- ﬂ OSEK/VDX Fault-Tolerant Communication

Specification 1.0

OSEK/VDX

Fault-Tolerant Communication

Verson 1.0

July 24" 2001

This document is an official release. The OSEK group retains the right to make changes to this document
without notice and does not accept any liability for errors. All rights reserved. No part of this document
may be reproduced, in any form or by any means, without permission in writing from the OSEK/VDX
steering committee.

OSEK FTCom 1.0 © by OSEK Document: ftcom10.doc

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

Preface

OSEK/VDX is a joint project of the automotive industry. It ams at an industry standard for an
open-ended architecture for digtributed control unitsin vehicles.

For detailed information about OSEK project gods and partners, plesse refer to the “OSEK
Binding Specification”.
This document describes the concept of a fault-tolerant communication layer. It is not a product

description which relates to a specific implementation. This document aso specifies the fault-tolerant
communication layer - Application Program Interface.

Generd conventions, explanations of terms and abbreviaions have been compiled in the additiona
inter-project "OSEK Overdl Glossary". Regarding implementation and system generation aspects
please refer to the "OSEK Implementation Language” (OIL) specification.

2 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

Table of Contents

R 10110 o 01 [0 o PSP R 5
IS V/S = 0 4 I 011 0 oo YRS SSSRSS 5
1.2 Purpose of thiSDOCUMENTLccuiiiiieiie ettt e e e eere e nreeennas 6
1.3 Structure Of thiSDOCUMENT........cceiieiiriisie st 7

P U110 07 3 PR PP USRI 8
2.1 Architecture of aOSEKHME SYSIEM.......ocveiieieceeie et nne s 8
2.2 Condrants on the FTCom and the underlying Communication Controller....................... 11
2.3 Message EXChange INtEaCe........ccvv e 11

3 MESSAOEHANAING.....eeeeie e r e e 12
3.1 Messages and MeSSage INSLANCES........ccueeieiieriecie et eee s te e e e ae e e e 13
3.2 Message Copy FUNCHONS.........cooiiiieeiie ettt ettt sre e sre e sneennee s 13

3.2.1 RECAVING IMESSAES.....ccveeveeuieeteestieieseesteeseeeesseestesessseesseeseesseesseeneesseensenssessenssens 13
3.2.2 SENAING MESSATEScuviieie ettt ettt ettt e et e s e e te e s ae e e beesaeeeaneeaneeenree e 14
3.3 Message Frame MappPinNgcceecueeieieerieeeeseesiesee st e see e e ae e te e reesaeesaesreesessaesreenseens 14
3.4 Packing/UnNpacKing IMESSA0ES.cccveiuieirieiiecrieesee et e ee e ste e ste e reesaeesseesnreesreesneennee s 15
T =Y/ (= o = TS 16
3.6 MESSAHE SENU SEAUS......cccueiiiieciie et siee e se et ae et e s e e re e st e e beesaaeesseesareesaeeenneenseean 16
3.7 NOtfication MECENISM......ccoiiiiriicee s 17
RSN 25 o L1072 (1012 lc 0 010 " o os VAP 17
3.9 ReplicaDeterminate Agreement (RDA).......ocveiieeieieerieeeeseesieseeseesee e sseenseseesseenseens 18
3.9.1 MESSAPE RDA SLAUS......ceeiiieeiieieeiieeciee e siee e stee st e e e e e s sra e e sna e e sbae e sne e e snneeens 18
3.9.2 EXAMPIE RDA “GVEIEOEoeceeeeeeie et eie e st e te s sae e te e seenteeneesseenseenaesneensens 19
3.9.3 Examples RDA “MGONLy VOIE'ccoeiieiieeiie ettt et 19
3.10 MESSAOE FILEN ...ttt reene e 20
3.10.1Message FIter FUNCHION.ccoiiiie et 20
3.10.2MeSSA0E FIltEr STAUS......cciueeieeeecie et re e 22
3.11 Overview Message HandliNG AP ...ttt 22

4 Other FTCOM FUNCHONS......cciiiiiiiiirieie sttt sttt sa b sr e 24

4.1 Timeand SyNChroniSatioN SEIVICES........cciiiiiierieeiesee ettt see e nee s 24
A.1.1 ASSUMPLONS.....eetieieeiteeieeeesieeseeeeesseestesseesseesesseesseesesseesseenseeseesseensesseessenssesseessens 24
A.1.2 REQUITEIMENES.eiiiieeiieeitie et esieeste e st e eaeesse e steesbeeeseesseesaseesbeeesseeaseesnseesseesnseensenns 24

4.2 Externa ClocK SyNChIONISAION.ecverieeiereesieeieseesieesaesseesseesseseesseeeesseesseesesseessens 25
4.2.1 Generation of Externd Correction ValUE..........c.ooceeiiiieieineeieseeseeee e 25
4.2.2 Write Correction Vaue to Communication Controller...........ccceovvvnenenenenencnene 26

4.3 Node Membership Service (OptioNal)..........ccoeeviriieeiie e 26

A 1 (== [0 1o = (=SSR 26

S = LU SRR 26

5 INter-task COMMUNICEIION.ccueeueeeeieriesie sttt st b e e et se bbb sre e e e 27
5.1 Communication between OSEK TaskS.......cccceiiriiieiiniesee e 27
5.2 Communication between OSEK and OSEKHME TasKS........cccvrieeeriererenesiesiesieeeena 27
5.3 Communication between OSEKHME TaSKS......cccociieeririirierie e 27

6 Specification of FTCOM SySIeM SEIVICEScocveieeie et 28

OSEK FTCom 1.0 © by OSEK 3

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.1 COMMON DAB TYPES......eeeieieeitieieree ettt r e r e 29
6.2 NaMING COMVENTIONS........eeitiiieeieie et eee s teeee st e sre e s seesbeeeesreesseesesneesseennesnnenns 29
6.2.1 Generad Naming CONVEITHONScceiirrirerieieieieesee s snesnesre s 29
LG TV === oo o = o [T o 30
LG B B =t B Y 0= RS TRPPPRPO 30
B.3.2 CONTLANES......ceiueieteeieeetee et e et e e s e e s e s b e e s e e e e e e sseeesseesaeesnneeaneesaneeaneesnneenneas 30
6.3.3 HSENAMESSAGE ..ottt n e na e 30
6.3.4 tRECEVEMESSAEccueeieceie ettt st rte et te s re e e e re e teeneesaeenneennesneenes 31
6.3.5 HINVAIJAEIMESSATR.ccueeueeieeeete e 32
6.3.6 Differences between OSEKtime and OSEK/VDX Message Management................. 32
6.4 MEMDEISNIP SEIVICE....c.eiiiiitirieeeeee et e e a e b e 33
L R B - = W Y/ 0TSSR 33
B.4.2 CONTLANES......eeiueietieeiteeitee ettt sttt ettt st et e e s st e be e saeessbeesbeeenseesbeesabeenaeeanseenseas 33
6.4.3 HGENOAEMEMDEISNIP ..o e 33
6.5 NOtfiCatioN MECNANISMciiiiiiee et snee e 34
ORI R B - = W Y/ 0TSSR 34
B.5.2 CONTLANES......eeiueieiee it itee ettt sttt s ae et ae et e e sae e s be e s be e e aee e sbeeeabeenneesnreenseas 34
6.5.3 HREBAFIAG.......coiiiiicecieee e 34
5.6 TIMIE SEIVICR.....cecuieieeie sttt ettt sre e te e eese e beeneesreesseenseeneesseeneenneenes 35
I R B - = W Y/ 0T TSR 35
B.6.2 CONSLANES......eiiueietieiite ettt ettt st e et st ae e b e e sae e st e e s beesateesbe e st e e naeesnneenseas 35
6.6.3 HGEHGIOBATIIME.....ccueiieieeeiese e 35
6.6.4 tHGELCOMSYNCSIBLUS.eerueeieeeieieesreere et nn e sneens 36
X I (€= 1Yol] 0> 36
6.7 Externa Clock SyNCAIONISAON.c..eiverieierierierieeieee e 37
6.7.1 HEXICIOCKSYNC...cveviieieiieieie et b e 37
B.7.2 TSEEXISYNC ...t 37

A (1TSS 38
7.1 Optiona Properties of the FTCom and the underlying Communication Controller 38
S 1070 (= OSSP 39
8.1 Listof Services Data Types and CONSANS.........cevreeieerierinie e 39
oA I 1= o o T U= P 39
LS TC T 1S W0 1= o/ =S 39
S B 11 (0] /S 40

4 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

1 Introduction

The specification of the fault-tolerant communication layer (FTCom layer) is to represent a uniform
functioning environment which supports efficient utilisation of resources for automotive control unit
gpplication software.

1.1 System Philosophy

The objective of the OSEKtime working group is to specify a fault-tolerant redl-time operating
system with a fault-tolerant communication layer as astandardised run-time environment for highly
dependable red-time software in automotive dectronic control units. The OSEKtime system must
implement the following properties:

predictability (determinigtic, a priori known behaviour even under defined peek load and fault
conditions),

clear, modular concept as a basis for certification,

dependabiility (reliable operation through fault detection and fault tolerance),

support for modular development and integration without side-effects (composability), and
compatibility to OSEK/VDX OS.

The OSEKtime operating sysem core offers dl basc services for red-time applications, i.e,
interrupt handling, dispatching, system time and clock synchronisation, loca message handling, and
error detection mechanisms.

All sarvices of OSEKtime are hidden behind a well-defined API. The gpplication interfaces to the
OS and the communication layer only viathis API.

For a particular gpplication the OSEKtime operating system can be configured such that it only
comprises the services required for this gpplication (the OSEKtime operating system is described in
the OS specification).

OSEKtime dso comprises a fault-tolerant communication layer that supports red-time
communication protocols and systems. The layer offers a sandardised interface to the following
communication services and features a globa message handling service (comprising replication and
agreement support, and transparent access to the communication system), start-up and reintegration
support, and an external clock synchronisation service.

OSEK FTCom 1.0 © by OSEK 5

Specification 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

1.2 Purpose of this Document

The following description is to be regarded as a generic description which is mandatory for any
implementation of the OSEKtime FTCom layer. This concerns the generd description of Strategy
and functiondity, the interface of the function cdls, the meaning and declaration of the parameters
and the possible error codes.

The specification leaves a certain amount of flexibility. On the one hand, the description is generic
enough for future upgrades, on the other hand, there is some explicitly specified implementation-
specific scope in the description.

It is assumed that the description of the OSEKtime FTCom layer is to be updated in the future, and
will be adapted to extended requirements. Therefore, each implementation must specify which
officidly authorised verson of the OSEKtime FTCom description has been used as a reference
description.

Because this description is mandatory, definitions have only been made where the generd system
drategy is concerned. In al other respects, it is up to the syslem implementation to determine the
optimal adaptation to a specific hardware type.

6 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

1.3 Structure of this Document
In the following text, the essential specification chapters are described briefly:
Chapter 2, Summary

This chapter provides a brief introduction to the OSEKtime FTCom layer, gives a survey about the
interactions between OSEKtime layers and assumptions on the communication protocol.

Chapter 3, Message Handling
This chapter describes the message handling.
Chapter 4, Other FTCom Functions

This chapter describes the recommended practice for implementing time services, external clock
synchronisation, membership service, lifesgn update and start-up.

Chapter 5, Inter-task Communication

This chapter contains a description of the inter-task communication.

Chapter 6, Specification of FTCom System Services

This chapter contains a description of the FTCom layer API.

Chapter 7, Hints

This chapter describes recommendations which are not part of the specification.
Chapter 8, Index

Ligt of dl FTCom system services, figures and tables.

Chapter 9, History

Lig of dl versons.

OSEK FTCom 1.0 © by OSEK 7

ﬂ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

2 Summary

The fault-tolerant communicetion layer (FTCom layer) is repongble for the interaction between the
communication controller hardware and the application software. It provides the necessary services
to support fault-tolerant highly dependable red-time distributed gpplications (e.g. start-up of the
system, message handling, state message interface).

The OSEKtime FTCom layer is built in accordance with the user's configuration ingtructions at
system generation time.

2.1 Architecture of a OSEKtime System

In a time-triggered system the application software uses the interface provided by the operating
sysem and by the fault-tolerance layer. The operating system is responshble for the on-line
management of the CPUS resources, management of time and task scheduling. The FTCom layer is
responsible for the communication between nodes, error detection and fault-tolerance functiondity
within the domain of the communication subsystem.

Figure 2-1 shows the architecture of a OSEKtime system. Application software and FTCom Layer
are executed under control of the operating system. OSEK/VDX Network Management (NM)
describes node-related (local) and network-related (globa) management methods. The globa NM
component is optiona and described in the OSEK/VDX NM specification.

Application

OSEKtime FTCom Layer

Application Layer

OSEK/VDX
Network

Time Management

Service

Communication Subsystem‘

Interaction Layer

CNI Driver

Bus I/O Driver

| Bus Communication Hardware H—‘

o0
+

Figure 2-1: Architecture of a OSEKtime system

8 © by OSEK OSEK FTCom 1.0

Specification 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Services of the FTCom Layer
The Services of the FTCom layer are listed below:

Globd message handling

— Replication and agreement

— Messgefiltering

— Communication controller communication network interface (CNI) access via CNI driver

(incl. connections to multiple communication media, eg., gateways)
Start-up
Time sarvice and optiond externd clock synchronisation

Layered Modd of OSEKtime FTCom Architecture

The layered modd of OSEKtime FTCom architecture is shown in Figure 22. The OSEKtime
FTCom system is divided into two subsystems:

Firgly the Fault Tolerant Subsystem that contains fault tolerant mechanisms, and

secondly, the Communication Subsystem that is responsible for the communication between
distributed components.

FTComisdso divided into layers.
Application Layer:
— Provides an Application Programming Interface (AP1).
Message Filtering Layer:
— Provides mechanisms for message filtering.
Fault Tolerant Layer:

— Provides sarvices required to support the fault-tolerant functiondity:
» Provides judgement mechanisms for message instance managemern.
= Supports amessage status information.

Interaction Layer:

— Provides sarvices for the transfer of message instances via network:

» Resolves issues connected with the presentation of a message instance on different hosts
(e.g. different byte ordering).

= Provides a message ingtance packing/unpacking service.
= Supports amessage ingtance status information.

OSEK FTCom 1.0 © by OSEK

= ﬂ OSEK/VDX Fault-Tolerant Communication

Specification 1.0

The CNI Driver is not part of FTCom. It provides services for the transfer of FTCom frames via
network:

Resolves FTCom CNI frames presentation issues.
Supports a FTCom frame status information.

Deds with a specific CNI access scheme of a particular implementation of the communication
hardware.

OSEKtime OS . .
Conformity with
Communication Application OSI/ISO layer
model
AP y
>
OSEKtime FTCom Layer y
Application Layer Application
% Layer
! Message Filtering !
| Layer
Tolerated R B
Message i Fault-Tolerant Subsystem

! Fault Tolerant Layer

|

4
Message F S (Y S
Instance Communication Subsystem
Interaction Layer Presentation Layer
A -
I_ Session Layer 1
I Transport Layer |
FTCom Frame !_ Network Layer _!
CNI Driver
rN Data Link Layer
CNI Frame
\ 4
CNI
Bus Frame Communication Controller

Figure 2-2: Layered modd of OSEKtime FTCom architecture

10 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

2.2 Constraints on the FTCom and the underlying
Communication Controller

Congraints on the FTCom and the underlying communication controller are;

The fundamenta basis for red-time and time-triggered systems is a globally synchronised
clock with sufficient accuracy. The globaly synchronised clock must be accessble and it must
provide means to generate programmable time-interrupts.

Error detection must be supported in the event of data corruption. In addition the
communication protocol must support the detection of missng, late or early messages at the
receiver(s) and the senders.

Time-triggered, periodic frame transmission is assumed for al messages handled by the
FTCom layer. Other types of transmisson must be handled implementation specific.

Defined Worst Case Start-up Time: The communication sysem must have a deterministic
worst-case start-up time.

2.3 Message Exchange Interface

The FTCom layer is based on a state message interface: the send operation overwrites the last recent
vaid message vaue, while read operations get the most recent vaue.

The AP cdls “ttReceiveMessage” , “ttSendMessage’, and “ttinvalidateMessage” (definition in
section 6.3) are mandatory and the standard way to consstently exchange data between gpplication
and the FTCom layer. No other message access is dlowed for the user (programmer). Every call
causes a new consstent access of the FTCom interface.

OSEK FTCom 1.0 © by OSEK 11

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

3 Message Handling

The communication controller tranamits frames typicaly conssing of a dat-of-frame fidd, a
header, a datafield, and a CRC checksum on the communication media. Each frame can hold one or
more gpplication level messages in its data fidd. On the other hand, a message can be tranamitted
redundantly in more than one frame on the communication media. It is the main task of the FTCom
layer to handle this relationship and the transport of messages between the gpplication tasks and the
communication network interface of the communication controller. The layout of a frame is user
specified.

It might not be possible for the application tasks to use gpplication messages in the representation as
they are transmitted on the communication media and as they are dso sored in the CNI:

They are densdy packed (i.e., not byte-aligned) to save communication media bandwidth,
their byte order might be different from that of the receiver, and

messages might be transmitted redundantly, so that selection of one message or voting on a set of
messages becomes necessary.

Therefore, each message sent or received by a node is stored exactly once and in the local CPU’s
representation in a dedicated memory area under control of the host CPU. This memory area is
caled the FT-CNI. From there it can be accessed by the application tasks. Consequently, there are
two representations of messages.

Firgly, a message is represented in the FT-CNI. This representation should match the
requirements of the host CPU and is based on the state message concept. For example, on a 16
Bit CPU it will be optimal to represent a 10 bit analogue conversion result by a 16 bit word.

Secondly, a message is represented in frames as handled by the communication controller. This
representation should match the properties of the communication controller. For example, to
utilise communication bandwidth it is ided to tranamit only 10 bits of information for a 10 bit
and ogue converson result.

Furthermore the FTCom layer provides a systematic gpproach to gpply different filter dgorithms on
messages transferred from the CNI to the FT-CNI and vice versa.

The transport between the CNI and the FT-CNI is handled by message copy tasks that are
invoked after reception of a frame and before sending a frame, respectively. Idedly, they are part of
the time-triggered task schedule. From what was said above it follows that the main job of a
message copy task is (1) to do message dignment, (2) to convert between communication media
and local byte order (endianness), (3) to select or vote on redundant messages, and (4) to filter
messages.

Figure 3-1 shows the relationship between the CNI, the message copy tasks of the FTCom layer,
the FT-CNI, and the application tasks. The CNI holds the data fields of al frames as they are
transmitted on the communication media. The message copy tasks of the FTCom layer disassemble

the received frames and assemble the frames to be sent, and copy the messages to and from the FT-
CNI, where they can be accessed by the application tasks.

12 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0
Application Tasks TaskX Taskl Task2
84
%’_g ttSendM essage
_w5 tReceiveMessage
Z g ™
QEs
o
L _8_ g
]
LR |

FTCom Layer RXT1 tRXT2

10bit/ 6 bit 10 bit 10hit 6b|? 10 hit R

Figure 3-1: CNI, Message Copy Tasks, FT-CNI, and Application Tasks

CNI
frame layout,
transmitted on bus

3.1 Messages and Message Instances

In the description above the term “message’” was used for dl entities, whether they reside in the FT-
CNI, the CNI or are transmitted on the communication media. To be more precise in the remainder
of this specification the following notions of a message will be distinguished:

M essage: A block of application data (Sgnals) stored in the FT-CNI. Messages, having
the same name, can be sent by different nodes.

Message I nstance: One copy of a message stored in the CNI (transmitted on the communication
system) at the sender. At the receiver these message instances may be used to
generate a new dngle message, eg., by using predefined agreement
agorithms (RDAS).

3.2 Message Copy Functions

There are two types of message copy functions: the functions for receiving messages are different to
the functions invoked before sending a message.

3.2.1 Receiving Messages
The message copy function for receiving messages has to perform the following actions:

It first has to read al relevant frames from the CNI and do byte order (endianness) conversion, if
necessary. “Relevant frames’ means dl frames that contain an instance of any message handled
by this message copy task.

Evduate frame gatus fid ds and discard dl frames with an invdid status.

For each message, a copy must be crested from a vadid frame by digning the relevant portion of
the frame data field to suitable boundaries for the used CPU, and - if necessary - masking out al

parts of other messages.

OSEK FTCom 1.0 © by OSEK 13

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

This copy must be written to the FT-CNI.

3.2.2 Sending Messages

The message copy functions for assembling messages to be sent on the communication media must
do the following:

It must read al messagesto be transmitted from the FT-CNI.

For each frame, it must then aign the message ingtances to their postion in the frame data fied,
and then assemble the frame.

The byte order (endianness) must be converted to the communication media byte order, if
necessary.

The function must then copy the assembled frame data field to the CNI.

In case of an event-driven communication system, the transmission of aframe is suppressed if all

message ingances of a frame have been invdidated by the gpplication (i.e, contain an invdid
send status (see Section 3.6)).

3.3 Message Frame Mapping

The communication controller trangmits frames up to a certain length. One frame may contain one or
more message instances. In order to support fault-tolerance one message is carried by one or more
frames (i.e., one instance of the message per frame).

number of
channels

Node 1 Node 2 Node n
frame_slotl_round1l_chA frame_slot2_round1_chA frame_slotn_round1_chA

o8 m10 ma |mé m11 ma |me
frame_slotl_roundl_chB frame_slot2_round1_chB frame_slotn_round1_chB

>

number of nodes

Figure 3-2: Example frame layout for atwo-channd system

Figure 3-2 shows a configuration of a system with two channds (chA and chB). Each frame is
named based on the dot and round number. The example shows a message m1 which is tranamitted
by two nodes in dot 1 and dot 2 on two channels. Therefore message m1 is mapped to four frames
in one round.

The message frame mapping is datic and is defined offline. The mapping between messages and
frames adheres to the following rules:

One messageis carried by at least one frame.

One frame carries 0 ... max_frame_size* message instances.

1\ n units of bits

14 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

One message is carried at most once in a frame (i.e., one frame does not contain more than one
ingtance of the same message).

Remark: It is possible that aframe is completely or partidly empty and thus reserves space for future
usage.

3.4 Packing/Unpacking Messages

If cost condraints require an optimal use of communication bandwidth, it is necessary to pack
messages into frames with bit granularities. On the other hand, if communication bandwidth is not an
issue, application messages can be transmitted unpacked.

MESSAGE REPRESENTATION
m1, 12bit m2, 10bit m3, 8bit m4, 2bit

0 15 0 7 0
| ?
15 017 0

0 7

15
L]

0]15 0|7

Frame with 6 byte length

FRAME REPRESENTATION

Figure 3-3: Example of direct message to frame mapping

For example, a 10 hit analogue/digital conversion result or status bits could be represented in aframe
only by the necessary number of bits or by a full 16 bit vaue. The communication layer should
provide the unpacked messages digned with the CPUs word length (byte, word, long word) to
optimise access independent of the message length.

At the frame levd there are three types of message representation supported. A direct unpacked
representation, a standard packed linear representation and an aternate packed representation (see
Figure 3-3, Figure 3-4 and Figure 3-5).

Below, for both packed representations it is shown in which way four 16 bit word aigned messages
are packed into aframe. The way amessage is packed into frames is defined a system configuration
phase.

UNPACKED MESSAGE REPRESENTATION

ml, 12bit m2, 10bit ma3, 8bit m4, 2bit

15 0 15 0 7 0 7 0

11 0]9 0|7 o]0
Frame with 4 bvte lenath, instead of 6
PACKED REPRESENTATION

Figure 3-4: Example for sandard message to frame mapping

OSEK FTCom 1.0 © by OSEK 15

= ﬂ\ OSEK /VDX ‘ Fault-Tolerant Communication

Specification 1.0

UNPACKED MESSAGE REPRESENTATION

m1, 12bit m2, 10bit m3, 8bit m4, 2bit

15 0 15 0 7 0 7 0

7 ol7 o017 011181981 0
Frame with 4 byte length, instead of 6

PACKED REPRESENTATION

Fgure 3-5: Example for dternate message to frame mapping

The standard message to frame mapping must be supported; the aternate message to frame mapping
isoptiond.

For messages with hit granularities the mapping has the following properties.
One message maps to at least one frame representation

One frame representation conssts of at least one bit array

3.5 Byte Order

In heterogeneous clugters with different CPUs and different interoperable communicetion controllers
it is important to consder the byte order of the CPU (eg., big or little endian) and on the
communication media. The FTCom layer is respongble for the byte order conversion between the
locad CPU and the communication media

3.6 Message Send Status

The sender must have a mechanism to present the vaidity sate of a data vaue (for ingance a
sampled sensor vaue) to al nodes in the network. This can be redised, if the sender of a message
can mark this value as invdid in the FT-CNI by a send status bit. The send gtatus bit mechanism is
optiona, since a message can be marked as invaid by other means as well (eg., by assgning a
predefined invalid vaue by the gpplication). If the send status bit is present and cleared, this marks
the message as invalid. The send status bit will be copied by the FTCom copy task into al frames
transmitting an ingtance of message. This dlows the sender FTCom task to collect multiple message
instances and pack them into a frame even if some of the associated messages are invaid.

If dl message indances of a given frame are marked as invdid, the transmisson of the frame is
suppressed in case of an event-driven communication system.

To mark a message as invaid and send the message the function call ttInvalidateMessage is used
(notice: ttSendMessage is not cdled in this casel). At the receiver dde the function cal
ttRecelveMessage of an invdidaed message retuns the eror code
TT_E FTCOM_MSG_INVALIDATED. If an invalidated message has been received the current
ingtance of the message in the FT-CNI represents the last message value, which has been passed to
the gpplication.

16 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

To mark a message as invdid different configurations are possible, eg. invdidae vaue, invdidae
flag, etc.

3.7 Notification Mechanism

The following natification mechanism, which does not require the support by an underlying operating
system, will be provided. The interaction layer sets a flag after the communication controller has
consumed the message (i.e, the flag indicates that new data can be written to the communication
controller’s transmit buffer associated with the message without causing an unsent ingtance of the
message to be overwritten).

In case of replicated messages, the flag indicates that al local instances (i.e., instances transmitted by
the respective node) have been consumed by the node’ s communication controller(s).

The current vaue of the flag can be checked by the application by means of the ttReadFlag AP
sarvice. The resetting of the flag isimplicitly performed by the ttSendMessage API service,

3.8 Replication/Redundancy

The communication layer has to support fault-tolerant data transmisson between nodes. Fault-
tolerance is based on redundant communication channds and replicated nodes. Therefore, a
message is tranamitted over redundant channels by replicated nodes. Based on its configuration deta,
for recelving a message the communication layer has the information where to pick up the message
information. It evaluates the receive status of each message instance and presents one copy to the
gpplication software. On the contrary, for sending a message, data is picked up from the gpplication
software and copied into al relevant frames. These activities are carried out by dedicated
communication layer tasks that are executed by the operating system.

If amessage is sent by more than one node then the FTCom layer must take care to ensure that only
consstent data (for instance data which is sampled at the same point in time) is used. For replicated
nodes messages consgstency requires that the instances of the message are only accessed once dl
ingtances have been updated with logicdly corresponding vaues, for example vadues tha are
sampled at the same point in time (see Figure 3-6).

round

A 4

channel A MSg 1, msg,.

channel B mMsg1p msQsq

» time

A 4

inconsistent consistent

Figure 3-6: Congstency of replicated messages

OSEK FTCom 1.0 © by OSEK 17

Specification 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

3.9 Replica Determinate Agreement (RDA)

Optiondly, the communication layer can support the gplication software by providing predefined
agreement agorithms and a framework for user defined agreement adgorithms. The agreement
agorithms are respongble for how to represent messages to the application software from a set of
redundant and replicated message instances. Based on the failure mode assumption an appropriate
agreement algorithm can be selected.

For most replicated messages encountered in distributed gpplications, only a few RDAS are of
importance, eg., “pick any” for fal-slent replica-determinate messages, and “average’ for vaues
from redundant sensors. But in some gpplications, specid RDA functions become necessary and
need to be implemented in a systematic way. Therefore a generic way to describe the calculation of
an RDA isrequired. Such a generic way is described by the following four steps:

1. Declaration

The counters, variables, and arrays required for the other steps are defined here. For this step, the
number of instances of the message needs to be known in case an array for dl ingtances is defined
(e.g., for diagnosis purposes, or some RDAS like “ mgority vote”).

2. Initidistion

This step is executed at the beginning of the agreement of the message, i.e., before the first raw vaue
of the message is processed. The counters and buffers are initidised with their initial vaues.

3. Next Vdue

This step is executed once for each instance that is correctly received. Instances that fail to be
received correctly (e.g., because the sender failed to send, or because the transmission carrying the
value was mutilated and resulted in a CRC error) are not processed in a* next vaue’ step.

The number of “next value’ steps therefore depends on the number of correctly received instances
and is bounded by the replication degree of the message. In the extreme case, no “next vaue’ sepis
executed between the “initidisation” step and the “finish computation” step.

4. Finish Computation

This step is executed at the end of the message retransmission intervd, i.e., after the last instances of
the message is processed. This step generates the final result of the RDA. If the agreement falls
(either because no instances were received, or because the raw vaues received do not alow aresult

(eg., a“mgority vote’ over only two different values)) the status of the agreement will be st to
TT_E FTCOM_RDA_FAILED.

3.9.1 Message RDA Status

The FTCom layer provides datus information on the correctness of received messages to the
goplicetion. The function cdl ttReceiveMessage returns the eror code
TT_E FTCOM_RDA_FAILED if the RDA mechanism was not successful. The status becomes
vdid if dl of the following conditions are true:

at least one of the frames carrying an ingtance the message isvaid
the RDA (if gpplicable) did yidd avdid resuilt.

18 © by OSEK OSEK FTCom 1.0

- ﬂ OSEK/VDX Fault-Tolerant Communication

Specification 1.0

3.9.2 Example: RDA “average”
Declaration:

int counter; int sum
Initidisation:

count er

0;

sum = 0;

Next Vaue:

counter = counter + 1;
sum = sum + val ue;

Finish Computation:

if counter > 0
result = sum/ counter
RDA status is VALID

el se :
RDA status is | NVALID

3.9.3 Example: RDA “majority vote”

Declaration:

int counter; int values[];
Initidisation:

counter = POSI TI ON_ONE
Next Vaue

val ues[counter] = val ue;
counter = counter + 1;

Finish Computation:
if counter > POSI TI ON_ONE:
operating on val ues[POSI TION_ ONE .. counter-1] do:

sort val ues;

find | argest group of identical values;

find second | argest group of identical val ues;

if size of largest group is greater than
size of second | argest group
or there is only one group of val ues
result = value of |argest group

RDA status is VALID else (the two | argest
groups are of equal size):

result = NO_RESULT;
RDA status is | NVALID
el se:
RDA status is | NVALID

OSEK FTCom 1.0 © by OSEK 19

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

3.10 Message Filter

The FTCom layer provides optiond filter dgorithms to support the user with data handling. These
agorithms could be used both with the sending and with the recelving of predefined messages. The
internal structure of FTCom can be seen in Fgure 2-2.

3.10.1 Message Filter Function

The message filter is an offline configurable function layer, which filters messages out according to
specific dgorithms. For each message a different filtering condition can be defined through a
dedicated agorithm.

While sending messages the message filter will pass the current message vaue to the interaction layer
whenever the gppropriate filtering condition is met (see Figure 3-7 A). All other message values will
be filtered out. When this occurs, the message is marked as invalidated.

While receiving the messages, only the message values which meet the agorithms will be passed to
the gpplication as such the FT-CNI will be updated (see Figure 3-7 B). In pardld a datus for the
application will be provided by the message filter, which indicates whether the last vaue has been
filtered out, or passed. If the value has been filtered out the current insgtance of the message in the
FT-CNI represents the last message value, which has passed the message filter.

FTCom
| c
c message filter i)
2 ® 5
= T old value] S =
© filter = 0
g new value status o E ==
Q. - > - = £
Q. ©
© X1 — =, g O
X2 — o
(&]
A) sending a message
FTCom
5 c
i o
c message filter S
Q 85
) o 3] =
8 new value | < || c O
= ¢ < [S S5 =
Q O [& [£ <
o < old value - o o o
(] S g O
filter < x1 8
status < %2

B) receiving a message

Figure 3-7: Message filter

20 © by OSEK OSEK FTCom 1.0

@' OSEK /VDX

Fault-Tolerant Communication
Specification 1.0

For message filtering a st of 14 generic agorithms as well as a framework for user defined
dgorithmsis provided. The generic dgorithms are dl optiond.

Thefollowing attributes are used by the 14 generic dgorithms (see Table 3-1):

new value: current vaue of the message

old value: last vaue of the message

x1, x2: two congtant vaues, which can be defined in offline tools to configure the message
filter
Algorithm Description
True Passng messages in any case without usng

the message filter

Fdse

Disabling of the appropriate messages

(new_value&x1) == x2

Passing messages whose masked vaue is
equd to aspecific value

(new_value&x1) '= x2

Passing messages whose masked vaue is not
equd to a specific vaue

new_value == old value

Passing messages which have not changed

new_value!= old_value

Passing messages which have changed

(new_value& x1) == (old_value& x1)

Passing messages where the masked vaue
has not changed

(new_value& x1) != (old_value&x1)

Passing messages where the masked vaue
has changed

x1 <= new_value <= x2

Passng messages if its vdue is within a
predefined boundary

(x1 > new_value) OR (new_value > x2)

Pasing messages if its vaue is outsde a
predefined boundary

new_value > old value

Passing messages if its vaue has increased

new_value <= old_value

Passng messges if its vaue has not
increased

new_value < old value

Passing messagesif its vaue has decreased

new_value >= old_value

Passng messges if its vaue has not
decreased

Table 3-1: Basc dgorithms of the messagefilter

If the attribute message filter is True for any particular message no filter dgorithm is incduded in the

runtime system for the particular message.

OSEK FTCom 1.0

© by OSEK

21

Fault-Tolerant Communication
Specification 1.0

OSEK/VDX

&l

3.10.2 Message Filter Status

The FTCom layer provides information on the filter status of received messages to the gpplication.
Therefore the savice cdl ttRecelveMessage returns the error code
TT_E FTCOM_MSG NOT_RECEIVED, if the lagt vaue of a message has been filtered out (the
received message has not been forwarded by the message filter to the gpplication during the last
execution).

3.11 Overview Message Handling API

The FTCom layer provides status information on the vaidity of recelved messages to the application.
To get an overview on message handling at the sender and at the receiver see Figure 3-8. The
function cdl ttReceiveMessage returns the status of a recelved message, depending on its
configuration. ttReceiveMessage returns only one status code, therefore the error codes are
prioritised in the following way:

1. TT_E FTCOM_MSG NOT_RECEIVED, no frame of the message has been received or the
vaue of the message has not been forwarded by the message filter of the recaiver during the last
execution (only rdevant if message filtering is configured).

2. TT_E FTCOM_RDA_FAILED, message instance(s) have been received but the RDA
caculaion has no vaid result (only rdlevant if RDA is configured).

If an invaidated message is tranamitted, the function cal ttReceiveMessage returns the error code
TT_E FTCOM_MSG_INVALIDATED.

Sender Receiver
Application Application
ttSendMessage() ttReceiveMessage()
_ . ®Error Code:
Filter Filter TT_E_FTCOM_MSG_NOT_RECEIVED
| T -
o ®Error Code:
Replication RDA TT_E_FTCOM_RDA_FAILED
l _ I] <%Error Code:
Msg Packing Msg Unpacking TT_E_FTCOM_MSG_NOT_RECEIVED

Communication System

Figure 3-8: Overview of Message Handling APl

Figure 3-9 shows the different ways of how the different layers of FTCom can be used during
sending and receiving of messages. In FTCom the use of the Fault Tolerant Layer and the Filter layer
is optiond. Due to runtime and code size congraints it could be more efficient not to cdl these layers
if they are not configured. The Fault Tolerant and Filter layer can aso be used for interna

2 © by OSEK OSEK FTCom 1.0

= ﬂ OSEK/VDX Fault-Tolerant Communication

Specification 1.0

communicetion (left Sde of Figure 3-9). A voting of mixed externa and internd messagesis possible
aswdl.

External Communication Internal Communication

Application Application
FTCo $ FTCom o H

Message Filtering Layer Message Filtering Layer

£ ;
Fault Tolerant Layer (RDA) Fault Tolerant Layer (RDA)
v 4
Interaction Layer Interaction Layer
CNI Driver CNI Driver
Bus Communication HW Bus Communication HW

Figure 3-9: Communication paths

OSEK FTCom 1.0 © by OSEK 23

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

4 Other FTCom Functions

4.1 Time and Synchronisation Services

One of the assumptions on the underlying communication system is that a globaly synchronised clock
is provided. Time service is a function which depends on the used communication protocol and can
only be implemented with detalled knowledge of the communication protocol. However a generic
API cdl hasto be provided by the FTCom layer (see chapter 0).

4.1.1 Assumptions
Severd assumptions can be made concerning the underlying communication system and the time-
triggered application:

Communication on the communication media is Sructured in communication rounds which
conds of severd communication dots. Within each 4ot one communication frame is transmitted
which contains one or more message instances.

Application tasks are running Synchronous to communication dots to receive and send messages
with determinidtic latency.

The digpatcher round is a multiple of the communication round. A dispatcher table that is shorter
than a communication round (e.g., haf as long) can be replaced by a dispatcher table of equa
duraion by means of multiple task scheduling.

If the dispatcher round is larger than the communication round it's necessary to digtinguish
between the communication rounds to synchronise gpplications running on different ECUs. For
example, if an gpplication is running on four ECUs, which read a message every second
communication round and as a result drive four actuators it's obvious tha the reading and
processing of the message must happen in the same communication round.

4.1.2 Requirements

FTCom provides the so-caled Synchronisation Layer to the OS, enabling it to synchronise the start
of the dispatcher table to a specid point in time (phase) in dedicated communication rounds. In order
to conced the knowledge about the communication sysem from the OS, FTCom needs some
information about the gpplication (together with the information about the communication system):

The digpatcher round

The phase (offst)

The gpplication is synchronised to which communication rounds
The length of a communication round

FTCom passes the synchronisation information to the gpplication on demand by the globd time. Two
sarvices are therefore specified (see chapter 6.6, Time Service for details):

ttGetGlobal Time which returns the current globd time

ttGetSyncTimes which returns the current globa time and the globd time at the expected art
of the last dispatcher table.

24 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

The following definitions are used (see Figure 4-1):

Dispatcher Table: offline generated time table where the OSEKtime digpatcher
invocation events are defined

Dispatcher Round: length of the Dispatcher Table

Communication Round: length of the periodic trangmisson paitern on the communication
subsystem

Ground State: no task except the idle task is running and No message transmission

(externd and internd) isin progress (RDA, filter or copy task)

| Dispatcher Table Dispatcher Table |

2y |

Task1 Task2 | Task 3f f Taskn |3 | Taskl Task2 | Task3 |---1

o7 |

> _ _ ____ __ _______X___________ |
‘Of‘fseT‘ Dispatcher Round > Communication Slots
I\

L
Global
Time

-t >
Communication
Round

Figure 4-1: Dispatcher and communication rounds

4.2 External Clock Synchronisation

To facilitate the synchronisation of the globally synchronised clock to an externa clock source, eg.,
a GPS recalver, an externa clock synchronisation service must be provided. Thisis not part of the
gandardised FTCom layer. The following describes the recommended practice for implementing an
externd dock synchronisation.

This service has two parts.
(1) Generate a correction vaue for the use by the communication system.

(2) Forward the correction vaue to the communication protocol.

4.2.1 Generation of External Correction Value

In a cluster with externa clock synchronisation, there is dways a least one node interfacing to an
externd time source. A node connected to such an externa time source periodicaly sends out atime
message containing a correction vaue for the complete cluster. All other nodes must receive this
message and write the contents to a dedicated field in the communication controller.

OSEK FTCom 1.0 © by OSEK 25

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

The routine ttExtClockSync is used to generate the correction value in the nodes that have accessto
an externd clock. It interfaces to the externd periphery delivering a clock vaue, and executes the
externa clock synchronisation agorithm. The routine by default returns zero as a correction vaue. If
specified by the user or by a FTCom layer tool, it returns the result of the user defined clock
synchronisation agorithm. The routine must be invoked periodicdly, and is thus part of the time-
triggered task schedule,

The externd rate correction value must be sent to al other nodes in the cluster. Therefore, the routine
generates amessage. The message schedule on the communi cation media must accommodate for the
time message: ether an extraframeis sent, or the time message is contained in a frame together with
other application data.

4.2.2 Write Correction Value to Communication Controller

The correction vadue contained in the last recaived time message must be written to the
communicatiion controller. A routine ttSetExtSync reads the time message and writes it the
communication controller. Thisroutine is periodicaly invoked and therefore part of the time-triggered
task schedule.

4.3 Node Membership Service (optional)

A membership service is the consgent provison of informaion on the activity datus of dl
communication partners. The FTCom layer optionad provides a sysem cdl to find out the
membership satus of every node viaits node id. If the underlying communication protocol comprises
a membership sarvice, this information should be used. Otherwise, the FTCom layer should ensure
that the membership information on the nodes that is provided to the gpplication is consstent (eg.,
by implementing such a protocol in software, or by usng other avalable information of the
communication protocol).

4.4 Lifesign Update

To facilitate prompt error detection, a communication controller implementing a particular protocol
may require the CPU to periodicaly update a defined register with a certain value (smilar to a
watchdog). Thisis caled a lifesgn mechaniam. Detals of if and how to update a lifesgn and the
frequency of the update operation depend on the actua communication protocol that is used.

The FTCom layer provides a sysem cdl to peform this regular lifesgn update, which may be
generated by an FTCom off-line design tool. The tool can dso autometicaly schedule the system
cdl, so that no user action is required for this service. To dlow manud invocation as well, the system
cdl isdsoincluded in the APl description.

45 Start-up

The gtart-up of the distributed system is a function that depends on the used communication protocol
and can only be defined with detailled knowledge of the communication protocol. A communication
protocol specific APl description needs to be defined.

26 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

5 Inter-task Communication

The OSEKtime FTCom layer provides services for the local communication of tasks located on the
same ECU. These services should be used for al data exchanges between tasks. Message filtering
and RDA are not required for locdl inter-task communication.

Inamixed OSEK and OSEKtime system three cases have to be distinguished:
1. Communication between an OSEK task and another OSEK task.

2. Communiceation between an OSEK task and an OSEKtime task.

3. Communication between an OSEKtime task and another OSEKtime task.

5.1 Communication between OSEK Tasks

This case is not part of the OSEKtime specification as the norma OSEK/VDX OS and COM
communication mechanisms apply.

5.2 Communication between OSEK and OSEKtime Tasks

For communication between OSEK tasks on the one hand and OSEKtime tasks on the other hand
the OSEKtime inter-task communication services are used. These services implement loca message
handling, i.e, the only way for communication with and between OSEKtime tasks is the use of

messages.
Thefollowing AP cdls are used for the message handling:
ttSendMessage
ttReceiveMessage
ttinvalidateMessage
Each call of ttReceiveMessage returns anew consistent copy of the message.
Each cdl of ttSendMessage updates the message.
Each cdl of ttinvalidateMessage invdidates the send status of the message.
The difference between loca and globa communication is transparent to the task.

5.3 Communication between OSEKtime Tasks

For communication among OSEKtime tasks the same mechanisms and sarvice cdls as for
communication between OSEK/VDX tasks and OSEKtime tasks are used.

OSEK FTCom 1.0 © by OSEK 27

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6 Specification of FTCom System Services

This chapter is structured according to the original OSEK specification. Sections 6.3 t0 6.7 include a
classfication of OSEKtime FTCom system services.

Type of Calls

The system service interface is ISO/ANSI-C. The system service interface is ISO/ANSI-C. Its
implementation is normdly a function cal, but may dso be solved differently, as required by the
implementation - for example by macros of the C pre-processor. A specific type of implementation
cannot be assumed.

Structure of the Description

The FTCom system services are arranged in logica groups. A coherent description is provided for
al services. The description of each logica group starts with data type definitions and a description
of congtants. A description of the group-specific system services follows.

Service Description

A service description contains the following fidds

Syntax: Interface in C-like syntax.

Parameter (In): List of all input parameters.

Parameter (Out): List of all output parameters.

Description: Explanation of the functionality of the operating system service.

Particularities: Explanation of restrictions relating to the utilisation of the op-
erating system service.

Status: List of possible return values.

Standard: List of return values provided in the operating system's stan-dard
version.

Extended: List of additional return values in the operating system's ex-tended
version.

Most system services return a status to the user. No error hook is caled if an error occurs. The
return status is TT_E FTCOM_OK if it was possible to execute the system service without any
redtrictions. If the system recognises an exceptiond condition, which restricts execution of the system
sarvice, adifferent status is returned.

All return vaues of a sysem service are lised under the individua descriptions. The return status
distinguishes between the "sandard” and “"extended” gaius The "dtandard” verson fulfils the
requirements of a debugged application system as described before. The "extended” verson is
consdered to support testing of not yet fully debugged applications. It comprises extended error
checking compared to the standard version.

The specification of services uses the following naming conventions for data types:
.. Type describes the values of individua data (including pointers).
..RefType: describesapointer to the ... Type (for call by reference).

28 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.1 Common Data Types
ttStatusType

This data type is used for al status information the APl services offer. Naming convention: dl errors
for APl services start with E . Those reserved for the OSEKtime operating syslem and for the
OSEKtime Fault-Tolerant communication layer will begin with:

TT_E_FTCOM_
The normd return vaueisTT_E FTCOM_OK which is associated with the value of E_OK.
The following error vaues are defined:
All errorsof API services:
TT_E_FTCOM_ACCESS
TT_E FTCOM_ID
TT_E_FTCOM_NOFUNC
TT_E FTCOM_VALUE
TT_E FTCOM_RDA_FAILED
TT_E FTCOM_MSG_NOT RECEIVED
TT_E FTCOM_MSG INVALIDATED

The following sections contain a generic (protocol independent) description of the FTCom layer
API.

6.2 Naming Conventions

6.2.1 General Naming Conventions
The following prefixes are used for al OSEKtime FTCom congructional eements, data types,
constants, error codes and system services:

“tt” prefix is used for congtructiona eements, data types and system services,

“TT_E FTCOM " prefix is used for error codes,

“TT” prefix isused for congtants.

Thisisto ensure that no name clashes occur.

OSEK FTCom 1.0 © by OSEK 29

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.3 Message Handling

6.3.1 Data Types

ttStatusType

Thisdatatypeisidenticad with StatusType out of the binding specification.
ttMsgldType

This data type defines the data type for an identifier of a message.
ttAccessNameT ype

This data type defines the data type for references to the message body (data).
ttAccessNameRefType

This data type defines the reference to a variable of type ttAccessNameType.

6.3.2 Constants

TT_E FTCOM_RDA_FAILED congtant of data type ttStatusType, RDA did not
cdculate avdid result

TT_E FTCOM_MSG NOT RECEIVED congant of data type ttStatusType, no frame of the
message has been received or the message has not
been forwarded by the receiver's messege filter
during the last execution

TT_E FTCOM_MSG INVALIDATED congtant of data type ttStatusType, message was
invaidated by sender or the message has not been
forwarded by the sender’s message filter during the

last execution

6.3.3 ttSendMessage
Syntax: ttStatusType ttSendMessage (

ttMsgldType <Message>,

ttAccessNameRefType <Data>)
Parameter (In): Message - message identification

Data - reference to message contents

Parameter (Out): None
Description: ttSendMessage is called by the user out of a task body or an user

ISR and copies the data <Data> of the message <Message> from
the task local memory to a publicly accessible copy of the
message (FT-CNI for non local messages). The message will
always be marked as valid.

ttSendMessage also reset the flag, which is associated with the
given message.

Particularities: To be called by the user out of task body or from user ISRs.

30 © by OSEK OSEK FTCom 1.0

il

OSEK/VDX Fault-Tolerant Communication

Specification 1.0

Status:
Standard:
Extended:

No error, TT_E_FTCOM_OK
<Message>is invalid, TT_E_FTCOM_ID.
<Data> is invalid or access denied, TT_E_FTCOM_ACCESS.

6.3.4 ttReceiveMessage

Syntax:

Parameter (In):
Parameter (Out):

Description:

Particularities:
Status:
Standard:

Extended:

ttStatusType ttReceiveMessage (

ttMsgldType <Message>,
ttAccessNameRefType <Data>)

Message - message identification
Data - reference to message contents

ttReceiveMessage is called by the user out of a task body or an
user ISR and copies the data <Data> of the message <Message>
from a publicly accessible copy of the message (FT-CNI for non
local messages) to the task local memory.

In case ttReceiveMessage return a status different from
TT_E_FTCOM_OK, the contents of task local memory pointed to
by <Data> are not modified.

To be called by the user out of task body or from user ISRs.

No error, TT_E_FTCOM_OK
TT_E FTCOM_RDA _ FAILED RDA did not calculate a valid result

TT_E_FTCOM_MSG_NOT_RECEIVED no frame containing an
instance of the message has been received or the value of the
message has not been forwarded by the receiver’'s message filter
during the last execution

TT_E _FTCOM_MSG_INVALIDATED message was invalidated
by sender or the value of the message has not been forwarded by
the sender’s message filter during the last execution

<Message>isinvalid, TT_E _FTCOM_ID.
<Data> is invalid or access denied, TT_E_FTCOM_ACCESS.

OSEK FTCom 1.0

© by OSEK 31

&l

OSEK/VDX Fault-Tolerant Communication

Specification 1.0

6.3.5 ttinvalidateMessage

Syntax:

Parameter (In):
Parameter (Out):

Description:

Particularities:

Status:
Standard:
Extended:

ttStatusType ttinvalidateMessage (

ttMsgldType <Message>)
Message - message identification
none

ttinvalidateMessage invalidates the message <Message> in the
FT-CNI by setting the message status to invalidated message.

To be called by the user out of task body or from user ISRs.

No error, TT_E_FTCOM_OK
<Message> is invalid, TT_E_FTCOM_ID.

The service is not specified for that <Message>,
TT_E_FTCOM_NOFUNC.

An instance of <Message> was the input of the function, e.g. <A”>
instead of <A>, TT_E_FTCOM_ACCESS.

6.3.6 Differences between OSEKtime and OSEK/VDX Message Management

This section ligts the differences between the OSEK time and the OSEK/VDX message management
AP, in order to avoid misinterpretations.

The message copy attribute (WithCopy/WithoutCopy) is hot a user-level configuration attribute
because it is up to offline tools to optimise the message access scheme. Furthermore, the
OSEK/VDX resource mechanism protecting messages without copy (GetMessageResource() /
ReleaseM essageResource() services) is not applicable for OSEKtime,

The E_.COM_LOCKED error code is not supported because the message service cal should
be completed in any case in order to avoid a blocking problem. For example, the following
congruction is forbidden:

while (ttSendMessage (...) != TT_E FTCOM K);

Message data consstency should be guaranteed by the system. For example, a two message
buffer/semaphore implementation concept may be used.

Each message should have one sender and a number of receivers.

32

© by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.4 Membership Service

6.4.1 Data Types

ttNodel dType

This data type defines the data type for an identifier of anode.

ttNodeM ember shipType

This data type defines the data type for the node membership.

ttNodeM ember shipRef Type

This data type defines the reference to a variable of type ttNodeM embershipType.

6.4.2 Constants
TT_NODE_ACTIVE constant of data type ttNodeM embershipType for active node
TT_NODE_INACTIVE congtant of data type ttNodeM embershipType for inactive node

6.4.3 ttGetNodeMembership
Syntax: ttStatusType ttGetNodeMembership (

ttNodeldType <NodelD>,
ttNodeMembershipRefType <NodeMembership>)

Parameter (In): NodelD - ldentification of the node whose
membership is queried.
NodeMembership - Reference to the NodeMembership
variable.

Parameter (Out): none

Description: ttGetNodeMembership is called by the user out of a task body or
an user ISR and returns the node membership information of the
node <NodelD>.

Particularities: To be called by the user out of task body or from user ISRs.

This service is optional.

Status:
Standard: No error, TT_E _FTCOM_OK
Extended: none.

OSEK FTCom 1.0 © by OSEK

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.5 Notification mechanism

6.5.1 Data Types

ttFlagldType

This data type defines the data type for the identifier of aflag.
ttFlagStatusType

This data type defines the data type for the notification flag.
ttFlagStatusRef Type

This data type defines the reference to a variable of type ttFlagStatusType.

6.5.2 Constants
TT_FLAG SET constant of data type ttHagStatusType for set flags
TT_FLAG _CLEARED congtant of data type ttHagStatusType for cleared flags

6.5.3 ttReadFlag
Syntax: ttStatusType ttReadFlag (

ttFlagldType <Flag>,
ttFlagStatusRefType <Status>)

Parameter (In): Flag - identification of the flag <Flag>

Parameter (Out): Status - reference to the flag status variable
Description: ttReadFlag returns the status of the flag <Flag>.
Particularities: To be called by the user out of task body or from user ISRs.
Status:

Standard: No error, TT_E_FTCOM_OK.
Extended: <Flag>isinvalid, TT_E FTCOM_ID.

A © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.6 Time Service

6.6.1 Data Types
ttTimeSour cel dType

This data type defines the data type for the identifier of a time source (e.g. globa time base of a
specific communication controller).

ttTickType

This data type defines the data type for the count value (count vaue in ticks).
ttTickRefType

This data type defines the reference to a variable of type ttTickType.
ttSyncStatusType

This data type defines the data type for the synchronisation satus.
ttSyncStatusRef Type

This data type defines the reference to a variable of type ttSyncStatusType.

6.6.2 Constants

TT_SYNCHRONOUS network-wide synchronised time is available
TT_ASYNCHRONOUS network-wide synchronised time is unavailable
TT_DEF TIMESOURCE default time source specified offline

6.6.3 ttGetGlobalTime
Syntax: ttStatusType ttGetGlobalTime (

ttTimeSourceldType <TimeSource>,
ttTickRefType <GlobalTime>)

Parameter (In): TimeSource - time source identification
(TT_DEF_TIMESOURCE for default time source)
Parameter (Out): GlobalTime - reference to current value of the network-wide

synchronised time.

Description: This service returns the current synchronised time of the dedicated
time source <TimeSource> (see OSEKtime OS specification for
more details on the clock synchronisation).

Particularities: To be called by the user out of task body or an ISR or by the OS.
Status:
Standard: No error, TT_E_FTCOM_OK

Extended: TT_E FTCOM_VALUE if GlobalTime is not available,
TT_E_FTCOM_ID if <TimeSource> is invalid.

OSEK FTCom 1.0 © by OSEK 35

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.6.4 ttGetComSyncStatus
Syntax: ttStatusType ttGetComSyncStatus (

ttTimeSourceldType <TimeSource>,
ttSyncStatusRefType <SyncStatus>)

Parameter (In): TimeSource - time source identification
(TT_DEF_TIMESOURCE for default time source)

Parameter (Out): SyncStatus - reference to the current synchronisation status.

Description: This service indicates whether the global time of the dedicated

time source <TimeSource> is available (TT_SYNCHRONOUS) or
not (TT_ASYNCHRONOUS).

Particularities: To be called by the user out of task body or an ISR or by the OS.
Status:

Standard: No error, TT_E _FTCOM_OK

Extended: TT_E _FTCOM_ID if <TimeSource> is invalid.

6.6.5 ttGetSyncTimes
Syntax: ttStatusType ttGetSyncTimes (

ttTimeSourceldType <TimeSource>,
ttTickRefType <GlobalTime>,
ttTickRefType <ScheduleTime>)

Parameter (In): TimeSource - time source identification
(TT_DEF_TIMESOURCE for default time source)
Parameter (Out): GlobalTime - reference to current value of the network-wide

synchronised time.

ScheduleTime - reference to value of the global time at the start
of the last dispatching table.

Description: This service returns the current time of the dedicated time source
<TimeSource> (see OSEKtime OS specification for more details
on the clock synchronisation) and the time at which the start of the
last dispatching table was scheduled.

Particularities: To be called by the OS.
Status:
Standard: No error, TT_E_FTCOM_OK

Extended: TT_E_FTCOM_VALUE if GlobalTime is not available,
TT_E_FTCOM_ID if <TimeSource> is invalid.

36 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

6.7 External Clock Synchronisation

The following two tasks are a minimum s&t of functions to implement externa clock synchronisation.
Actud implementations might include extensions to this description, depending on specifics of the
external clocks used.

6.7.1 ttExtClockSync

Syntax: ttStatusType ttExtClockSync (
ttTimeSourceldType <TimeSource>)

Parameter (In): TimeSource - time source identification

Parameter (Out): none

Description: ttExtClockSync interfaces to an external clock hardware
<TimeSource> and performs the external clock synchronisation
algorithm according to the value read from this clock and the
global time in the cluster. It generates the time message containing
the correction value.

Particularities: To be called from a periodic task of the FTCom schedule.
Status:
Standard: No error, TT_E_FTCOM_OK

Extended: TT_E FTCOM_ACCESS when called from a user
taskTT_NO_FUNC if no external clock hardware is available,
TT_E_FTCOM_ID if <TimeSource> is invalid.

6.7.2 ttSetExtSync

Syntax: ttStatusType ttSetExtSync (
ttTimeSourceldType <TimeSource>)

Parameter (In): TimeSource - time source identification

Parameter (Out): none

Description: ttSetExtSync reads a time message out of the CNI and writes a
correction value to an appropriate CNI External Rate Correction
Field.

Particularities: To be called from a periodic task of the FTCom schedule.

Status:

Standard: No error, TT_E_FTCOM_OK

Extended: TT_E_FTCOM_ACCESS when called from a user task,
TT_E_FTCOM_ID when <TimeSource> is invalid

OSEK FTCom 1.0 © by OSEK 37

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

7 Hints

Following topics are not part of the specification but are recommendations.

7.1 Optional Properties of the FTCom and the underlying
Communication Controller

Optiona properties of the FTCom and the underlying communication controller are:

Atomic Frame Transmission should be guaranteed by the communication protocol. The
FTCom layer should provide atomic message transmisson.

The communicaion sysem may support external clock synchronisation by periodicaly
transmitting time messages from a node connected to an externd time source to al other nodes.
The time messages must contain at least a correction vaue to adjust the system time to the
externd time source.

The communication system may support redundancy. This may range from the weskest form of
redundancy, time redundancy over a single channd, to multiple transmisson channds. For
redundant channels replica determinism must be supported, i.e, messages sent over two
channds mugt arrive in adeterministic order.

38 © by OSEK OSEK FTCom 1.0

= ﬂ\ OSEK /VDX Fault-Tolerant Communication

Specification 1.0

8 Index

8.1 List of Services, Data Types and Constants

TT_ASYNCHRONOUS 35 ttGetNodeM embership 33
TT_DEF_TIMESOURCE 35 ttGetSyncTimes 36
TT_E FTCOM MSG_INVALIDATED 30 ttinvaidateMessage 32
TT_E FTCOM_MSG_NOT RECEIVED 30 ttMsgldType 30
TT_E FTCOM_RDA_FAILED 30 ttNodeldType 33
TT_FLAG _CLEARED 34 ttNodeMembershipRef Type 33
TT_FLAG _SET 34 ttNodeMembershipType 33
TT_NODE_ACTIVE 33 ttReadFag 34
TT_NODE_INACTIVE 33 ttReceiveMessage 31
TT_SYNCHRONOUS 35 ttSendM essage 30
ttAccessNameRef Type 30 ttSetExtSync 37
ttAccessNameType 30 ttStatusType 29, 30
ttExtClockSync 36 ttSyncStatusRef Type 35
ttHagIDType 34 ttSyncStatusType 35
ttHagStatusRef Type 34 ttTickRefType 34
ttHagStatusType 34 ttTickType 34
ttGetComSyncStatus 35 ttTimeSourcel DType 34
ttGatGloba Time 35

8.2 List of Figures

Figure 2-1: Architecture of a OSEKHIME SYSOM......cocviiiiiiiiccie e s 8
Figure 2-2: Layered mode of OSEKtime FTCom architeCture.............ccovveveenenenene e 10
Figure 3-1: CNI, Message Copy Tasks, FT-CNI, and Application Tasks.........cccceeveviiveeieeinenne. 13
Figure 3-2: Example frame layout for atwo-channgl SyStem.........ccocevireririciene s 14
Figure 3-3: Example of direct messageto frame MappiNg.........cceeieevveeiiecieesee e 15
Figure 3-4: Example for standard message to frame Mappingcoeveeverereneereenesiese e 15
Figure 3-5: Example for dternate message to frame MappiNg.......ccvevveeieeeieesee e e 16
Figure 3-6: Consistency Of repliCaled MESSAPESevveriererieee e 17
FIgure 3-7: MESSAOE FITEN ... e e 20
Figure 3-8: Overview of Message Handling APooeiiiiieee s 22
Figure 3-9;: ComMMUNICAION PANS.......cceiiiiiiie e ere e 23
Figure 4-1: Dispatcher and commUNICatiON FOUNGS..........coerierieriinie e 25

8.3 List of Tables
Table 3-1: Basc dgorithms of the message filter ..o 21

OSEK FTCom 1.0 © by OSEK 39

= ﬂ OSEK/VDX Fault-Tolerant Communication
Specification 1.0

9 History

Verson Date Remarks

1.0 July 24" 2001 Authors:
Anton Schedl BMW
Elmer Dilger Bosch
Thomas Fihrer Bosch
Bernd Hedenetz DamlerChryder
Jens Ruh DamlerChryder
Matthias Kihlewein DamlerChryder
Emmerich Fuchs DeComSys
Thomas M. Gdla DeComSys
Y arodav Domaratsky Motorola
Andress Kriiger Motorola, since 04/01 Audi
Patrick Pelcat PSA Peugeot Citroén
Michd Tai-Leung Renault
Martin Glick TTTech
Stefan Poledna TTTech
Thomas Ringler University of Stuttgart
Brian Nash Wind River
Tim Curtis Wind River

40 © by OSEK OSEK FTCom 1.0

