
OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK Document: ftcom10.doc

OSEK/VDX

Fault-Tolerant Communication

Version 1.0

July 24th 2001

This document is an official release. The OSEK group retains the right to make changes to this document
without notice and does not accept any liability for errors. All rights reserved. No part of this document
may be reproduced, in any form or by any means, without permission in writing from the OSEK/VDX

steering committee.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

2 © by OSEK OSEK FTCom 1.0

Preface
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.

For detailed information about OSEK project goals and partners, please refer to the “OSEK
Binding Specification”.

This document describes the concept of a fault-tolerant communication layer. It is not a product
description which relates to a specific implementation. This document also specifies the fault-tolerant
communication layer - Application Program Interface.

General conventions, explanations of terms and abbreviations have been compiled in the additional
inter-project "OSEK Overall Glossary". Regarding implementation and system generation aspects
please refer to the "OSEK Implementation Language" (OIL) specification.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 3

Table of Contents

1 Introduction... 5
1.1 System Philosophy.. 5
1.2 Purpose of this Document ... 6
1.3 Structure of this Document.. 7

2 Summary... 8
2.1 Architecture of a OSEKtime System... 8
2.2 Constraints on the FTCom and the underlying Communication Controller....................... 11
2.3 Message Exchange Interface... 11

3 Message Handling.. 12
3.1 Messages and Message Instances ... 13
3.2 Message Copy Functions.. 13

3.2.1 Receiving Messages.. 13
3.2.2 Sending Messages .. 14

3.3 Message Frame Mapping ... 14
3.4 Packing/Unpacking Messages... 15
3.5 Byte Order... 16
3.6 Message Send Status.. 16
3.7 Notification Mechanism.. 17
3.8 Replication/Redundancy.. 17
3.9 Replica Determinate Agreement (RDA)... 18

3.9.1 Message RDA Status.. 18
3.9.2 Example: RDA “average”.. 19
3.9.3 Example: RDA “majority vote”.. 19

3.10 Message Filter.. 20
3.10.1Message Filter Function.. 20
3.10.2Message Filter Status.. 22

3.11 Overview Message Handling API ... 22

4 Other FTCom Functions .. 24
4.1 Time and Synchronisation Services.. 24

4.1.1 Assumptions ... 24
4.1.2 Requirements.. 24

4.2 External Clock Synchronisation... 25
4.2.1 Generation of External Correction Value.. 25
4.2.2 Write Correction Value to Communication Controller .. 26

4.3 Node Membership Service (optional).. 26
4.4 Lifesign Update .. 26
4.5 Start-up.. 26

5 Inter-task Communication.. 27
5.1 Communication between OSEK Tasks ... 27
5.2 Communication between OSEK and OSEKtime Tasks... 27
5.3 Communication between OSEKtime Tasks... 27

6 Specification of FTCom System Services ... 28

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

4 © by OSEK OSEK FTCom 1.0

6.1 Common Data Types..29
6.2 Naming Conventions...29

6.2.1 General Naming Conventions ..29
6.3 Message Handling...30

6.3.1 Data Types ...30
6.3.2 Constants..30
6.3.3 ttSendMessage ...30
6.3.4 ttReceiveMessage ...31
6.3.5 ttInvalidateMessage...32
6.3.6 Differences between OSEKtime and OSEK/VDX Message Management32

6.4 Membership Service...33
6.4.1 Data Types ...33
6.4.2 Constants..33
6.4.3 ttGetNodeMembership ...33

6.5 Notification mechanism...34
6.5.1 Data Types ...34
6.5.2 Constants..34
6.5.3 ttReadFlag..34

6.6 Time Service...35
6.6.1 Data Types ...35
6.6.2 Constants..35
6.6.3 ttGetGlobalTime..35
6.6.4 ttGetComSyncStatus...36
6.6.5 ttGetSyncTimes...36

6.7 External Clock Synchronisation...37
6.7.1 ttExtClockSync...37
6.7.2 ttSetExtSync ...37

7 Hints..38
7.1 Optional Properties of the FTCom and the underlying Communication Controller38

8 Index...39
8.1 List of Services, Data Types and Constants ...39
8.2 List of Figures...39
8.3 List of Tables..39

9 History...40

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 5

1 Introduction
The specification of the fault-tolerant communication layer (FTCom layer) is to represent a uniform
functioning environment which supports efficient utilisation of resources for automotive control unit
application software.

1.1 System Philosophy
The objective of the OSEKtime working group is to specify a fault-tolerant real-time operating
system with a fault-tolerant communication layer as a standardised run-time environment for highly
dependable real-time software in automotive electronic control units. The OSEKtime system must
implement the following properties:

• predictability (deterministic, a priori known behaviour even under defined peak load and fault
conditions),

• clear, modular concept as a basis for certification,

• dependability (reliable operation through fault detection and fault tolerance),

• support for modular development and integration without side-effects (composability), and

• compatibility to OSEK/VDX OS.

The OSEKtime operating system core offers all basic services for real-time applications, i.e.,
interrupt handling, dispatching, system time and clock synchronisation, local message handling, and
error detection mechanisms.

All services of OSEKtime are hidden behind a well-defined API. The application interfaces to the
OS and the communication layer only via this API.

For a particular application the OSEKtime operating system can be configured such that it only
comprises the services required for this application (the OSEKtime operating system is described in
the OS specification).

OSEKtime also comprises a fault-tolerant communication layer that supports real-time
communication protocols and systems. The layer offers a standardised interface to the following
communication services and features: a global message handling service (comprising replication and
agreement support, and transparent access to the communication system), start-up and reintegration
support, and an external clock synchronisation service.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

6 © by OSEK OSEK FTCom 1.0

1.2 Purpose of this Document
The following description is to be regarded as a generic description which is mandatory for any
implementation of the OSEKtime FTCom layer. This concerns the general description of strategy
and functionality, the interface of the function calls, the meaning and declaration of the parameters
and the possible error codes.

The specification leaves a certain amount of flexibility. On the one hand, the description is generic
enough for future upgrades, on the other hand, there is some explicitly specified implementation-
specific scope in the description.

It is assumed that the description of the OSEKtime FTCom layer is to be updated in the future, and
will be adapted to extended requirements. Therefore, each implementation must specify which
officially authorised version of the OSEKtime FTCom description has been used as a reference
description.

Because this description is mandatory, definitions have only been made where the general system
strategy is concerned. In all other respects, it is up to the system implementation to determine the
optimal adaptation to a specific hardware type.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 7

1.3 Structure of this Document
In the following text, the essential specification chapters are described briefly:

Chapter 2, Summary

This chapter provides a brief introduction to the OSEKtime FTCom layer, gives a survey about the
interactions between OSEKtime layers and assumptions on the communication protocol.

Chapter 3, Message Handling

This chapter describes the message handling.

Chapter 4, Other FTCom Functions

This chapter describes the recommended practice for implementing time services, external clock
synchronisation, membership service, lifesign update and start-up.

Chapter 5, Inter-task Communication

This chapter contains a description of the inter-task communication.

Chapter 6, Specification of FTCom System Services

This chapter contains a description of the FTCom layer API.

Chapter 7, Hints

This chapter describes recommendations which are not part of the specification.

Chapter 8, Index

List of all FTCom system services, figures and tables.

Chapter 9, History

List of all versions.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

8 © by OSEK OSEK FTCom 1.0

2 Summary
The fault-tolerant communication layer (FTCom layer) is responsible for the interaction between the
communication controller hardware and the application software. It provides the necessary services
to support fault-tolerant highly dependable real-time distributed applications (e.g. start-up of the
system, message handling, state message interface).

The OSEKtime FTCom layer is built in accordance with the user's configuration instructions at
system generation time.

2.1 Architecture of a OSEKtime System
In a time-triggered system the application software uses the interface provided by the operating
system and by the fault-tolerance layer. The operating system is responsible for the on-line
management of the CPUs resources, management of time and task scheduling. The FTCom layer is
responsible for the communication between nodes, error detection and fault-tolerance functionality
within the domain of the communication subsystem.

Figure 2-1 shows the architecture of a OSEKtime system. Application software and FTCom Layer
are executed under control of the operating system. OSEK/VDX Network Management (NM)
describes node-related (local) and network-related (global) management methods. The global NM
component is optional and described in the OSEK/VDX NM specification.

Bus I/O Driver

OSEKtime Operating System

OSEKtime FTCom Layer

Application

Bus I/O Driver

Fault-Tolerant Subsystem

OSEK/VDX
Network

Management

Message Filtering Layer

Fault Tolerant Layer

Application Layer

Interaction Layer

Communication Subsystem

Time
Service

Bus I/O Driver

CNI Driver

Bus Communication HardwareBus Communication Hardware

Figure 2-1: Architecture of a OSEKtime system

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 9

Services of the FTCom Layer

The Services of the FTCom layer are listed below:

• Global message handling

– Replication and agreement

– Message filtering

– Communication controller communication network interface (CNI) access via CNI driver
(incl. connections to multiple communication media, e.g., gateways)

• Start-up

• Time service and optional external clock synchronisation

Layered Model of OSEKtime FTCom Architecture

The layered model of OSEKtime FTCom architecture is shown in Figure 2-2. The OSEKtime
FTCom system is divided into two subsystems:

• Firstly the Fault Tolerant Subsystem that contains fault tolerant mechanisms; and

• secondly, the Communication Subsystem that is responsible for the communication between
distributed components.

FTCom is also divided into layers:

• Application Layer:

– Provides an Application Programming Interface (API).

• Message Filtering Layer:

– Provides mechanisms for message filtering.

• Fault Tolerant Layer:

– Provides services required to support the fault-tolerant functionality:

§ Provides judgement mechanisms for message instance management.

§ Supports a message status information.

• Interaction Layer:

– Provides services for the transfer of message instances via network:

§ Resolves issues connected with the presentation of a message instance on different hosts
(e.g. different byte ordering).

§ Provides a message instance packing/unpacking service.

§ Supports a message instance status information.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

10 © by OSEK OSEK FTCom 1.0

The CNI Driver is not part of FTCom. It provides services for the transfer of FTCom frames via
network:

• Resolves FTCom CNI frames presentation issues.

• Supports a FTCom frame status information.

• Deals with a specific CNI access scheme of a particular implementation of the communication
hardware.

OSEKtime OS

OSEKtime FTCom Layer

Communication Subsystem

Application

Interaction Layer

CNI Driver

CNI

Communication Controller

Message
Instance

FTCom Frame

CNI Frame

Fault-Tolerant Subsystem

Application Layer

Fault Tolerant Layer

Communication
API

Bus Frame

Data Link Layer

Physical Layer

Application
Layer

Session Layer

Transport Layer

Network Layer

Conformity with
OSI/ISO layer

model

Presentation Layer

Tolerated
Message

Message Filtering
Layer

Figure 2-2: Layered model of OSEKtime FTCom architecture

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 11

2.2 Constraints on the FTCom and the underlying
Communication Controller

Constraints on the FTCom and the underlying communication controller are:

• The fundamental basis for real-time and time-triggered systems is a globally synchronised
clock with sufficient accuracy. The globally synchronised clock must be accessible and it must
provide means to generate programmable time-interrupts.

• Error detection must be supported in the event of data corruption. In addition the
communication protocol must support the detection of missing, late or early messages at the
receiver(s) and the senders.

• Time-triggered, periodic frame transmission is assumed for all messages handled by the
FTCom layer. Other types of transmission must be handled implementation specific.

• Defined Worst Case Start-up Time: The communication system must have a deterministic
worst-case start-up time.

2.3 Message Exchange Interface
The FTCom layer is based on a state message interface: the send operation overwrites the last recent
valid message value, while read operations get the most recent value.

The API calls “ttReceiveMessage”, “ttSendMessage”, and “ttInvalidateMessage” (definition in
section 6.3) are mandatory and the standard way to consistently exchange data between application
and the FTCom layer. No other message access is allowed for the user (programmer). Every call
causes a new consistent access of the FTCom interface.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

12 © by OSEK OSEK FTCom 1.0

3 Message Handling
The communication controller transmits frames typically consisting of a start-of-frame field, a
header, a data field, and a CRC checksum on the communication media. Each frame can hold one or
more application level messages in its data field. On the other hand, a message can be transmitted
redundantly in more than one frame on the communication media. It is the main task of the FTCom
layer to handle this relationship and the transport of messages between the application tasks and the
communication network interface of the communication controller. The layout of a frame is user
specified.

It might not be possible for the application tasks to use application messages in the representation as
they are transmitted on the communication media and as they are also stored in the CNI:

• They are densely packed (i.e., not byte-aligned) to save communication media bandwidth,

• their byte order might be different from that of the receiver, and

• messages might be transmitted redundantly, so that selection of one message or voting on a set of
messages becomes necessary.

Therefore, each message sent or received by a node is stored exactly once and in the local CPU’s
representation in a dedicated memory area under control of the host CPU. This memory area is
called the FT-CNI. From there it can be accessed by the application tasks. Consequently, there are
two representations of messages:

• Firstly, a message is represented in the FT-CNI. This representation should match the
requirements of the host CPU and is based on the state message concept. For example, on a 16
Bit CPU it will be optimal to represent a 10 bit analogue conversion result by a 16 bit word.

• Secondly, a message is represented in frames as handled by the communication controller. This
representation should match the properties of the communication controller. For example, to
utilise communication bandwidth it is ideal to transmit only 10 bits of information for a 10 bit
analogue conversion result.

Furthermore the FTCom layer provides a systematic approach to apply different filter algorithms on
messages transferred from the CNI to the FT-CNI and vice versa.

The transport between the CNI and the FT-CNI is handled by message copy tasks that are
invoked after reception of a frame and before sending a frame, respectively. Ideally, they are part of
the time-triggered task schedule. From what was said above it follows that the main job of a
message copy task is (1) to do message alignment, (2) to convert between communication media
and local byte order (endianness), (3) to select or vote on redundant messages, and (4) to filter
messages.

Figure 3-1 shows the relationship between the CNI, the message copy tasks of the FTCom layer,
the FT-CNI, and the application tasks. The CNI holds the data fields of all frames as they are
transmitted on the communication media. The message copy tasks of the FTCom layer disassemble
the received frames and assemble the frames to be sent, and copy the messages to and from the FT-
CNI, where they can be accessed by the application tasks.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 13

10 bit 6 bit 10 bit 10 bit 6 bit 10 bit

C
N

I
fr

am
e

la
yo

ut
,

tr
an

sm
itt

ed
 o

n
bu

s

FT
-C

N
I

se
le

ct
ed

, e
xt

ra
ct

ed
, a

lig
ne

d
m

es
sa

ge
s

in
 lo

ca
l e

nd
ia

nn
es

s

ttRxT1FTCom Layer ttRxT2 ttTxT1

...

Application Tasks Task1 Task2TaskX

ttSendMessage
ttReceiveMessage

Figure 3-1: CNI, Message Copy Tasks, FT-CNI, and Application Tasks

3.1 Messages and Message Instances
In the description above the term “message” was used for all entities, whether they reside in the FT-
CNI, the CNI or are transmitted on the communication media. To be more precise in the remainder
of this specification the following notions of a message will be distinguished:

Message: A block of application data (signals) stored in the FT-CNI. Messages, having
the same name, can be sent by different nodes.

Message Instance: One copy of a message stored in the CNI (transmitted on the communication
system) at the sender. At the receiver these message instances may be used to
generate a new single message, e.g., by using predefined agreement
algorithms (RDAs).

3.2 Message Copy Functions
There are two types of message copy functions: the functions for receiving messages are different to
the functions invoked before sending a message.

3.2.1 Receiving Messages

The message copy function for receiving messages has to perform the following actions:

• It first has to read all relevant frames from the CNI and do byte order (endianness) conversion, if
necessary. “Relevant frames” means all frames that contain an instance of any message handled
by this message copy task.

• Evaluate frame status fields and discard all frames with an invalid status.

• For each message, a copy must be created from a valid frame by aligning the relevant portion of
the frame data field to suitable boundaries for the used CPU, and - if necessary - masking out all
parts of other messages.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

14 © by OSEK OSEK FTCom 1.0

• This copy must be written to the FT-CNI.

3.2.2 Sending Messages

The message copy functions for assembling messages to be sent on the communication media must
do the following:

• It must read all messages to be transmitted from the FT-CNI.

• For each frame, it must then align the message instances to their position in the frame data field,
and then assemble the frame.

• The byte order (endianness) must be converted to the communication media byte order, if
necessary.

• The function must then copy the assembled frame data field to the CNI.

• In case of an event-driven communication system, the transmission of a frame is suppressed if all
message instances of a frame have been invalidated by the application (i.e., contain an invalid
send status (see Section 3.6)).

3.3 Message Frame Mapping
The communication controller transmits frames up to a certain length. One frame may contain one or
more message instances. In order to support fault-tolerance one message is carried by one or more
frames (i.e., one instance of the message per frame).

frame_slot1_round1_chA

m2 m3

m5

m1 m4

m1 m4 m6

frame_slot2_round1_chA

m7 m8

m10

m1 m9

m1 m4 m6

frame_slot2_round1_chB

frame_slotn_round1_chA

m11 m12

m11 m4 m6

frame_slotn_round1_chB

Node 1 Node 2 Node n...

number of nodes

number of
channels

chA

chB

frame_slot1_round1_chB

Figure 3-2: Example frame layout for a two-channel system

Figure 3-2 shows a configuration of a system with two channels (chA and chB). Each frame is
named based on the slot and round number. The example shows a message m1 which is transmitted
by two nodes in slot 1 and slot 2 on two channels. Therefore message m1 is mapped to four frames
in one round.

The message frame mapping is static and is defined offline. The mapping between messages and
frames adheres to the following rules:

• One message is carried by at least one frame.

• One frame carries 0 ... max_frame_size1 message instances.

1 In units of bits

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 15

• One message is carried at most once in a frame (i.e., one frame does not contain more than one
instance of the same message).

Remark: It is possible that a frame is completely or partially empty and thus reserves space for future
usage.

3.4 Packing/Unpacking Messages
If cost constraints require an optimal use of communication bandwidth, it is necessary to pack
messages into frames with bit granularities. On the other hand, if communication bandwidth is not an
issue, application messages can be transmitted unpacked.

FRAME REPRESENTATION

MESSAGE REPRESENTATION

15 0 7 015 0 7 0

m1, 12bit m2, 10bit m3, 8bit m4, 2bit

Frame with 6 byte length

15 0 | 15 0 | 7 0 | 7 0

Figure 3-3: Example of direct message to frame mapping

For example, a 10 bit analogue/digital conversion result or status bits could be represented in a frame
only by the necessary number of bits or by a full 16 bit value. The communication layer should
provide the unpacked messages aligned with the CPUs word length (byte, word, long word) to
optimise access independent of the message length.

At the frame level there are three types of message representation supported. A direct unpacked
representation, a standard packed linear representation and an alternate packed representation (see
Figure 3-3, Figure 3-4 and Figure 3-5).

Below, for both packed representations it is shown in which way four 16 bit word aligned messages
are packed into a frame. The way a message is packed into frames is defined at system configuration
phase.

PACKED REPRESENTATION

UNPACKED MESSAGE REPRESENTATION

15 0 7 015 0 7 0

m1, 12bit m2, 10bit m3, 8bit m4, 2bit

Frame with 4 byte length, instead of 6

 11 0 | 9 0 | 7 0 | 0

Figure 3-4: Example for standard message to frame mapping

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

16 © by OSEK OSEK FTCom 1.0

PACKED REPRESENTATION

UNPACKED MESSAGE REPRESENTATION

15 0 7 015 0 7 0

m1, 12bit m2, 10bit m3, 8bit m4, 2bit

Frame with 4 byte length, instead of 6
 7 0 | 7 0 | 7 0 |11 8|9 8| 0

Figure 3-5: Example for alternate message to frame mapping

The standard message to frame mapping must be supported; the alternate message to frame mapping
is optional.

For messages with bit granularities the mapping has the following properties:

• One message maps to at least one frame representation

• One frame representation consists of at least one bit array

3.5 Byte Order
In heterogeneous clusters with different CPUs and different interoperable communication controllers
it is important to consider the byte order of the CPU (e.g., big or little endian) and on the
communication media. The FTCom layer is responsible for the byte order conversion between the
local CPU and the communication media.

3.6 Message Send Status
The sender must have a mechanism to present the validity state of a data value (for instance a
sampled sensor value) to all nodes in the network. This can be realised, if the sender of a message
can mark this value as invalid in the FT-CNI by a send status bit. The send status bit mechanism is
optional, since a message can be marked as invalid by other means as well (e.g., by assigning a
predefined invalid value by the application). If the send status bit is present and cleared, this marks
the message as invalid. The send status bit will be copied by the FTCom copy task into all frames
transmitting an instance of message. This allows the sender FTCom task to collect multiple message
instances and pack them into a frame even if some of the associated messages are invalid.

If all message instances of a given frame are marked as invalid, the transmission of the frame is
suppressed in case of an event-driven communication system.

To mark a message as invalid and send the message the function call ttInvalidateMessage is used
(notice: ttSendMessage is not called in this case!). At the receiver side the function call
ttReceiveMessage of an invalidated message returns the error code
TT_E_FTCOM_MSG_INVALIDATED. If an invalidated message has been received the current
instance of the message in the FT-CNI represents the last message value, which has been passed to
the application.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 17

To mark a message as invalid different configurations are possible, e.g. invalidate value, invalidate
flag, etc.

3.7 Notification Mechanism
The following notification mechanism, which does not require the support by an underlying operating
system, will be provided. The interaction layer sets a flag after the communication controller has
consumed the message (i.e., the flag indicates that new data can be written to the communication
controller’s transmit buffer associated with the message without causing an unsent instance of the
message to be overwritten).

In case of replicated messages, the flag indicates that all local instances (i.e., instances transmitted by
the respective node) have been consumed by the node’s communication controller(s).

The current value of the flag can be checked by the application by means of the ttReadFlag API
service. The resetting of the flag is implicitly performed by the ttSendMessage API service.

3.8 Replication/Redundancy
The communication layer has to support fault-tolerant data transmission between nodes. Fault-
tolerance is based on redundant communication channels and replicated nodes. Therefore, a
message is transmitted over redundant channels by replicated nodes. Based on its configuration data,
for receiving a message the communication layer has the information where to pick up the message
information. It evaluates the receive status of each message instance and presents one copy to the
application software. On the contrary, for sending a message, data is picked up from the application
software and copied into all relevant frames. These activities are carried out by dedicated
communication layer tasks that are executed by the operating system.

If a message is sent by more than one node then the FTCom layer must take care to ensure that only
consistent data (for instance data which is sampled at the same point in time) is used. For replicated
nodes messages consistency requires that the instances of the message are only accessed once all
instances have been updated with logically corresponding values, for example values that are
sampled at the same point in time (see Figure 3-6).

msg1a

msg1b

channel A

channel B

msg1c

msg1d

round

inconsistent consistent

time

Figure 3-6: Consistency of replicated messages

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

18 © by OSEK OSEK FTCom 1.0

3.9 Replica Determinate Agreement (RDA)
Optionally, the communication layer can support the application software by providing predefined
agreement algorithms and a framework for user defined agreement algorithms. The agreement
algorithms are responsible for how to represent messages to the application software from a set of
redundant and replicated message instances. Based on the failure mode assumption an appropriate
agreement algorithm can be selected.

For most replicated messages encountered in distributed applications, only a few RDAs are of
importance, e.g., “pick any” for fail-silent replica-determinate messages, and “average” for values
from redundant sensors. But in some applications, special RDA functions become necessary and
need to be implemented in a systematic way. Therefore a generic way to describe the calculation of
an RDA is required. Such a generic way is described by the following four steps:

1. Declaration

The counters, variables, and arrays required for the other steps are defined here. For this step, the
number of instances of the message needs to be known in case an array for all instances is defined
(e.g., for diagnosis purposes, or some RDAs like “majority vote”).

2. Initialisation

This step is executed at the beginning of the agreement of the message, i.e., before the first raw value
of the message is processed. The counters and buffers are initialised with their initial values.

3. Next Value

This step is executed once for each instance that is correctly received. Instances that fail to be
received correctly (e.g., because the sender failed to send, or because the transmission carrying the
value was mutilated and resulted in a CRC error) are not processed in a “next value” step.

The number of “next value” steps therefore depends on the number of correctly received instances
and is bounded by the replication degree of the message. In the extreme case, no “next value” step is
executed between the “initialisation” step and the “finish computation” step.

4. Finish Computation

This step is executed at the end of the message retransmission interval, i.e., after the last instances of
the message is processed. This step generates the final result of the RDA. If the agreement fails
(either because no instances were received, or because the raw values received do not allow a result
(e.g., a “majority vote” over only two different values)) the status of the agreement will be set to
TT_E_FTCOM_RDA_FAILED.

3.9.1 Message RDA Status

The FTCom layer provides status information on the correctness of received messages to the
application. The function call ttReceiveMessage returns the error code
TT_E_FTCOM_RDA_FAILED if the RDA mechanism was not successful. The status becomes
valid if all of the following conditions are true:

• at least one of the frames carrying an instance the message is valid

• the RDA (if applicable) did yield a valid result.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 19

3.9.2 Example: RDA “average”

Declaration:
int counter; int sum;

Initialisation:
counter = 0;
sum = 0;

Next Value:
counter = counter + 1;
sum = sum + value;

Finish Computation:
if counter > 0 :
 result = sum / counter;
 RDA status is VALID
else :
 RDA status is INVALID

3.9.3 Example: RDA “majority vote”

Declaration:
int counter; int values[];

Initialisation:
counter = POSITION_ONE;

Next Value:
values[counter] = value;
counter = counter + 1;

Finish Computation:
if counter > POSITION_ONE:

operating on values[POSITION_ONE .. counter-1] do:
sort values;
find largest group of identical values;
find second largest group of identical values;
if size of largest group is greater than

size of second largest group
or there is only one group of values :
result = value of largest group;

 RDA status is VALID else (the two largest
groups are of equal size):

result = NO_RESULT;
 RDA status is INVALID

else:
 RDA status is INVALID

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

20 © by OSEK OSEK FTCom 1.0

3.10 Message Filter
The FTCom layer provides optional filter algorithms to support the user with data handling. These
algorithms could be used both with the sending and with the receiving of predefined messages. The
internal structure of FTCom can be seen in Figure 2-2.

3.10.1 Message Filter Function

The message filter is an offline configurable function layer, which filters messages out according to
specific algorithms. For each message a different filtering condition can be defined through a
dedicated algorithm.

While sending messages the message filter will pass the current message value to the interaction layer
whenever the appropriate filtering condition is met (see Figure 3-7 A). All other message values will
be filtered out. When this occurs, the message is marked as invalidated.

While receiving the messages, only the message values which meet the algorithms will be passed to
the application as such the FT-CNI will be updated (see Figure 3-7 B). In parallel a status for the
application will be provided by the message filter, which indicates whether the last value has been
filtered out, or passed. If the value has been filtered out the current instance of the message in the
FT-CNI represents the last message value, which has passed the message filter.

FTCom

message filter

new value

old value

x1
x2

Z-1

p
ac

ki
n

g

ap
pl

ic
at

io
n

co
m

m
un

ic
at

io
n

co
nt

ro
lle

r

A) sending a message

FTCom

message filter

new value

old value

x1
x2

u
n

p
ac

ki
n

g

ap
pl

ic
at

io
n

co
m

m
un

ic
at

io
n

co
nt

ro
lle

r

B) receiving a message

R
D

A

u
n

p
ac

ki
n

g
un

pa
ck

in
g

Z-1

filter
status

filter
status

Figure 3-7: Message filter

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 21

For message filtering a set of 14 generic algorithms as well as a framework for user defined
algorithms is provided. The generic algorithms are all optional.

The following attributes are used by the 14 generic algorithms (see Table 3-1):

new_value: current value of the message

old_value: last value of the message

x1, x2: two constant values, which can be defined in offline tools to configure the message
filter

Algorithm Description

True Passing messages in any case without using
the message filter

False Disabling of the appropriate messages

(new_value&x1) == x2 Passing messages whose masked value is
equal to a specific value

(new_value&x1) != x2 Passing messages whose masked value is not
equal to a specific value

new_value == old_value Passing messages which have not changed

new_value != old_value Passing messages which have changed

(new_value&x1) == (old_value&x1) Passing messages where the masked value
has not changed

(new_value&x1) != (old_value&x1) Passing messages where the masked value
has changed

x1 <= new_value <= x2 Passing messages if its value is within a
predefined boundary

(x1 > new_value) OR (new_value > x2) Passing messages if its value is outside a
predefined boundary

new_value > old_value Passing messages if its value has increased

new_value <= old_value Passing messages if its value has not
increased

new_value < old_value Passing messages if its value has decreased

new_value >= old_value Passing messages if its value has not
decreased

Table 3-1: Basic algorithms of the message filter

If the attribute message filter is True for any particular message no filter algorithm is included in the
runtime system for the particular message.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

22 © by OSEK OSEK FTCom 1.0

3.10.2 Message Filter Status

The FTCom layer provides information on the filter status of received messages to the application.
Therefore the service call ttReceiveMessage returns the error code
TT_E_FTCOM_MSG_NOT_RECEIVED, if the last value of a message has been filtered out (the
received message has not been forwarded by the message filter to the application during the last
execution).

3.11 Overview Message Handling API
The FTCom layer provides status information on the validity of received messages to the application.
To get an overview on message handling at the sender and at the receiver see Figure 3-8. The
function call ttReceiveMessage returns the status of a received message, depending on its
configuration. ttReceiveMessage returns only one status code, therefore the error codes are
prioritised in the following way:

1. TT_E_FTCOM_MSG_NOT_RECEIVED, no frame of the message has been received or the
value of the message has not been forwarded by the message filter of the receiver during the last
execution (only relevant if message filtering is configured).

2. TT_E_FTCOM_RDA_FAILED, message instance(s) have been received but the RDA
calculation has no valid result (only relevant if RDA is configured).

If an invalidated message is transmitted, the function call ttReceiveMessage returns the error code
TT_E_FTCOM_MSG_INVALIDATED.

Application
ttSendMessage()

Application
ttReceiveMessage()

Communication System

Msg Unpacking

RDA

Filter
Error Code:
TT_E_FTCOM_MSG_NOT_RECEIVED

Error Code:
TT_E_FTCOM_RDA_FAILED

Error Code:
TT_E_FTCOM_MSG_NOT_RECEIVEDMsg Packing

Filter

Sender Receiver

Replication

Figure 3-8: Overview of Message Handling API

Figure 3-9 shows the different ways of how the different layers of FTCom can be used during
sending and receiving of messages. In FTCom the use of the Fault Tolerant Layer and the Filter layer
is optional. Due to runtime and code size constraints it could be more efficient not to call these layers
if they are not configured. The Fault Tolerant and Filter layer can also be used for internal

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 23

communication (left side of Figure 3-9). A voting of mixed external and internal messages is possible
as well.

Interaction Layer

Fault Tolerant Layer (RDA)

Message Filtering Layer

Application

FTCom

CNI Driver

Internal CommunicationExternal Communication

Bus Communication HW

Interaction Layer

Fault Tolerant Layer (RDA)

Message Filtering Layer

Application

FTCom

CNI Driver

Bus Communication HW

Figure 3-9: Communication paths

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

24 © by OSEK OSEK FTCom 1.0

4 Other FTCom Functions

4.1 Time and Synchronisation Services
One of the assumptions on the underlying communication system is that a globally synchronised clock
is provided. Time service is a function which depends on the used communication protocol and can
only be implemented with detailed knowledge of the communication protocol. However a generic
API call has to be provided by the FTCom layer (see chapter 0).

4.1.1 Assumptions

Several assumptions can be made concerning the underlying communication system and the time-
triggered application:

• Communication on the communication media is structured in communication rounds which
consist of several communication slots. Within each slot one communication frame is transmitted
which contains one or more message instances.

• Application tasks are running synchronous to communication slots to receive and send messages
with deterministic latency.

• The dispatcher round is a multiple of the communication round. A dispatcher table that is shorter
than a communication round (e.g., half as long) can be replaced by a dispatcher table of equal
duration by means of multiple task scheduling.

• If the dispatcher round is larger than the communication round it’s necessary to distinguish
between the communication rounds to synchronise applications running on different ECUs. For
example, if an application is running on four ECUs, which read a message every second
communication round and as a result drive four actuators it’s obvious that the reading and
processing of the message must happen in the same communication round.

4.1.2 Requirements

FTCom provides the so-called Synchronisation Layer to the OS, enabling it to synchronise the start
of the dispatcher table to a special point in time (phase) in dedicated communication rounds. In order
to conceal the knowledge about the communication system from the OS, FTCom needs some
information about the application (together with the information about the communication system):

• The dispatcher round

• The phase (offset)

• The application is synchronised to which communication rounds

• The length of a communication round

FTCom passes the synchronisation information to the application on demand by the global time. Two
services are therefore specified (see chapter 6.6, Time Service for details):

• ttGetGlobalTime which returns the current global time

• ttGetSyncTimes which returns the current global time and the global time at the expected start
of the last dispatcher table.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 25

The following definitions are used (see Figure 4-1):

Dispatcher Table: offline generated time table where the OSEKtime dispatcher
invocation events are defined

Dispatcher Round: length of the Dispatcher Table

Communication Round: length of the periodic transmission pattern on the communication
subsystem

Ground State: no task except the idle task is running and no message transmission
(external and internal) is in progress (RDA, filter or copy task)

Task 1 Task 2 Task 3 Task n

G
ro

un
d

S
ta

te

Dispatcher Table

Communication
Round

Dispatcher RoundOffset
(Phase)

Global
Time

Communication Slots

Task 1 Task 2 Task 3

Dispatcher Table

...

Figure 4-1: Dispatcher and communication rounds

4.2 External Clock Synchronisation
To facilitate the synchronisation of the globally synchronised clock to an external clock source, e.g.,
a GPS receiver, an external clock synchronisation service must be provided. This is not part of the
standardised FTCom layer. The following describes the recommended practice for implementing an
external clock synchronisation.

This service has two parts:

(1) Generate a correction value for the use by the communication system.

(2) Forward the correction value to the communication protocol.

4.2.1 Generation of External Correction Value

In a cluster with external clock synchronisation, there is always at least one node interfacing to an
external time source. A node connected to such an external time source periodically sends out a time
message containing a correction value for the complete cluster. All other nodes must receive this
message and write the contents to a dedicated field in the communication controller.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

26 © by OSEK OSEK FTCom 1.0

The routine ttExtClockSync is used to generate the correction value in the nodes that have access to
an external clock. It interfaces to the external periphery delivering a clock value, and executes the
external clock synchronisation algorithm. The routine by default returns zero as a correction value. If
specified by the user or by a FTCom layer tool, it returns the result of the user defined clock
synchronisation algorithm. The routine must be invoked periodically, and is thus part of the time-
triggered task schedule.

The external rate correction value must be sent to all other nodes in the cluster. Therefore, the routine
generates a message. The message schedule on the communication media must accommodate for the
time message: either an extra frame is sent, or the time message is contained in a frame together with
other application data.

4.2.2 Write Correction Value to Communication Controller

The correction value contained in the last received time message must be written to the
communication controller. A routine ttSetExtSync reads the time message and writes it the
communication controller. This routine is periodically invoked and therefore part of the time-triggered
task schedule.

4.3 Node Membership Service (optional)
A membership service is the consistent provision of information on the activity status of all
communication partners. The FTCom layer optional provides a system call to find out the
membership status of every node via its node id. If the underlying communication protocol comprises
a membership service, this information should be used. Otherwise, the FTCom layer should ensure
that the membership information on the nodes that is provided to the application is consistent (e.g.,
by implementing such a protocol in software, or by using other available information of the
communication protocol).

4.4 Lifesign Update
To facilitate prompt error detection, a communication controller implementing a particular protocol
may require the CPU to periodically update a defined register with a certain value (similar to a
watchdog). This is called a lifesign mechanism. Details of if and how to update a lifesign and the
frequency of the update operation depend on the actual communication protocol that is used.

The FTCom layer provides a system call to perform this regular lifesign update, which may be
generated by an FTCom off-line design tool. The tool can also automatically schedule the system
call, so that no user action is required for this service. To allow manual invocation as well, the system
call is also included in the API description.

4.5 Start-up
The start-up of the distributed system is a function that depends on the used communication protocol
and can only be defined with detailed knowledge of the communication protocol. A communication
protocol specific API description needs to be defined.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 27

5 Inter-task Communication
The OSEKtime FTCom layer provides services for the local communication of tasks located on the
same ECU. These services should be used for all data exchanges between tasks. Message filtering
and RDA are not required for local inter-task communication.

In a mixed OSEK and OSEKtime system three cases have to be distinguished:

1. Communication between an OSEK task and another OSEK task.

2. Communication between an OSEK task and an OSEKtime task.

3. Communication between an OSEKtime task and another OSEKtime task.

5.1 Communication between OSEK Tasks
This case is not part of the OSEKtime specification as the normal OSEK/VDX OS and COM
communication mechanisms apply.

5.2 Communication between OSEK and OSEKtime Tasks
For communication between OSEK tasks on the one hand and OSEKtime tasks on the other hand
the OSEKtime inter-task communication services are used. These services implement local message
handling, i.e., the only way for communication with and between OSEKtime tasks is the use of
messages.

The following API calls are used for the message handling:

• ttSendMessage

• ttReceiveMessage

• ttInvalidateMessage

Each call of ttReceiveMessage returns a new consistent copy of the message.

Each call of ttSendMessage updates the message.

Each call of ttInvalidateMessage invalidates the send status of the message.

The difference between local and global communication is transparent to the task.

5.3 Communication between OSEKtime Tasks
For communication among OSEKtime tasks the same mechanisms and service calls as for
communication between OSEK/VDX tasks and OSEKtime tasks are used.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

28 © by OSEK OSEK FTCom 1.0

6 Specification of FTCom System Services
This chapter is structured according to the original OSEK specification. Sections 6.3 to 6.7 include a
classification of OSEKtime FTCom system services.

Type of Calls

The system service interface is ISO/ANSI-C. The system service interface is ISO/ANSI-C. Its
implementation is normally a function call, but may also be solved differently, as required by the
implementation - for example by macros of the C pre-processor. A specific type of implementation
cannot be assumed.

Structure of the Description

The FTCom system services are arranged in logical groups. A coherent description is provided for
all services. The description of each logical group starts with data type definitions and a description
of constants. A description of the group-specific system services follows.

Service Description

A service description contains the following fields:

Syntax: Interface in C-like syntax.
Parameter (In): List of all input parameters.
Parameter (Out): List of all output parameters.
Description: Explanation of the functionality of the operating system service.
Particularities: Explanation of restrictions relating to the utilisation of the op-

erating system service.
Status: List of possible return values.
Standard: List of return values provided in the operating system's stan-dard

version.
Extended: List of additional return values in the operating system's ex-tended

version.
Most system services return a status to the user. No error hook is called if an error occurs. The
return status is TT_E_FTCOM_OK if it was possible to execute the system service without any
restrictions. If the system recognises an exceptional condition, which restricts execution of the system
service, a different status is returned.

All return values of a system service are listed under the individual descriptions. The return status
distinguishes between the ”standard” and ”extended” status. The ”standard” version fulfils the
requirements of a debugged application system as described before. The "extended" version is
considered to support testing of not yet fully debugged applications. It comprises extended error
checking compared to the standard version.

The specification of services uses the following naming conventions for data types:

...Type: describes the values of individual data (including pointers).

...RefType: describes a pointer to the ...Type (for call by reference).

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 29

6.1 Common Data Types
ttStatusType

This data type is used for all status information the API services offer. Naming convention: all errors
for API services start with E_. Those reserved for the OSEKtime operating system and for the
OSEKtime Fault-Tolerant communication layer will begin with:

• TT_E_FTCOM_

The normal return value is TT_E_FTCOM_OK which is associated with the value of E_OK.

The following error values are defined:

All errors of API services:

• TT_E_FTCOM_ACCESS

• TT_E_FTCOM_ID

• TT_E_FTCOM_NOFUNC

• TT_E_FTCOM_VALUE

• TT_E_FTCOM_RDA_FAILED

• TT_E_FTCOM_MSG_NOT RECEIVED

• TT_E_FTCOM_MSG_INVALIDATED

The following sections contain a generic (protocol independent) description of the FTCom layer
API.

6.2 Naming Conventions

6.2.1 General Naming Conventions

The following prefixes are used for all OSEKtime FTCom constructional elements, data types,
constants, error codes and system services:

• “tt” prefix is used for constructional elements, data types and system services;

• “TT_E_FTCOM_” prefix is used for error codes;

• “TT” prefix is used for constants.

This is to ensure that no name clashes occur.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

30 © by OSEK OSEK FTCom 1.0

6.3 Message Handling

6.3.1 Data Types

ttStatusType

This data type is identical with StatusType out of the binding specification.

ttMsgIdType

This data type defines the data type for an identifier of a message.

ttAccessNameType

This data type defines the data type for references to the message body (data).

ttAccessNameRefType

This data type defines the reference to a variable of type ttAccessNameType.

6.3.2 Constants

TT_E_FTCOM_RDA_FAILED constant of data type ttStatusType, RDA did not
calculate a valid result

TT_E_FTCOM_MSG_NOT RECEIVED constant of data type ttStatusType, no frame of the
message has been received or the message has not
been forwarded by the receiver’s message filter
during the last execution

TT_E_FTCOM_MSG_INVALIDATED constant of data type ttStatusType, message was
invalidated by sender or the message has not been
forwarded by the sender’s message filter during the
last execution

6.3.3 ttSendMessage

Syntax: ttStatusType ttSendMessage (

ttMsgIdType <Message>,
ttAccessNameRefType <Data>)

Parameter (In): Message - message identification

Data - reference to message contents

Parameter (Out): None

Description: ttSendMessage is called by the user out of a task body or an user
ISR and copies the data <Data> of the message <Message> from
the task local memory to a publicly accessible copy of the
message (FT-CNI for non local messages). The message will
always be marked as valid.

ttSendMessage also reset the flag, which is associated with the
given message.

Particularities: To be called by the user out of task body or from user ISRs.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 31

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: <Message> is invalid, TT_E_FTCOM_ID.

<Data> is invalid or access denied, TT_E_FTCOM_ACCESS.

6.3.4 ttReceiveMessage

Syntax: ttStatusType ttReceiveMessage (

ttMsgIdType <Message>,
ttAccessNameRefType <Data>)

Parameter (In): Message - message identification

Parameter (Out): Data - reference to message contents

Description: ttReceiveMessage is called by the user out of a task body or an
user ISR and copies the data <Data> of the message <Message>
from a publicly accessible copy of the message (FT-CNI for non
local messages) to the task local memory.

In case ttReceiveMessage return a status different from
TT_E_FTCOM_OK, the contents of task local memory pointed to
by <Data> are not modified.

Particularities: To be called by the user out of task body or from user ISRs.

Status:

Standard: No error, TT_E_FTCOM_OK

TT_E_FTCOM_RDA_FAILED RDA did not calculate a valid result

TT_E_FTCOM_MSG_NOT_RECEIVED no frame containing an
instance of the message has been received or the value of the
message has not been forwarded by the receiver’s message filter
during the last execution

TT_E_FTCOM_MSG_INVALIDATED message was invalidated
by sender or the value of the message has not been forwarded by
the sender’s message filter during the last execution

Extended: <Message> is invalid, TT_E_FTCOM_ID.

<Data> is invalid or access denied, TT_E_FTCOM_ACCESS.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

32 © by OSEK OSEK FTCom 1.0

6.3.5 ttInvalidateMessage

Syntax: ttStatusType ttInvalidateMessage (

ttMsgIdType <Message>)

Parameter (In): Message - message identification

Parameter (Out): none

Description: ttInvalidateMessage invalidates the message <Message> in the
FT-CNI by setting the message status to invalidated message.

Particularities: To be called by the user out of task body or from user ISRs.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: <Message> is invalid, TT_E_FTCOM_ID.

The service is not specified for that <Message>,
TT_E_FTCOM_NOFUNC.

An instance of <Message> was the input of the function, e.g. <A’’>
instead of <A>, TT_E_FTCOM_ACCESS.

6.3.6 Differences between OSEKtime and OSEK/VDX Message Management

This section lists the differences between the OSEKtime and the OSEK/VDX message management
API, in order to avoid misinterpretations.

• The message copy attribute (WithCopy/WithoutCopy) is not a user-level configuration attribute
because it is up to offline tools to optimise the message access scheme. Furthermore, the
OSEK/VDX resource mechanism protecting messages without copy (GetMessageResource() /
ReleaseMessageResource() services) is not applicable for OSEKtime.

• The E_COM_LOCKED error code is not supported because the message service call should
be completed in any case in order to avoid a blocking problem. For example, the following
construction is forbidden:

while (ttSendMessage (...) != TT_E_FTCOM_OK);

• Message data consistency should be guaranteed by the system. For example, a two message
buffer/semaphore implementation concept may be used.

• Each message should have one sender and a number of receivers.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 33

6.4 Membership Service

6.4.1 Data Types

ttNodeIdType

This data type defines the data type for an identifier of a node.

ttNodeMembershipType

This data type defines the data type for the node membership.

ttNodeMembershipRefType

This data type defines the reference to a variable of type ttNodeMembershipType.

6.4.2 Constants

TT_NODE_ACTIVE constant of data type ttNodeMembershipType for active node

TT_NODE_INACTIVE constant of data type ttNodeMembershipType for inactive node

6.4.3 ttGetNodeMembership

Syntax: ttStatusType ttGetNodeMembership (

ttNodeIdType <NodeID>,
ttNodeMembershipRefType <NodeMembership>)

Parameter (In): NodeID - Identification of the node whose
membership is queried.

NodeMembership - Reference to the NodeMembership
variable.

Parameter (Out): none

Description: ttGetNodeMembership is called by the user out of a task body or
an user ISR and returns the node membership information of the
node <NodeID>.

Particularities: To be called by the user out of task body or from user ISRs.

This service is optional.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: none.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

34 © by OSEK OSEK FTCom 1.0

6.5 Notification mechanism
6.5.1 Data Types

ttFlagIdType

This data type defines the data type for the identifier of a flag.

ttFlagStatusType

This data type defines the data type for the notification flag.

ttFlagStatusRefType

This data type defines the reference to a variable of type ttFlagStatusType.

6.5.2 Constants

TT_FLAG_SET constant of data type ttFlagStatusType for set flags

TT_FLAG_CLEARED constant of data type ttFlagStatusType for cleared flags

6.5.3 ttReadFlag

Syntax: ttStatusType ttReadFlag (

ttFlagIdType <Flag>,
ttFlagStatusRefType <Status>)

Parameter (In): Flag - identification of the flag <Flag>

Parameter (Out): Status - reference to the flag status variable

Description: ttReadFlag returns the status of the flag <Flag>.

Particularities: To be called by the user out of task body or from user ISRs.

Status:

Standard: No error, TT_E_FTCOM_OK.

Extended: <Flag> is invalid, TT_E_FTCOM_ID.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 35

6.6 Time Service

6.6.1 Data Types

ttTimeSourceIdType

This data type defines the data type for the identifier of a time source (e.g. global time base of a
specific communication controller).

ttTickType

This data type defines the data type for the count value (count value in ticks).

ttTickRefType

This data type defines the reference to a variable of type ttTickType.

ttSyncStatusType

This data type defines the data type for the synchronisation status.

ttSyncStatusRefType

This data type defines the reference to a variable of type ttSyncStatusType.

6.6.2 Constants

TT_SYNCHRONOUS network-wide synchronised time is available

TT_ASYNCHRONOUS network-wide synchronised time is unavailable

TT_DEF_TIMESOURCE default time source specified offline

6.6.3 ttGetGlobalTime

Syntax: ttStatusType ttGetGlobalTime (

ttTimeSourceIdType <TimeSource>,
ttTickRefType <GlobalTime>)

Parameter (In): TimeSource - time source identification
(TT_DEF_TIMESOURCE for default time source)

Parameter (Out): GlobalTime - reference to current value of the network-wide
synchronised time.

Description: This service returns the current synchronised time of the dedicated
time source <TimeSource> (see OSEKtime OS specification for
more details on the clock synchronisation).

Particularities: To be called by the user out of task body or an ISR or by the OS.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: TT_E_FTCOM_VALUE if GlobalTime is not available,
TT_E_FTCOM_ID if <TimeSource> is invalid.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

36 © by OSEK OSEK FTCom 1.0

6.6.4 ttGetComSyncStatus

Syntax: ttStatusType ttGetComSyncStatus (

ttTimeSourceIdType <TimeSource>,
ttSyncStatusRefType <SyncStatus>)

Parameter (In): TimeSource - time source identification
(TT_DEF_TIMESOURCE for default time source)

Parameter (Out): SyncStatus - reference to the current synchronisation status.

Description: This service indicates whether the global time of the dedicated
time source <TimeSource> is available (TT_SYNCHRONOUS) or
not (TT_ASYNCHRONOUS).

Particularities: To be called by the user out of task body or an ISR or by the OS.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: TT_E_FTCOM_ID if <TimeSource> is invalid.

6.6.5 ttGetSyncTimes

Syntax: ttStatusType ttGetSyncTimes (

ttTimeSourceIdType <TimeSource>,
ttTickRefType <GlobalTime>,
ttTickRefType <ScheduleTime>)

Parameter (In): TimeSource - time source identification
(TT_DEF_TIMESOURCE for default time source)

Parameter (Out): GlobalTime - reference to current value of the network-wide
synchronised time.

ScheduleTime - reference to value of the global time at the start
of the last dispatching table.

Description: This service returns the current time of the dedicated time source
<TimeSource> (see OSEKtime OS specification for more details
on the clock synchronisation) and the time at which the start of the
last dispatching table was scheduled.

Particularities: To be called by the OS.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: TT_E_FTCOM_VALUE if GlobalTime is not available,
TT_E_FTCOM_ID if <TimeSource> is invalid.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 37

6.7 External Clock Synchronisation
The following two tasks are a minimum set of functions to implement external clock synchronisation.
Actual implementations might include extensions to this description, depending on specifics of the
external clocks used.

6.7.1 ttExtClockSync

Syntax: ttStatusType ttExtClockSync (

ttTimeSourceIdType <TimeSource>)

Parameter (In): TimeSource - time source identification

Parameter (Out): none

Description: ttExtClockSync interfaces to an external clock hardware
<TimeSource> and performs the external clock synchronisation
algorithm according to the value read from this clock and the
global time in the cluster. It generates the time message containing
the correction value.

Particularities: To be called from a periodic task of the FTCom schedule.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: TT_E_FTCOM_ACCESS when called from a user
taskTT_NO_FUNC if no external clock hardware is available,
TT_E_FTCOM_ID if <TimeSource> is invalid.

6.7.2 ttSetExtSync

Syntax: ttStatusType ttSetExtSync (

ttTimeSourceIdType <TimeSource>)

Parameter (In): TimeSource - time source identification

Parameter (Out): none

Description: ttSetExtSync reads a time message out of the CNI and writes a
correction value to an appropriate CNI External Rate Correction
Field.

Particularities: To be called from a periodic task of the FTCom schedule.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: TT_E_FTCOM_ACCESS when called from a user task,
TT_E_FTCOM_ID when <TimeSource> is invalid

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

38 © by OSEK OSEK FTCom 1.0

7 Hints
Following topics are not part of the specification but are recommendations.

7.1 Optional Properties of the FTCom and the underlying
Communication Controller

Optional properties of the FTCom and the underlying communication controller are:

• Atomic Frame Transmission should be guaranteed by the communication protocol. The
FTCom layer should provide atomic message transmission.

• The communication system may support external clock synchronisation by periodically
transmitting time messages from a node connected to an external time source to all other nodes.
The time messages must contain at least a correction value to adjust the system time to the
external time source.

• The communication system may support redundancy. This may range from the weakest form of
redundancy, time redundancy over a single channel, to multiple transmission channels. For
redundant channels replica determinism must be supported, i.e., messages sent over two
channels must arrive in a deterministic order.

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

OSEK FTCom 1.0 © by OSEK 39

8 Index

8.1 List of Services, Data Types and Constants

TT_ASYNCHRONOUS 35
TT_DEF_TIMESOURCE 35
TT_E_FTCOM MSG_INVALIDATED 30
TT_E_FTCOM_MSG_NOT RECEIVED30
TT_E_FTCOM_RDA_FAILED 30
TT_FLAG_CLEARED 34
TT_FLAG_SET 34
TT_NODE_ACTIVE 33
TT_NODE_INACTIVE 33
TT_SYNCHRONOUS 35
ttAccessNameRefType 30
ttAccessNameType 30
ttExtClockSync 36
ttFlagIDType 34
ttFlagStatusRefType 34
ttFlagStatusType 34
ttGetComSyncStatus 35
ttGetGlobalTime 35

ttGetNodeMembership 33
ttGetSyncTimes 36
ttInvalidateMessage 32
ttMsgIdType 30
ttNodeIdType 33
ttNodeMembershipRefType 33
ttNodeMembershipType 33
ttReadFlag 34
ttReceiveMessage 31
ttSendMessage 30
ttSetExtSync 37
ttStatusType 29, 30
ttSyncStatusRefType 35
ttSyncStatusType 35
ttTickRefType 34
ttTickType 34
ttTimeSourceIDType 34

8.2 List of Figures
Figure 2-1: Architecture of a OSEKtime system.. 8
Figure 2-2: Layered model of OSEKtime FTCom architecture... 10
Figure 3-1: CNI, Message Copy Tasks, FT-CNI, and Application Tasks.................................... 13
Figure 3-2: Example frame layout for a two-channel system... 14
Figure 3-3: Example of direct message to frame mapping... 15
Figure 3-4: Example for standard message to frame mapping ... 15
Figure 3-5: Example for alternate message to frame mapping.. 16
Figure 3-6: Consistency of replicated messages ... 17
Figure 3-7: Message filter.. 20
Figure 3-8: Overview of Message Handling API.. 22
Figure 3-9: Communication paths .. 23
Figure 4-1: Dispatcher and communication rounds... 25

8.3 List of Tables
Table 3-1: Basic algorithms of the message filter .. 21

OSEK/VDX Fault-Tolerant Communication
Specification 1.0

40 © by OSEK OSEK FTCom 1.0

9 History

Version Date Remarks

1.0 July 24th 2001 Authors:
Anton Schedl BMW
Elmar Dilger Bosch
Thomas Führer Bosch
Bernd Hedenetz DaimlerChrysler
Jens Ruh DaimlerChrysler
Matthias Kühlewein DaimlerChrysler
Emmerich Fuchs DeComSys
Thomas M. Galla DeComSys
Yaroslav Domaratsky Motorola
Andreas Krüger Motorola, since 04/01 Audi
Patrick Pelcat PSA Peugeot Citroën
Michel Taï-Leung Renault
Martin Glück TTTech
Stefan Poledna TTTech
Thomas Ringler University of Stuttgart
Brian Nash Wind River
Tim Curtis Wind River

