side in

page 93, 94.

2.2 2000-07-28 Release Version 2.2
Generated from 2.2-c-1 with no requirement change.

2.2.1 2000-09-06 Release Version 2.2.1
Generated from 2.2 with correction of figure 6-1 (figure 6.1 in release version 2.2 has been

corrupted during the generation of the pdf-file).

2.2.2-c-1 2000-12-08 Version 2.2.2 candidate release 1
Generated from 2.2.1 with the following amendments and corrections raised by certification :
1. Remove statement requiring that E_COM_NOMSG shall be returned by the receive

services if no unqueued message has been received aftre initialisation : revisit paragraph 3
of 2.2.8.3.2, remove E_COM_NOMSG in figure 2-10.

2. Add indication that status codes shall be supported if the osek com implementation is
utilised in ‘extended’ mode : add ‘and extended’ in 2.2.12.3.1, 2.2.12.3.2, 2.2.12.3.3,
2.2.12.3.5, 2.2.12.3.6, 2.2.12.3.7, 2.2.12.4.1, 2.2.12.4.2.

2.2.2 2000-12-18 Release Version 2.2.2
Generated from 2.2.2-c-1 with no requirement change.

