= Open Systems and the Corresponding I nterfaces
for Automotive Electronics

OSEK / VDX

System Generation

OIL: OSEK Implementation L anguage

Verson 2.2

July 27", 2000

Thisdocument isan official release and replaces all previoudy distributed documents. The OSEK group retainsthe
right to make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without permissonin
writing from the OSEK/VDX steering committee.

OSEK/VDX OIL 2.2 © by OSEK Document: OIL2-2.doc

= Open Systems and the Corresponding I nterfaces
i for Automotive Electronics

What is OSEK/VDX?

OSEK/VDX isajoint project of the automotive industry. It ams at an industry standard for an
open-ended architecture for distributed control unitsin vehicles.

A real-time operating system, software interfaces and functions for communication and net-
work management tasks are thus jointly specified.

The term OSEK means ” Offene Systeme und deren Schnittstellen fir die Elektronik im Kraft-
fahrzeug” (Open systems and the corresponding interfaces for automotive electronics). The
term VDX means,,Vehicle Digtributed eXecutive”. The functionality of OSEK operating
system was harmonised with VDX. For simplicity OSEK will be used instead of OSEK/VDX

in the document.

OSEK/VDX partners

The following companies attended and contributed to the OSEK/VDX Technical Committee:

Accelerated Technology Inc.,
ACTIA,

Adam Opdl AG,

AFT GmbH,

ATM Computer GmbH,
Blaupunkt,

BMW AG,

Borg Instruments GmbH,
Cambridge Consultants,
Continental Teves,

Cummins Engine Company,
DamlerChryder AG,

Delco Electronics,

Denso,

Epsilon GmbH,

ETAS GmbH & Co KG,
FIAT- Centro Ricerche,

FZl1,

GM Europe GmbH,
HellaKG,

Hewlett Packard France,
Hitachi Micro Systems Europe Ltd.,
Hitex,

IBM Deutschland Entwicklung GmbH,
[T - University of Karlsruhe,
Infineon,

INRIA,

Integrated Systems Inc.,
IRISA,

LucasVarity,

Magneti Marelli,

Meced,

Motorola,

National Semiconductor,

NEC Electronics GmbH,
NRTA,

Philips Car Systems,

Porsche AG,

PSA,

Renault,

Robert Bosch GmbH,

Sagem Electronic Division,
Siemens Automotive,

Softing GmbH,

ST Mircroelectronics,

Stenkil Systems AB,

Sysgo Real-Time Solutions GmbH,
TECS!,

Telelogic GmbH,

TEMIC,

Texas Instruments,
Thomson-CSF Detexis,
Triaog,

UTA - United Technologies Automotive,
VDO Adolf Schindling GmbH,
Vector Informatik,

Visteon,

Volkswagen AG,

Volvo Car Corporation,

Wind River Systems,

3Soft GmbH.

OSEK/VDX OIL 2

© by OSEK

Page 2

= Open Systems and the Corresponding I nterfaces
for Automotive Electronics

M otivation

. High, recurring expenses in the development and variant management of non-application
related aspects of control unit software.

. Incompatibility of control units made by different manufacturers due to different inter-
faces and protocols.

Goal

Support of the portability and reusability of the application software by:

. Specification of interfaces which are abstract and as application-independent as possible,
in the following areas: real-time operating system, communication and network
management.

. Specification of a user interface independent of hardware and network.

. Efficient design of architecture: The functionality shall be configurable and scaleable, to
enable optimal adjustment of the architecture to the application in question.

. Verification of functionality and implementation of prototypes in selected pilot projects.
Advantages

. Clear savings in costs and development time.
. Enhanced quality of the software of control units of various companies.
. Standardised interfacing features for control units with different architectural designs.

. Sequenced utilisation of the intelligence (existing resources) distributed in the vehicle, to
enhance the performance of the overall system without requiring additional hardware.

. Provides independence with regards to individual implementation, as the specification
does not prescribe implementation aspects.

OSEK/VDX OIL 2.2 © by OSEK Page 3

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

Contents
N o 1 o0 (1 {0 ISR RRTRR 5
L1 GENEIAl REMAIKS.....c.eiieiitieieeie ittt bt bbbt bt et e bt s bt bt e se et e s b e sb e e seenbesbesbeeneennennas 5
N2 Y o Y7 (o TS TPRUU TR PRRUTRT 5
R I o o)1 1L O PSP PP R TPUPRRT 6
2 Language DEfINITIONc..veiie et 7
2.1 PrEBMDIE. ..o E bR e R bt e b b nh e e e e 7
2.2 GENEIAl CONCEPL ...veiivieitee ittt st ste e s e st e st e s teesteesbe e te e te e be e beebeeseesteesseenseenteensesnseesbeesreenteenreens 7
P T O LI = [t RO 9
3 Standard System Object DefiNItIONS.ccccvviiiiiiiiic e 14
00 == PP 14
3.2 Standard system objects, attributes, and refErenCES.........ccvvvveriiieeiieecee e 15
4 Définition of Particular Implementationoooiuiie i 28
R AN 1] o0 | L= 1Y o L= SRR 28
A2 REFEIENCE TYPES. ..o itieitieiteeitee st st s ettt e st e ste e s te e stee s teesbe e s be e s beesbeesbeesbeeabe e s beeabeeabeeabeeabeeabeesbeenteenteenteenes 29
TV U] o] F= Y= 1< TSR PRR 30
S 1] o] SRR 31
LI Y o 0= 0o) PRSPPI 33
5.1 StAHC MOUE OF OIL ...eiiiiiiiiiiieeieee ettt bbb bbb bt s bt e sn e b e sne e b e 33
LIS Y 1 = o O | SRR 34
5.3 Default definition of standard object attributes and referenCes.........ovvvvveenieieece v 38
5.4 Sample of aCOMPIELE OIL fil@.. i it s ee s 40
5.5 GENEIAION NIMES ...ttt bbbt b e bt e e b e bt b e e e e sbesbesbeeneenneneas 47
6 Changesin SPECITICALIONS.......ccuuiie et e e re e e e e e 48
6.1 Changesfrom specification 1.0/2.0 10 2.1......ccvoiieiiiiieeee e eee 48
6.2 Changesfrom SPECifiCation 2.1 10 2.2.......cccviiiiiieiecie et 48
A 1o L= PR PROPRRRI 49
S T 1 (o] Y PP 51

Figure 1-1: Example of development process for OSEK/VDX applications...........cccceevcvveeeens 5
Figure 2-1: OIL standard OBJECES.ccoiiuuiiie et e e e s e e s rreeaeens 8
Figure 5-1: Static MOdel Of OILcoiiiiiiee e 28

OSEK/VDX OIL 2.2 © by OSEK Page 4

OSEK/V DX OSEK Implementation Language

Specification 2.2

1 Introduction

1.1 General Remarks

This document refers to the OSEK OS specification 2.1 of the operating system. For a better
understanding of the document the reader should be familiar with the contents of the OS
specification.

1.2 Motivation

Today within the OSEK OS standardisation, only the runtime services and APl are defined. To
reach the original goal of OSEK of portable software, a way has been defined to describe the
configuration of an OSEK application and operating system .

This description version 2.2 of an OSEK system only addresses a single central processing unit
(CPU) in an electronic control unit (ECU), not an ECU network.

!

“C” code
Application User’s source
configuration file code
(OIL)

“C” code

:__1| Make tool

[Sp—

Object libraries

. Third party tools & related files

—_—_———— - ——_——

. OS components, tools & related files

|:| User written/defined

Figure1-1: Example of development processfor OSEK/VDX applications

The figure above shows an example of a development process for OSEK/VDX applications.
The OIL description may be handwritten or generated by a system configuration tool.
Operating systems delivered in source code are compiled together with the application, others
delivered as alibrary are integrated by the linker.

OSEK/VDX OIL 2.2 © by OSEK Page 5

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

1.3 Acronyms

APl Application Program Interface
BNF Backus-Naur Form*

COM Communication

CPU Central Processing Unit

ECU Electronic Control Unit

ISR Interrupt Service Routine

NM Network Management

OIL OSEK Implementation Language
OS Operating System

UML Unified Modeling Language

1 NAUR, Peter (ed.), "Revised Report on the Algorithmic Language ALGOL 60.", Communications of the
ACM, Val. 3, No.5, pp. 299-314, May 1960 or

M. Marcotty & H. Ledgard, The World of Programming Languages, Springer-Verlag, Berlin 1986., pages 41
and following.

OSEK/VDX OIL 2.2 © by OSEK Page 6

OSEK/V DX OSEK Implementation Language

Specification 2.2

2 Language Definition

2.1 Preamble

The goal of OIL isto provide a possibility to configure an OSEK application inside a particular
CPU. This means for each CPU there is one OIL description.

All OSEK system objects are described using the OIL formet.

2.2 General Concept

The OIL description of the OSEK application is considered to be composed of a set of system
objects. A CPU is acontainer for these application system objects.

OIL defines standard types for system objects. Each object is described by a set of attributes
and references. OIL defines explicitly all standard attributes for each standard system object.

The possible references defined in OIL for standard objects are presented in the following
picture.

Each OSEK implementation can define additional specific attributes and references. Only
attributes may be added to the existing objects. Creating of new objects or other changes to the
grammar are not alowed. All non-standard attributes (optional attributes) are considered to
be fully implementation specific and have no standard interpretation. Each OSEK
implementation can limit the given set of values for object attributes (e.g. restrict the possible
value range for priorities).

OSEK/VDX OIL 2.2 © by OSEK Page 7

i |

OSE K /V DX OSEK Implementation Language

Specification 2.2
CPU
(0N RESOURCE
APPMODE TASK COUNTER
ISR EVENT ALARM
MESSAGE COM NM
Legend:
reference to —»
Figure2-1: OIL standard objects

Description of the OIL objects:

CPU:
OS.

APPMODE:

ISR:
RESOURCE:
TASK:
COUNTER:
EVENT:
ALARM:

the CPU on which the application runs under the OSEK OS control.

the OSEK OS that runs on the CPU. No standard references are defined in
OIL from OS to other system objects but, of course, all system objects are
controlled by OS.

defines different modes of operation for the application. No standard
attributes and references are defined in OIL 2.2 for the APPMODE object.

interrupt service routines supported by OS.

the resource that can be occupied by atask.

the task handled by the OS.

the counter represents hardware/software tick source for alarms.
the event tasks may react on.

the darm is based on a counter and can either activate atask or set an event.

OSEK/VDX OIL 2.2 © by OSEK Page 8

OSEK/V DX OSEK Implementation Language

Specification 2.2

MESSAGE: the message is defined in OSEK COM and defines a mechanism for data
exchange between different entities (entities beeing tasks or I1SRs).

COM: the communication subsystem. The COM object has standard attributes to
define general properties for the COM.

NM: the network management subsystem. This subsystem is out of the scope of
the OSEK OS gpecification, so no standard attributes and references are
defined in OIL 2.2 for NM object.

2.3 OIL Basics

2.3.1 OIL file structure

The OIL description contains two parts - one for the definition of standard and implementation
specific features (implementation definition) and another one for the definition of the structure
of the application located on the particular CPU (application definition).

The OIL description consists of one main OIL-file which can reference to includes (see
section 2.3.9).

2.3.2 Syntax

The grammar rules for an OIL file are presented in the document using a notation similar to the
Backus-Naur Form (BNF), see section 5.2, Syntax of OIL.

All keywords, attributes, object names, and other identifiers are case-sensitive.

Comments in the BNF notation are written as C™-style comments.

2.3.3 OIL versions
OIL version "2.0" corresponds to the OSEK OS specification 2.0 revision 1.

OIL version "2.1" also corresponds to the OSEK OS specification 2.0 revision 1. OIL version
"2.1" means an Ol L-internal extension in syntax and semantics.

The OIL version “2.1” is not compatible to the OIL version “2.0".
The OIL version “2.2” iscompatibleto OIL “2.1”. “2.2" only defines new standard attributes.

2.3.4 Implementation Definition

For each object, the implementation definition defines all attributes and their properties for a
particular OSEK implementation.

The implementation definition must be present in the OIL description and must contain all
standard attributes, which are listed in chapter 3.2. The value range of those attributes may be
restricted. Attribute definition is described in chapter 4.

Additional attributes and their properties can be defined for the objects for the particular
OSEK implementation. Additional attributes are optional.

The include mechanism (see chapter 2.3.1, OIL file) can be used to define the implementation
definition as a separate file. Thus corresponding implementation definition files can be

OSEK/VDX OIL 2.2 © by OSEK Page 9

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

developed and delivered with particular OSEK implementations and then included with the
application definition in user's OIL files.

2.35 Application Definition

The application definition comprises a set of system objects and the values for their attributes.
Except for the OS object the application definition can contain more than one system object of
a particular type.

Each object is characterized by a set of attributes and their values. No attribute may appear
that is not defined in the implementation definition. Attribute values must comply with the
attribute properties specified in the implementation definition.

Attributes that take a single value may only be specified once per object. Attributes that take a
list of values have to be specified as multiple statements.

Example for multiple statement
RESOURCE = RES],
RESOURCE = RES2;

2.3.6 Dependencies between attributes

The OIL Specification allows to express dependencies between attributes. To be more open to
vendor specific and standard extensions the OIL syntax covers conditiona attributes
(parameters).

OIL alows infinite nesting of those dependencies.
Only ENUM and BOOLEAN attribute values can be parameterized.

If attributes in several sets of one conditional attribute have the same name they must have the
same type.

OSEK/VDX OIL 2.2 © by OSEK Page 10

OSEK/V DX OSEK Implementation Language

Specification 2.2

Example (implementation and application part of OIL file)
/* inplenentation part */

MESSAGE {
ENUM |
ACTI VATETASK { TASK TYPE Task; },
SETEVENT { TASK TYPE Task; EVENT TYPE Event ToSet; },

NONE
] ACTION];

/* application part */

MESSAGE ProdMessage {
ACTI ON = SETEVENT {
Task = TaskProd:"Producer Task";
Event ToSet = MessageEvent: "Producer Task informed by MessageEvent";

b
ACTI ON = ACTI VATETASK {

Task = TaskToNotify:"Notified Task";
b

}s

2.3.7 Automatic attribute assignment

Attribute values may be calculated by the generator. For those attributes the keyword
WITH_AUTO has to be defined in the implementation definition. In conjunction with
WITH_AUTO the attribute value AUTO is valid in the application part and as a default value.

2.3.8 Default values

Default values are used by the generator in the case that an attribute is missing in the
application definition.

Default values are mandatory for optional attributes. Because the syntax of the implementation
specific part requires the definition of default values a special default value NO_DEFAULT is
defined to explicitly suppress the default mechanism. In that case the attribute must be defined
in the application part.

Default values are forbidden for standard attributes.
It isan error if astandard attribute is missing from the application definition.
The OIL grammar uses assignment in the implementation definition to specify default values.

List of all possible combinations of attributes with default values are shown in the example of
ENUM.

The OIL syntax allows six combinations for the implementation-specific part and three
combinations for the application part:

OSEK/VDX OIL 2.2 © by OSEK Page 11

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2
I mplementation part Application part
param = A, param = AUTG, /1 nothing
ENUM[A, B, C] param = B; param =A ERROR Param =B
ENUM[A, B, C param =A ERROR ERROR
param = NO DEFAULT,;
ENUM[A, B, C] param = AUTQ ERROR ERROR ERROR
ENUM W TH_AUTO [A, B, (] param = A Generator- param =>B
param = B specific
ENUM W TH_AUTO [A B, C param = A Generator- ERROR
param = NO_DEFAULT; specific
ENUM WTH AUTO [A, B, (] param = A Generator- Generator-
param = AUTQ specific specific

Example:
| MPLEMENTATI ON nyOS {
TASK {
U NT32 [1..0xff] STACKSIZE = 16; // |f STACKSI ZE i s nissing,
// 16 is used as a default
}s

}s

2.3.9 Include-mechanism

The include mechanism adlows for separate definitions for some parts of OIL. The
implementation definition can be delivered with an OSEK implementation and used (included)
by the system designer.

The include statement has the same syntax asin ISO/ANSI-C:
#include <file>
#i nclude "file"

* For each OIL tool there must be away to specify search-paths for include files.
* #include <file>usesthe search-path
* #include "file" usesthedirectory, where the including file resides

Placement of include directives

The same rules apply as for ISO/ANSI-C, e.g. the include statement has to be set on a seperate
line and can be set anywhere in the description files.

2.3.10 Comments
The OIL file may contain C™*-style comments (/ * */ and/ /). C™ rules apply.

OSEK/VDX OIL 2.2 © by OSEK Page 12

OSEK/V DX OSEK Implementation Language

Specification 2.2

2.3.11 Descriptions

To describe OIL objects, attributes, and values, the OIL syntax offers the concept of
descriptions. Descriptions are optional. They start after a colon (:), are enclosed in double
guotes ("), and must not contain a double quote.

Example:

BOOLEAN START = FALSE: "Automatic start of alarm on systemstart";

Descriptions give the user additional information about OIL objects, attributes and valuesin a
well defined format. The interpretation of descriptions is implementation specific.

OSEK/VDX OIL 2.2 © by OSEK Page 13

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

3 Standard System Object Definitions

3.1 Rules

The application configuration files must conform some rules to be successfully processed.
Thoserules are:

All objects are described using the OIL syntax.
Each object must have a unique name. Each object may be divided into several parts.
All object names must be accessible from the application.

An attribute defines some object properties (for example, the task priority). Attributes that
take a single value may only be specified once per object. Attributes that take alist of values
must be specified as multiple statements.

An object can have a set of references to other system objects. Per object there may be
more than one reference to the same type of object (e.g. more than one reference to
different events,; see example in chapter 3.2.4.8).

Vaues must be defined for all standard attributes of all objects, except for multiple
attributes which can be empty.

The <name> non-terminal represents any | SO/ANSI-C identifier.

The <nunber > non-termina represents any integer constant. The range of integers is
according to the target platform. Notations: decimal and hexadecimal. Decimal integers
with leading zeroes are not allowed as they might be misinterpreted as octal values!

The <string> non-terminal represents any 8-bit character sequence enclosed in double-
guotes ("), but not containing double-quotes.

The description represents any 8-bit character sequence enclosed in double-quotes ("), but
not containing double-quotes.

A reference defines a uni-directional link to another object (for example, the task X has to
be activated when the alarm Y expires).

I mplementation-specific additional parameters are only allowed for optiona attributes. For
standard attributes it is forbidden to define implementation-specific additional parameters”.

2 for portability reasons

OSEK/VDX OIL 2.2 © by OSEK Page 14

OSEK/V DX OSEK Implementation Language

Specification 2.2

3.2 Standard system objects, attributes, and references

For each system object the standard set of attributes with possible values is defined. These
standard object characteristics must be supported by any implementation.

3.21 CPU

CPU isused as a container for application objects.

3.2.2 os?®

OS is the system object used to define OSEK operating system properties for an OSEK
application.

In a CPU exactly one OS object has to be defined.

3.22.1 STATUS

The STATUS attribute specifies whether a system with standard or extended status has to be
used. Automatic assignment is not supported for this attribute.

This attribute isan ENUM with following possible values:
 STANDARD
 EXTENDED

3.2.2.2 Hook routines
The following attribute names are defined for the hook routines supported by the OS:

* STARTUPHOOK

+ ERRORHOOK

» SHUTDOWNHOOK
* PRETASKHOOK

* POSTTASKHOOK

» These attributes are of type BOOLEAN.
If ahook routine will be used, the value is set to TRUE otherwise the value is set to FALSE.

3.2.2.3 Sample

CS sanpl eCS {
STATUS = STANDARD,
STARTUPHOOK = TRUE;
ERRORHOOK = TRUE;
SHUTDOWNHOOK = TRUE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;

3 Attributes for Conformance Class and Scheduling are not defined as these are not part of the OS specification

OSEK/VDX OIL 2.2 © by OSEK Page 15

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

3.2.3 APPMODE

APPMODE is the system object used to define OSEK operating system properties for an
OSEK OS application mode.

No standard attributes are defined for the APPMODE object in OIL 2.2.
InaCPU at least one APPMODE object has to be defined.

3.24 TASK
TASK objects represent OSEK tasks.

3.24.1 PRIORITY

The priority of the task is defined by the value of the PRIORITY attribute. This value hasto be
understood as a relative value; this means the values of PRIORITY show only the relative
ordering of the tasks.

This attribute has the type UINT32.

OSEK defines the lowest priority as zero (0), a bigger value of the PRIORITY attribute
corresponds to a higher priority (compare OSEK specification 2.1, ch. 4.5).

3.24.2 SCHEDULE
The SCHEDULE attribute defines the preemptiveness of the task.

This attribute isan ENUM with following possible values:
* NON
 FULL

The FULL value of this attribute corresponds to a preemptive task, the NON value to a non-
preemptive task.

3.24.3 ACTIVATION

The ACTIVATION attribute defines the maximum number of queued activation requests for
the task. A value equal to "1" means that at any time only single activation is permitted for this
task (see OSEK OS specification 2.1, chapter 4.3).

This attribute has the type UINT32.

3.24.4 AUTOSTART

The AUTOSTART attribute determines whether the task is activated during the system start-
up procedure or not.

This attribute isa BOOLEAN .

If the task should be activated during the system start-up, the value is set to TRUE otherwise
the value is set to FALSE.

OSEK/VDX OIL 2.2 © by OSEK Page 16

OSEK/V DX OSEK Implementation Language

Specification 2.2

3.24.5 RESOURCE
The RESOURCE reference is used to define alist of resources accessed by the task.

This attribute is a multiple reference (see chapter 4.2, Reference Types) of type
RESOURCE_TYPE.

3.2.4.6 EVENT
The EVENT reference is used to define alist of events the extended task may react on.

This attribute is a multiple reference (see chapter 4.2, Reference Types) of type
EVENT_TYPE.

3.24.7 ACCESSOR

The ACCESSOR is used to define multiple references to sent or received messages. In
addition the parameters WITHOUTCOPY and ACCESSNAME are defined.

This attribute is a parametrized ENUM with following possible values:
* SENT {MESSAGE_TYPE MESSAGE; BOOLEAN WITHOUTCOPY;
STRING ACCESSNAME;}
» RECEIVED { MESSAGE_TYPE MESSAGE; BOOLEAN WITHOUTCOPY;
STRING ACCESSNAME;}

ACCESSOR = SENT
The MESSAGE reference parameter defines the message to be sent by the task.

This parameter is a single reference (see chapter 4.2, Reference Types) of type
MESSAGE_TYPE.

The WITHOUTCOPY parameter specifiesif alocal copy of the message is used.
This attribute isa BOOLEAN.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attributeisa STRING.

ACCESSOR = RECEIVED
The MESSAGE reference parameter defines the message to be received by the task.

This parameter is a single reference (see chapter 4.2, Reference Types) of type
MESSAGE_TYPE.

OSEK/VDX OIL 2.2 © by OSEK Page 17

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

The WITHOUTCOPY parameter specifiesif alocal copy of the message is used.
This attribute isa BOOLEAN.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attributeisa STRING.

3.2.4.8 Sample
TASK TaskA {
PRIORITY = 2;

SCHEDULE = NON;
ACTI VATION = 1,
AUTCSTART = TRUE;

RESQURCE = resourcel;
RESQURCE = resource2;
RESQURCE = resource3;

EVENT = event 1,
EVENT = event 2;
ACCESSOR = SENT {
MESSAGE= anyMessagel;
W THOUTCOPY= TRUE;
ACCESSNAME= “anyMessagelBuffer”;

}s
}s
3.25 COUNTER
A COUNTER serves as a base for the ALARM mechanism.

3.25.1 MAXALLOWEDVALUE
The MAXALLOWEDVALUE attribute defines the maximum allowed counter value.
This attribute has the type UINT32.

3.25.2 TICKSPERBASE

The TICKSPERBASE attribute specifies the number of ticks required to reach a counter-
specific unit. The interpretation is implementation specific.

This attribute has the type UINT32.

OSEK/VDX OIL 2.2 © by OSEK Page 18

OSEK/V DX OSEK Implementation Language

Specification 2.2

3.25.3 MINCYCLE

The MINCY CLE attribute specifies the minimum allowed number of counter ticks for a cyclic
alarm linked to the counter.

This attribute has the type UINT32.

3.254 Sample

COUNTER Ti ner {
M NCYCLE = 16;
MAXALLONEDVALUE = 127;
TI CKSPERBASE = 90;

1
3.2.6 ALARM
An ALARM may be used to asynchronously inform or activate a specific task.

3.2.6.1 COUNTER

The COUNTER reference defines the counter assigned to this alarm. Only one counter has to
be assigned to the darm. Any alarm has to be assigned to a particular counter.

This attribute is a single reference (see chapter 4.2, Reference Types).

3.2.6.2 ACTION
The ACTION attribute defines which type of task notification is used when the alarm expires.

This attribute is a parametrized ENUM with following possible values:
 ACTIVATETASK {TASK_TYPE TASK;}
o SETEVENT {TASK_TYPE TASK; EVENT_TYPE EVENT;}

For one alarm only one action is alowed according to OSEK OS specification 2.1.

ACTION = ACTIVATETASK
The TASK reference parameter defines the task to be activated when the alarm expires.
This parameter is a single reference (see chapter 4.2, Reference Types) of type TASK _TY PE.

ACTION = SETEVENT

The TASK reference parameter defines the task for which the event isto be set. The EVENT
reference parameter defines the event to be set when the aarm expires.

TASK is a single reference of type TASK _TYPE. EVENT is a single reference of type
EVENT_TYPE.

OSEK/VDX OIL 2.2 © by OSEK Page 19

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

3.2.6.3 Samples

ALARM WakeTaskA {
COUNTER = Ti mer;
ACTI ON = SETEVENT {
TASK = TaskA;
EVENT = event 1,
1
1
ALARM WakeTaskB {
COUNTER = SysCounter;

ACTI ON = ACTI VATETASK {
TASK = TaskB;

}s
}s

3.2.7 RESOURCE

Resource is used to co-ordinate concurrent access of severa tasks to a shared resource, e.g.
the scheduler, any program sequence, memory or any hardware area.
There is no defined standard attribute for the RESOURCE.

3.2.7.1 Sample
RESOURCE MsgAccess;

3.2.8 EVENT
An EVENT object is represented by its mask. The name of the event is a synonym for its mask.

The same event may be set for different tasks. Events with the same name are identical,
therefore the event mask is identical. Events with the same mask are generally not identical i.e.
their names may be different.

3.2.8.1 MASK

The event mask is an integer number MASK of type UINT64. The other way to assign an
event mask isto declare it as AUTO. Inthis case, one bit is automatically assigned to the event
mask. This bit is unique with respect to the tasks that reference the event.

3.2.8.2 Samples
EVENT eventl {
MASK = 0x01;

1

EVENT event 2 {
MASK = AUTQ

1

In the C-Code the user is alowed to combine normal event masks and AUTO event masks.
C- Code:

\ai t Event (eventl | event2);

OSEK/VDX OIL 2.2 © by OSEK Page 20

OSEK/V DX OSEK Implementation Language

Specification 2.2

Example for the same event object (same event name) for events used by different tasks:
EVENT energency {
MASK = AUTO,

}s

TASK taskl {
EVENT = nyEvent 1,
EVENT = energency;
b

TASK task2 {
EVENT = energency;
EVENT = nyEvent 2;

b
TASK task7 {
EVENT = energency;
EVENT = nyEvent 2;
b

In the C-Code the user is allowed to use the emergency event with al three tasks.
C- Code:

Set Event (taskl, enmergency);

Set Event (task2, energency);
Set Event (task7, energency);

Another use for the same event name for events of different tasks isin control loops:
C- Code:
TaskType nyList[] = {taskl, task2, task7};
int nyListLen = 3;
int i=0;
for (i=0;i<mnyListLen;i++) {
Set Event (nyLi st[i], emergency);
}

3.2.9 ISR
| SR objects represent OSEK interrupt service routines (1SR).

3.29.1 CATEGORY

The CATEGORY attribute defines the category of the ISR. This attribute is a UINT32, only
values of 1, 2 and 3 are allowed.

3.29.2 RESOURCE
The RESOURCE reference is used to define alist of resources accessed by the ISR.

This attribute is a multiple reference (see chapter 4.2, Reference Types) of type
RESOURCE_TYPE.

OSEK/VDX OIL 2.2 © by OSEK Page 21

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

3.2.9.3 ACCESSOR

The ACCESSOR is used to define multiple references to sent or received messages. In
addition the parameter ACCESSNAME is defined.

This attribute is a parametrized ENUM with following possible values:
o SENT {MESSAGE_TYPE MESSAGE; STRING ACCESSNAME;}
* RECEIVED { MESSAGE_TYPE MESSAGE; STRING ACCESSNAME;}

ACCESSOR = SENT
The MESSAGE reference parameter defines the message to be sent by the ISR.

This parameter is a single reference (see chapter 4.2, Reference Types) of type
MESSAGE_TYPE.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attributeisa STRING.

ACCESSOR = RECEIVED
The MESSAGE reference parameter defines the message to be received by the ISR.

This parameter is a single reference (see chapter 4.2, Reference Types) of type
MESSAGE_TYPE.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attributeisa STRING.

3.294 Sample

I SR Timerlnterrupt {
CATEGORY ;
RESOURCE = soneResource;

ACCESSOR = RECEI VED ({
MESSAGE= anyMessage?2;
ACCESSNAME= “anyMessage2Buffer”;

}s

}s

3.2.10 MESSAGE
MESSAGE objects represent OSEK messages.

OSEK/VDX OIL 2.2 © by OSEK Page 22

OSEK/V DX OSEK Implementation Language

Specification 2.2

3.2.10.1 TYPE
The TY PE attribute defines if the message has a queue or not.

This attribute is a parametrized ENUM with following possible values:
* UNQUEUED {}
* QUEUED {UINT64 QUEUEDEPTH;}

TYPE = UNQUEUED
No queue is available for the message. No subattributes are defined.

TYPE = QUEUED
A queue of QUEUEDEPTH elements is defined.
QUEUEDEPTH is of type UINT64.

The QUEUED attributevalue specifies if the message has a queue. If used for internd
communication the COM conformance class will be CCCB.

3.2.10.2 CDATATYPE

The CDATATYPE parameter describes the data type of message data according to the C-
language (e.g. int or a structure name).

This attributeisa STRING.

3.2.10.3 ACTION

The ACTION attribute defines which type of task notification is used when the message is
received. For unqueued messages more than one action per message is possible.

This attribute is a parametrized ENUM with following possible values:

« NONE {}

« ACTIVATETASK {TASK_TYPE TASK:}

« SETEVENT {TASK_TYPE TASK; EVENT_TYPE EVENT}
« CALLBACK {STRING CALLBACKNAME;}

« FLAG {STRING FLAGNAME}

For unqueued messages a list of actions is allowed according to OSEK COM specification 2.2.

For queued messages one action is allowed.

ACTION = NONE
No action is performed by sending this message.

OSEK/VDX OIL 2.2 © by OSEK Page 23

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

ACTION = ACTIVATETASK
The TASK reference parameter defines the task to be activated when the message is sent.
This parameter is a single reference (see chapter 4.2, Reference Types) of type TASK _TY PE.

ACTION = SETEVENT

The TASK reference parameter defines the task for which the event isto be set. The EVENT
reference parameter defines the event to be set when the message is sent.

TASK is a single reference of type TASK _TYPE. EVENT is a single reference of type
EVENT_TYPE.

ACTION = CALLBACK
The CALLBACK parameter defines the function which is called when the message is sent.
This attribute isa STRING.

ACTION =FLAG
The FLAG parameter defines the name of the flag which is set when the message is sent.
This attribute isa STRING.

If used for internal communication the COM conformance class will be CCCB.

3.2.104 Sample

MVESSAGE new nf os {
TYPE = UNQUEUED,
CDATATYPE = "infoStruct";
ACTI ON= SETEVENT {
TASK= anyTask;
EVENT= anyEvent;

}s

ACTI ON= SETEVENT {
TASK= ot her Task;
EVENT= ot her Event ;

}s
ACTI ON= CALLBACK {

CALLBACKNAME= "nsgRecei vedl";
}s

}s

OSEK/VDX OIL 2.2 © by OSEK Page 24

OSEK/V DX OSEK Implementation Language

Specification 2.2

3.211 COM
COM s the system object used to define OSEK COM communication subsystem properties.
In a CPU not more than one COM object can be defined.

3.211.1 USEMESSAGERESOURCE

The USEMESSAGERESOURCE attribute specifies if the message resource mechanism is
used. If used for interna communication the COM conformance class will be CCCB.

This attribute has the type BOOLEAN.

3.2.11.2 USEMESSAGESTATUS

The USEMESSAGESTATUS attribute specifies if the message status is available. If used for
internal communication the COM conformance class will be CCCB.

This attribute has the type BOOLEAN.

3.2.11.3 Sample

COM sanpl eCOM {
USEMESSAGERESOURCE = TRUE;
USEMESSAGESTATUS = FALSE;

}s

3.212 NM

NM objects represent the network management subsystems. No standard attributes are defined
for NM object in OIL 2.2.

OSEK/VDX OIL 2.2 © by OSEK Page 25

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

4 Definition of Particular Implementation

OIL is intended to be used for the description of applications in any OSEK implementation.
The implementation definition describes a set of attributes for each system object and valid
values for these attributes. All standard attributes must be defined in this part. For standard
attributes this part can only limit the value range, but in no case extend the value range or
change the value type. Optiona attributes must specify a default value, AUTO (if defined
WITH_AUTO), or NO_DEFAULT.

The reference to an object or set of objects can be aso defined by this part.

4.1 Attribute types
Any implementation specific attribute has to be defined before it is used.

The attribute type and attribute value range (if it exists) has to be defined. The range of
attribute values can be defined in two ways. either the minimum and maximum allowed
attribute values are defined (the [0..12] style) or the list of possible attribute values are
presented. A mix of both is not alowed.

The WITH_AUTO specifier can be combined with any attribute type except for references. |If
WITH_AUTO is specified the attribute can have the value AUTO and the possiility of
automatic assignment by an off-line tool.

OIL datatypes are listed below. Note that these data types are not necessarily the same as the
corresponding C data types.

41.1 UINT32

Any unsigned integer number (possibly restricted to a range of numbers, see <impl_attr_def>
chapter 5.2, Syntax of OIL).

U NT32 [1..255] NON_SUSPENDED TASKS;
U NT32 [0, 2,3,5] Freelnterrupts;
U NT32 aNumber;

This data type allows to express any 32 bit value in the range of [0..(2%-1)].

41.2 INT32
Any signed integer number in the range of [-2*..(2*'-1)].

41.3 UINT64
Any unsigned integer number in the range [0..(2**-1)]

414 INT64
Any signed integer number in the range [-2%..(2%-1)].

OSEK/VDX OIL 2.2 © by OSEK Page 26

OSEK/V DX OSEK Implementation Language

Specification 2.2

4.1.5 FLOAT
Any floating point number according to |IEEE-754 standard (Range: +/- 1,176E-38 to +/-
3,402E+38).

FLOAT [1.0 .. 25.3] d ockFrequency; // dock frequency in Mz

4.1.6 ENUM

ENUM defines a list of ISO/ANSI-C enumerators. Any enumerator from this list can be
assigned to an attribute of the according type.

ENUM [NON, FULL] SCHEDULE;

ENUM [mon, tue, wed, thu, fri] nyWek;

ENUM types can be parameterized, i.e. the particular enumerators can have parameters. The
parameter specification is denoted in curly braces after the enumerator. Any kind of attribute
type is allowed as parameter of an enumerator.

ENUM [

ACTI VATETASK { TASK _TYPE TASK; },

SETEVENT { TASK _TYPE TASK; EVENT_TYPE EVENT; }
] ACTION;

4.1.7 BOOLEAN

The attribute of this type can have either TRUE or FAL SE value.
BOOLEAN Dont Dol t ;

Dont Dolt = FALSE:

BOOLEAN types can be parameterized, i.e. the particular boolean values can have parameters.
Parameter specification are denoted in curly braces after an explicit enumeration of the boolean
values. Any kind of attribute type is allowed as parameter of a boolean value.

BOOLEAN [
TRUE { TASK_TYPE TASK; EVENT_TYPE EVENT; },
FALSE { TASK_TYPE TASK;}

] IsEvent;

4.1.8 STRING

Any 8-hit character sequence enclosed in double-quotes, but not containing double-quotes, can
be assigned to this attribute.

4.2 Reference Types

A reference type is a data type that refers to a system object, e.g. to atask, to an event, to an
alarm, etc.

Reference types can be used to establish links between system objects, e.g. within an alarm
description areference type attribute can refer atask object that isto be activated by the alarm.

The definition of a reference type specifies which type of system objects are referred, e.g. the
referred system objects are of type TASK, of type EVENT, of type ALARM, etc.

The reference type is taken from the referenced object (e.g. a reference to a task shall use the
TASK_TYPE keyword as reference type). A reference can refer to any system object.

OSEK/VDX OIL 2.2 © by OSEK Page 27

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

A single reference type refers to exactly one object.

A definition of a single reference type consists of the system object type to be referred
followed by the symbolic name of the reference type being defined.

4.3 Multiple values

It is possible to use one attribute name to refer to a set of values of the same type. The set may
be empty. For example, the EVENT attribute of a task object can refer to a set of events.
Multiple values are allowed for al types.

A definition of a multiple reference type consists of the system object type to be referred
followed by the symbolic name of the reference type being defined followed by an empty pair
of brackets]".

Example: EVENT_TYPE MYEVENTS[];

A definition of a multiple attribute is the symbolic name followed by an empty pair of brackets
I
Example: I NT32 | nt errupt Nunber[];

A definition of a multiple parameterized ENUM or BOOLEAN type consists of the ENUM (or
BOOLEAN) type definition followed by an empty pair of brackets]'.

| MPLEMENTATI ON x {

MESSAGE {
ENUM [
ACTI VATETASK
TASK_TYPE TASK;
}: "Task to be activated",
SETEVENT
TASK_TYPE TASK;

EVENT_TYPE EVENT;
}: "Event to be set",

NONE
] ACTION];

}s
CPU vy {

MESSAGE newl nfos // broadcast

{
| TEMIYPE = "infoStruct"”;

| TEMS = 1,
ACTI ON = ACTI VATETASK { TASK= t askA;};

ACTI ON = ACTI VATETASK { TASK= t askB;};

}s

OSEK/VDX OIL 2.2 © by OSEK Page 28

OSEK/V DX OSEK Implementation Language

Specification 2.2

4.4 Sample

The implementation can define some additional attributes for a standard object or restrict the
value range of standard attributes.

The example below shows:

1.
2.

o g bk~ w

8.
0.

The limitation of the ENUM value range for the standard OS attribute STATUS.

The definition of an implementation specific attribute NON_SUSPENDED_TASKS of
type UINT32 with a value range.

The limitation of the UINT32 value range for the standard task attribute PRIORITY .
The default value for StackSize is set to 16.
The limitation of the ENUM value range for the standard alarm attribute ACTION.

The definition of an implementation specific attribute START of type BOOLEAN for
alarms.

The definition of an implementation specific attribute ITEMTY PE of type STRING for
messages.

The definition of areference to message objects for ISRs.

The possible usage of the defined or modified attributes in the application definition.

10. Separation of the object MyTask1 into two definitions.

| MPLEMENTATI ON Speci al CS {

}s

o5 {

ENUM [EXTENDED] STATUS;
U NT32 [1..255] NON_SUSPENDED TASKS = 16;

}s

TASK {
UNT32 [1 .. 256] PRIORITY, /1 define range of standard
/] attribute PRRORITY

I NT32 StackSi ze= 16; /| stacksize in bytes for a task

ALARM {
ENUM [ACTI VATETASK { TASK_TYPE TASK;}] ACTI QN
/1 define possible value(s) of standard attribute ACTION
BOOLEAN START = FALSE; // define inplenentation specific
/1 attribute START of type BOOLEAN

MESSAGE {
STRING | TEMTYPE = ""; /1 define inplenmentation specific
/] attribute | TEMIYPE of type STRI NG

OSEK/VDX OIL 2.2 © by OSEK Page 29

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

I SR {
MESSAGE_TYPE RCV_MESSAGES[] = NO_DEFAULT;
/1 define inplenmentation specific
/1 attribute RCV_MESSAGES of type
/1 "multiple reference to objects
/1 of type MESSAGE'

}; I/ End | MPLEMENTATI ON Speci al OS

CPU Sanpl eCPU {
s WGs {

}s

TASK MyTaskl {
PRIORITY = 17;
}s
TASK MyTaskl {
St ackSi ze = 64;
}s
ALARM MYAl ar L {

ACTI ON = ACTI VATETASK {
TASK = MyTaskdi;

}s
START = TRUE;
}s

MESSAGE MYMsgl {
| TEMTYPE = " Sensor Dat a";

b
MESSAGE MyMsg2 {
| TEMTYPE = " Acknowl edge";

}s

I SR Mylsrl {
RCV_MESSAGES = MyMsgl;
= M/Msg2;

RCV_NMESSAGES
b
}; /1 End CPU Sanpl eCPU

This example is not a complete OIL file therefore the dots represent missing parts.

OSEK/VDX OIL 2.2 © by OSEK Page 30

OSEK/V DX OSEK Implementation Language

Specification 2.2

5 Appendix

5.1 Static model of OIL

The following figure shows the static model of OIL in UML (unified modeling language)
notation.

1 1
CPU
1
t abstract -
1 1 0.*
1 1?1 11 1 O"}
0.. ALARM
oS
- 0.*
Standard Attributes Standard Attributes
STATUS
STARTUPHOOK ,ES%’%LE{‘
ERRORHOOK 0.* ACTIVATETASK
SHUTDOWNHOOK| 0.1 SK {
PRETASKHOOK EVENT ;éTEV}’ENT {
POSTTASKHOOK 0.* TASK, EVENT
Standard Attributes -] ' }
MASK
0.*
NM 0.* 0.*
‘ 0. .. 1 1
Standard Attributes TASK 1 COUNTER
‘ 1 Standard Attributes
Standard Attributes - MAXALLOWEDVALUE
PRIORITY TICKSPERBASE
i — SCHEDULE MINCYCLE
ACTIVATION
APPMODE AUTOSTART
RESOURCE]]
Standard Attributes EVENT[]
ACCESSOR ox|
0.*
RESOURCE
*
Standard Attributes
o1 o 0.* 0.*
CoM MESSAGE [0 ISR 0
N ..
Standard Attributes Standard Attributes 0. Standard Attributes
USEMESSAGERESOURCE TYPE ATEGORY
USEMESSAGESTATUS CDATATYPE ACCESSOR
ACTION

Figure5-1: Static model of OIL*

* The UML-Diagram does not show the rel ations between ACTIONSs of messages and TASK or EVENT

OSEK/VDX OIL 2.2 © by OSEK Page 31

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

5.2 Syntax of OIL
The OIL file has the following structure:

<file> ::=
<A L_version>
<i npl enentati on_definition>
<application_definition>

<O L_version> ::=
"O L_VERSI ON' "=" <version> <description>

<version> ::= <string>

<inpl enentation_definition> ::=
"| MPLEMENTATI ON' <name> "{" <inplenentati on_spec_list> "}"

<description> ";

<i npl enentation_spec_list> ::=
<i npl enent ati on_spec>
| <inplenentation_spec_list> <inplenmentation_spec>

<i npl enentati on_spec> ::=
<object> "{" <inplenentation_list> "}" <description> ";"

<object> ::=
"0s8" | "TASK' | "COUNTER' | "ALARM' | "RESOURCE' | "EVENT" | "ISR'
| "MESSAGE" | "COM' | "NM' | "APPMCDE"
<inplenentation_list> ::=
/[* enpty list */
| <inplenentation_def>
| <inplenentation_|list> <inplenmentation_def>
<inplenentation_def> ::= <inpl_attr_def> | <inpl_ref_def>
<inpl_attr_def> ::=
"Ul NT32" <auto_specifier> <nunber_range> <attri bute_nane>
<mul tipl e_speci fi er><default _nunber> <description>";"
| "INT32" <auto_specifier> <nunber_range> <attribute_nanme>
<mul tiple_specifier> <default_nunber> <description> ";"
| "UI NT64" <auto_specifier> <nunber_range> <attri bute_nane>
<mul tiple_specifier> <default_nunber> <description> ";"
| "I NT64" <auto_specifier> <nunber_range> <attribute_nane>
<mul tiple_specifier> <default_nunber> <description> ";"
| "FLOAT" <auto_specifier> <float_range> <attribute_nanme>
<mul tiple_specifier> <default_float> <description>";"
| "ENUM' <auto_specifier> <enuneration> <attribute_nanme>
<mul tiple_specifier> <default_nanme> <description> ";
| "STRING' <auto_specifier> <attribute_nanme>
<mul tiple_specifier> <default_string> <description>";"
| "BOOLEAN' <auto_specifier> <bool val ues> <attri bute_nane>
<mul tiple_specifier> <default_bool > <description>";
<inpl _paraneter_list> ::=
/* enpty definition */
|"{" <inpl_def_list>"}"
<inpl_def_list> ::=
/* enpty definition */
| <inplenentation_def>
| <inplenentation_def> <inpl_def_I|ist>
OSEK/VDX OIL 2.2 © by OSEK Page 32

OSEK/V DX OSEK Implementation Language

Specification 2.2

<auto_specifier> ::=

/* empty definition */

| "WTH_AUTO'
<nunber _range> :: =

/* empty definition */

| "[" <number> ".." <nunber> "]"

| "[" <nunber _list>"]"
<nunber _list> ::=

<nunber> | <nunber_list> "," <nunber>
<defaul t _nunber> ::=

/* empty definition */

| "=" <nunber> | "=" "NO DEFAULT" | "=" "AUTC'

<description> ::=
/* enpty definition */
| ":" <string>

<fl oat _range> ::=
/* enpty definition */
| "[" <float> ".." <float> "]"

<default float> ::=
/* empty definition */
| "=" <float> | "=" "NODEFAULT" | "=" "AUTC'

<enunmeration> ::=
"[" <enumerator_list> "]"

<enunerator list> ::=
<enuner at or >
| <enunmerator_list>"," <enunerator>

<enunerator> ::=
<nane> <descri pti on>
| <nanme> <inpl _paraneter_I|ist> <description>

<bool val ues> ::=
/* enpty definition */
| "[" "TRUE" <inpl_paraneter_I|ist> <description>","
"FALSE" <inpl _paraneter_|ist> <description> "]"

<default name> ::=
/* enpty definition */
| n :ll <narre> | n :ll n ,\D_EFAULTII | n :ll n AlJTO‘

<defaul t_string> ::=
/* empty definition */
| "=" <string>| "=" "NO_DEFAULT" | "=" "AUTO'

<default _bool > :: =
/* enmpty definition */
| "=" <boolean> | "=" "NO DEFAULT" | "=" "AUTO'

<inpl_ref_def> ::=
<obj ect _ref _type> <reference_nane> <multipl e_specifier> <description>

OSEK/VDX OIL 2.2 © by OSEK Page 33

OSEK/VDX

i |

OSEK Implementation Language

Specification 2.2
<obj ect _ref _type> ::=
"OS_TYPE" | "TASK TYPE' | "COUNTER TYPE' | "ALARM TYPE"
"RESOURCE_TYPE" | "EVENT_TYPE' | "I SR TYPE"
| "MESSAGE_TYPE" | "COM TYPE' | "NM TYPE"' | "APPMCDE _TYPE"
<reference_nanme> ::= <nanme> | <object>

<multiple_specifier>::=
/* enpty definition */
| ll[n ll] n

<application_definition> ::=

"CPU' <nanme> "{" <object _definition_|ist> "}" <description>";

<obj ect _definition_list> ::=
/* enpty definition */
| <object_definition>

| <object_definition_list> <object_definition>

<obj ect _definition> ::=
<obj ect _nane> <description> ";"

| <object_nanme> "{" <paraneter _list> "}" <description>

<obj ect _nane> ::= <obj ect> <nane>

<paraneter_list> ::=
/* enpty definition */
| <paraneter>
| <paraneter_list> <paraneter>

<paraneter> ::=
<attribute_nane>

<attribute_name> ::= <nanme> | <object>
<attribute value> ::=
<name>
| <name> "{" <paraneter_list> "}"
| <bool ean>
| <bool ean> "{" <paraneter_list> "}"
| <nunber>
| <float>
| <string>
| n ALJTOI
<nanme> ::= Nane
<string> ::= String
<bool ean> ::= "FALSE" | "TRUE"
<nunber> ::= <dec_nunber> | <hex_nunber>

<dec_nunber> ::=
<sign> <int_digits>

<sign> ::=
/* enpty definition */
|

|

<attribute_val ue> <description> ";

OSEK/VDX OIL 2.2 © by OSEK

Page 34

OSEK /VDX

OSEK Implementation Language
Specification 2.2

<int_digits> ::=
<zero_digit>
| <pos_digit>
| <pos_digit> <dec_digits>

<dec_digits> ::=
| <dec_digit>
| <dec_digit> <dec_digits>

<float> ::=
<sign> <dec_digits> "."

<exponent> :: =
/* enpty definition */
| "e" <sign> <dec_digits>
| "E" <sign> <dec_digits>

<zero_digit> ::=

0
<pos_digit> ::=

ST r2 | v At | s | e |
<dec_digit> ::= <zero_digit> | <pos_digit>
<hex_nunber> ::= "0x" <hex_digits>

<hex_digits> ::=
<hex_digit>
| <hex_digit> <hex_digits>

<hex_digit> ::=
"A" | "B" | "C' | "D'|] "E'"|] "F"
| "a" | "b" | "c¢" | "d" "e"
I B S B B B

<dec_di gi t s> <exponent >

| "8t | e

OSEK/VDX OIL 2.2 © by OSEK

Page 35

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

5.3 Default definition of standard object attributes and references

The definition of standard attribute types and parameters can be presented in the following
form:

| MPLEMENTATI ON St andard {
05 {

ENUM [STANDARD, EXTENDED] STATUS;
BOOLEAN STARTUPHOCK;

BOOLEAN ERRORHOCK;

BOOLEAN SHUTDOWNHOCK;

BOOLEAN PRETASKHOCK;

BOOLEAN POSTTASKHOCK;

}A;DPMZDE {

}s
TASK {
BOOLEAN AUTOSTART;
Ul NT32 PRI ORI TY;
Ul NT32 ACTI VATI ON;
ENUM [NON, FULL] SCHEDULE;
EVENT_TYPE EVENT[];
RESOURCE_TYPE RESOURCE[] ;
ENUM [
SENT

VESSAGE_TYPE MESSACE;
BOCLEAN W THOUTCOPRY;
STRI NG ACCESSNANE,;

} ’
RECEI VED

VESSAGE_TYPE MESSACE;
BOCLEAN W THOUTCOPRY;
STRI NG ACCESSNANE;

}
] ACCESSOR(] ; b
I SR {
UINT32 [1, 2, 3] CATEGCRY;
RESOURCE_TYPE RESOURCH[] ;
ENUM [
SENT

VESSAGE_TYPE MESSACE;
STRI NG ACCESSNANE,;

} ’
RECEI VED

VESSAGE_TYPE MESSACE;
STRI NG ACCESSNANE,;

] ACCE}SSOR[1

}s

COUNTER {
Ul NT32 M NCYCLE:
Ul NT32 MAXALLOAEDVAL UE;
Ul NT32 TI CKSPERBASE:

® Ordering of the elementsis free.

OSEK/VDX OIL 2.2 © by OSEK Page 36

OSEK/V DX OSEK Implementation Language

Specification 2.2

ALARM {
COUNTER_TYPE COUNTER;
ENUM [
ACTI VATETASK { TASK_TYPE TASK; },

SETEVENT { TASK _TYPE TASK; EVENT_TYPE EVENT; }
] ACTI ON;

}s
EVENT {
U NT32 W TH_AUTO MASK;
}s
RESOURCE {

};
MESSAGE {
ENUM [
UNQUEUED,
QUEUED { Ul NT64 QUEUEDEPTH; }
TYPE;
STRI NG CDATATYPE;
ENUM [
NONE,
ACTI VATETASK

TASK_TYPE TASK;

} ’
SETEVENT

TASK_TYPE TASK;
EVENT_TYPE EVENT,;

} ’
CALLBACK

STRI NG CALLBACKNANE;

} ’
FLAG

STRI NG FLAGNAME;

] ACTION[]; // action to performif nessage is sent or received
b
COM {
BOOLEAN USEMESSAGERESOURCE;
BOOLEAN USEMESSAGESTATUS;
b
NM
b

OSEK/VDX OIL 2.2 © by OSEK Page 37

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

5.4 Sample of a complete OIL file
O L_VERSION = "2.2";

| MPLEMENTATI ON MySpeci fi cl npl ement ati on

{
s

{
ENUM [STANDARD, EXTENDED] STATUS;
BOCLEAN STARTUPHOOK;
BOCOLEAN ERRORHOCK;
BOCLEAN SHUTDOWNHOCK;
BOCLEAN PRETASKHOOK;
BOCLEAN POSTTASKHOCK;

/* I nplenentation specific attribute added */
U NT32 [1..255] NON_SUSPENDED TASKS = 16;
FLOAT [1.0 .. 25.3] dockFrequency = 8.0; // O ock frequency in Mz

}s

APPMODE

{
}s

TASK

{
BOOLEAN AUTOSTART;
ENUM [NON, FULL] SCHEDULE;
EVENT_TYPE EVENT[];
RESOURCE_TYPE RESOURCE[] ;

U NT32 [1..256] PRICRITY; /1 Val ue range defined
U NT32 [1..24] ACTI VATI ON; /1 Val ue range defined
ENUM [
SENT
MESSAGE_TYPE MESSAGE;
BOOLEAN W THOUTCOPY;
STRI NG ACCESSNAME;
} 1
RECEI VED
{
MESSAGE_TYPE MESSAGE;
BOOLEAN W THOUTCOPY;
STRI NG ACCESSNAME;
}
] ACCESSOR]];

/* I nplenmentation specific attributes added */

Ul NT32 STACKSI ZE = 16;

ENUM [STACKI NTERNAL, STACKEXTERNAL] STACKTYPE = STACKI NTERNAL;
MESSAGE_TYPE MESSAGESENT]];

MESSAGE_TYPE MESSAGERECEI VED]] ;

ENUM W TH_AUTO [M NI MUM MAXI MUM OPTIM ZE = AUTQ

OSEK/VDX OIL 2.2 © by OSEK Page 38

OSEK/V DX OSEK Implementation Language

Specification 2.2

I SR

UINT32 [1, 2, 3] CATEGORY;
RESOURCE_TYPE RESOURCE[];
ENUM [

SENT

VESSAGE_TYPE MESSACE;
STRI NG ACCESSNANE,;

} ’
RECEI VED

VESSAGE_TYPE MESSACE;
STRI NG ACCESSNANE;

] ACCE}SSOR[1

/* I nplenentation specific attributes added */
Ul NT32 STACKSI ZE = 32;

UINT32 [0,1,3,4,7] ISRPRORITY = 1: "Only ISR priorities 0,1,3,4,7

are supported by MySpecificlnplenmentation”;
BOOLEAN [

TRUE

TASK_TYPE TASK[];
}: "and true neans true",
FALSE

}: "false neans fal se"
] taskNotification= FALSE;

}s
COUNTER

U NT32 M NCYCLE;
U NT32 MAXALLOWEDVALUE;
U NT32 Tl CKPERBASE;

}s
ALARM

COUNTER_TYPE COUNTER;
ENUM [
ACTI VATETASK

TASK_TYPE TASK;
}: "Task to be activated",

SETEVENT

TASK_TYPE TASK;
EVENT_TYPE EVENT;
}: "Event to be set"
] ACTI ON;

/* I nplenmentation specific attribute added */
BOOLEAN START = FALSE: "Automatic start of alarmon systemstart";
BOCOLEAN CYCLIC = FALSE: "Cyclic alarni;

}s

EVENT
{

OSEK/VDX OIL 2.2 © by OSEK Page 39

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

U NT32 WTH_AUTO [1..0xff] MASK; // Value range defined
b

RESOURCE {
}s

MESSAGE

ENUM [
UNQUEUED,
QUEUED { Ul NT64 QUEUEDEPTH; }
1 TYPE
STRI NG CDATATYPE;
ENUM [
NONE,
ACTI VATETASK

TASK_TYPE TASK;
} ’
SETEVENT

TASK_TYPE TASK;
EVENT_TYPE EVENT,;

FaLBAck

STRI NG CALLBACKNAME;
}FLAG

STRI NG FLAGNAME;

] ACTION]; // action to performif nessage is sent or received

cov

BOCLEAN USEMESSAGERESOURCE;
BOCLEAN USEMESSAGESTATUS;

OSEK/VDX OIL 2.2 © by OSEK Page 40

OSEK/V DX OSEK Implementation Language

Specification 2.2

/1 "Sanple application definition";
CPU Sanpl e_CPUL

0sS Stdos

{
STATUS = STANDARD,
STARTUPHOCK = TRUE;
ERRORHOOK = TRUE;
SHUTDOMHOOK = TRUE;
PRETASKHOOK = FALSE;
POSTTASKHOCK = FALSE;

oS Stdos

NON_SUSPENDED TASKS = 4;
Cl ockFrequency = 10.0: "Frequency in MHz"; [/ float and description

b
COM St dCOM

USEMESSAGERESOQURCE= FALSE;
USEMESSAGESTATUS= TRUE;
s
| SR nyTi ner | nterrupt
{
/1 1SR STACKSI ZE def aul t val ue
CATEGORY = 3;
| SRPRI ORI TY = 3;
}s
I SR nmyExt | nt errupt
{
CATEGORY = 2;
| SRPRI ORI TY = 4;

RESOURCE = MsgAccess;
taskNotificati on= TRUE

TASK= t ask1;
TASK= t ask?2;

.
ACCESSOR = RECEI VED ({
MESSAGE= anyMessage?Z2;
ACCESSNAME= "anyMessage2Buffer";
b
b

TASK TaskSND
{
AUTOSTART = TRUE;
PRIORI TY = 3;
ACTI VATI ON = 1;
SCHEDULE = FULL;
RESOURCE = ResMsgAccess;
ACCESSOR = SENT {
MESSAGE= new nf os;
W THOUTCOPY= TRUE;
ACCESSNAME= "new nf osBuffer";

}s

}s

TASK TaskRCV

{
AUTOSTART = FALSE;
PRIORI TY = 1;
ACTI VATION = 1;
SCHEDULE = FULL;

OSEK/VDX OIL 2.2 © by OSEK Page 41

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

RESOURCE = MsgAccess;
b

OSEK/VDX OIL 2.2 © by OSEK Page 42

OSEK /VDX

OSEK Implementation Language
Specification 2.2

TASK TaskPr od

{
AUTOSTART = TRUE;
PRIORI TY = 2;
ACTI VATION = 1;
SCHEDULE = FULL;
EVENT = ti neEvent;

}s

TASK TaskCons

{
AUTOSTART = FALSE;
PRI ORI TY = 4;
ACTI VATION = 1;
SCHEDULE = NON;

I}E'VENT ti meEvent
MASK = AUTQ
}RiESClJRCE MsgAccess;
COUNTER Syst enfli ner

MAXALLOWEDVALUE = 65535:
TI CKSPERBASE = 10;
M NCYCLE = 1:

}s

COUNTER MsgCount er

VAXALLOANEDVALUE = 6;
TI CKSPERBASE = 1,
M NCYCLE = 10;

}s

ALARM MsgAl arm

{
COUNTER = Syst enTi ner;
ACTI ON = ACTI VATETASK

TASK = TaskSND:
}s
b

ALARM Pr odAl arm

{
COUNTER = Syst enTi ner;
ACTI ON = SETEVENT

TASK = TaskPr od;
EVENT = ti neEvent;
}s
}s

ALARM EvMsgAl arm

COUNTER = MsgCounter;
ACTI ON = ACTI VATETASK

TASK = TaskCons;
}s
}s

OSEK/VDX OIL 2.2 © by OSEK

Page 43

ml OSEK/VDX

OSEK Implementation Language
Specification 2.2

TASK TaskPr od

STACKSI ZE = 24:
}s

TASK TaskCons

STACKTYPE

STACKEXTERNAL,;
STACKSI ZE ;

8;

}s

MESSAGE new nf os {
TYPE = UNQUEUED;
CDATATYPE = "infoStruct";
ACTI ON= SETEVENT {
TASK = TaskPr od;
EVENT = ti neEvent;

}s
ACTI ON= CALLBACK {

CALLBACKNAME= "nsgRecei vedl";
}s

}
}: "This CPUis intended to run the Sanple application”;

OSEK/VDX OIL 2.2 © by OSEK

Page 44

OSEK/V DX OSEK Implementation Language

Specification 2.2

5.5 Generator hints

All topics concerning generator hints are not part of the specification. They are
recommendations.

55.1 Generator interface
Recommendation for parameters of system generator

» parameter -a for accept unknown attributes (i.e. ignore attributes which are defined in the
implementation-specific part of OIL but for which the generator has no rule)

e parameter -i for include paths

e parameter -f for command file

e parameter -r for generating resource statistics

* parameter -v for version

e parameter -t for test/verify

From the user point of view, al implementation-specific switches (of the generator) should be
attributes of the matching OIL objects. This would alow the user to place al the
implementation-specific information in the OIL file and not into command-line parameters.

5.5.2 Resource usage statistics

The generator should provide all resources of the operating system used by the application
(e.g. number of tasks, priorities, ...) to the user.

5.5.3 Naming convention for OIL files

For ease of use the main OIL file should have the file extenson .OIL. The extensions for other
filesthat are included in the main OIL file are free.

OSEK/VDX OIL 2.2 © by OSEK Page 45

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

6 Changes in specifications

6.1 Changes from specification 1.0/2.0to 2.1

The specifications 1.0/2.0 were no official versions, so no change description is provided.
6.2 Changes from specification 2.1 to 2.2

6.2.1 Resources

According to the OS specification 2.1, resources may be used in interrupt service routines. A
standard attribute to reference a resource object was added.

6.2.2 Messages

The OS specification 2.1 referes to OSEK COM as two additional conformance classes for
local message handling. Standard attributes for messages were added. References from TASKs
and | SRs to messages were added, too.

6.2.3 COM

The COM object got two standard attributes. Additionaly it was defined, that the COM object
may be defined only once.

OSEK/VDX OIL 2.2 © by OSEK Page 46

OSEK/VDX

OSEK Implementation Language

Specification 2.2
7 Index
ACCESSOR description
definition 17,22 definition 14
ACTION ECU
definition 19, 23 acronym 6
ACTIVATION EVENT
definition 16 definition 17, 19, 20
ALARM description 8
ACTION 19 MASK 20
COUNTER 19 grammar rules 9
definition 19 implementation definition 9,10
description 8 ISR
EVENT 19
TASK 17,19, 22 ACCESSOR 22
acronym 6
AP CATEGORY 21
acronym 6 definition 21
application definition 9 description 8
APPMODE 8, 16 RESOURCE 21
definition 16 MASK
attribute definition 20
definition 14 MAXALLOWEDVALUE
type 26 definition 18
value range 26 MESSAGE
attributes ACTION 23
non-standard 9 CDATATYPE 23
AUTOSTART definition 22
definition 16 description 9
BNE TYPE 23
. definition 19
case-sensitive 9
name
CATEGORY o
definition 21 definition 14
COM NM
acronym 6 acronym 6
- definition 25
definition 25 -
-~ description 9
description 9
USEMESSAGERESOURCE 25 number
USEMESSAGESTATUS 25 definition 14
comments 912 OlL
container 7 acronym 6
o version 9
UNTER
definition 18, 19 Osacmnym o
description 8 g
MAXALLOWEDVALUE 18 definition 15,25
MINCYCLE 19 PRIORITY
TICKSPERBASE 18 definition 16
CPU reference
definition 15 RESOURCE
description 8 definition 17, 20, 21
description 8
OSEK/VDX OIL 2.2 © by OSEK Page 47

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2

SCHEDULE RESOURCE 17

definition 16 SCHEDULE 16
STATUS TICK SPERBASE

definition 15 definition 18
string TYPE

definition 14 definition 23
TASK UML

ACCESSOR 17 acronym 6

ACTIVATION 16 USEMESSAGERESOURCE

Q;TQSTART 16 definition 25

cefimition 16,17,19,22 USEMESSAGESTATUS

escription B definition 25
EVENT 17
PRIORITY 16

OSEK/VDX OIL 2.2 © by OSEK Page 48

OSEK/VDX

OSEK Implementation Language
Specification 2.2

8 History
Verson Date Remarks
2.0 December 16, 1997 Authors:
Published as Jirgen Aminger IBM GmbH
Recommendation Vladimir Belov Motorola SPRL
Jirgen Betzelt Damler-Benz AG
Volker Ebner Vector Informatik
Bob France Motorola SPS
Gerhard Goser Siemens Automotive SA
Martin Huber Daimler-Benz AG
Adam Jankowiak Daimler-Benz AG
Winfried Janz Vector Informatik
Helmar Kuder Daimler-Benz AG
Ansgar Maisch University of Karlsruhe
Rainer Miiller IBM GmbH
Salvatore Paris Centro Ricerche Fiat
Jochem Spohr ATM Computer GmbH
Stephan Steinhauer Damler-Benz AG
Karl Westerholz Siemens Semiconductors
Andree Zahir ETAS GmbH & Co. KG
Version Date Remarks
2.1 June 30, 1999 Authors:
Specification Michael Barbehenn Motorola
Irina Bratanova Motorola
Manfred Geischeder BMW
Gerhard Goser Siemens Automotive
Andrea Hauth 3Soft
Adam Jankowiak DamlerChryder
Winfried Janz Vector Informatik
Helmar Kuder DamlerChryder
Stefan Schimpf ETAS
Markus Schwab Infineon
Carsten Thierer University of Karlsruhe
Hans-Christian Wense Motorola
Andree Zahir ETAS
OSEK/VDX OIL 2.2 © by OSEK Page 49

D-ﬂ OSEK/V DX OSEK Implementation Language

Specification 2.2
Version Date Remarks
2.2 July 4, 2000 Authors:
Specification Manfred Geischedder BMW
Irina Bratanova Motorola
Winfried Janz Vector
Reiner Kriesten [T, Uni Karlsruhe
Jochem Spohr IMH
Peter Grol3hans IMH
Walter Koch Siemens
Hartmut HOrner V ector

OSEK/VDX OIL 2.2 © by OSEK Page 50

