= Open Systems and the Corresponding Interfaces
- for Automotive Electronics

OSEK / VDX

System Generation

OIL: OSEK Implementation Language

Version 2.3

September 10™, 2001

This document is an official release and replaces all previously distributed documents. The OSEK group retains
the right to make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without
permission in writing from the OSEK/VDX steering committee.

OSEK/VDX OIL 2.3 © by OSEK Document: OIL23.doc

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

Preface

OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.

For detailed information about OSEK project goals and partners, please refer to the “OSEK
Binding Specification”.

This document describes the OSEK implementation language (OIL) concept of the description
for the OSEK real-time operating system, capable of multitasking, which can be used for
motor vehicles. It is not a product description which relates to a specific implementation.

General conventions, explanations of terms and abbreviations have been compiled in the
additional inter-project "OSEK Overall Glossary".

OSEK/VDX OIL 2.3 © by OSEK Page 2

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3
Contents
(1 TOEOAUCHION ... eee e e e eeeeneereerensesensensasensensnas 4
1.1 General REMATKSooiiiiiiiiiiiiii ittt e ettt e tteeetseeetseessseessseeseseesnseessseessseesnseessssessseessseens 4
1.2 IMIOTIVALION Lttt e e et e et e et e eseseeasseestseeasseenssaensseessseensseensseenssessseesssessseesnseens 4
[T AN ()11 0 TP U T OO U T U O PP OTU U P T U OO T PP O U U U P PP U U PO PPUPUUPPPTION 5
D Language DefINItION ..o i it ii ittt teieteteseseseseessesessceeeeessseesessaesereseseseseseeeessssesesesesensans 6]
D1 PrEAMDIC ...ttt e et eeaaaaaeas 6
D2 GENETAL COMCEPE ...euvvieeiieieiieetiieeiieeetteeete ettt eetteeetteeetteeeteeesateeasseessseeasseessseensseessseansseessseensseesssaensseessseensseens 6
D 3 O BaSICS . .uttiieeiti ettt ettt ettt e e ettt e e ettt e eeettteeeetteeeeetteeeeettteeeetteeeeeataaeeenteaeeebreeeeanneeeeanrraaaans 8
B Standard System Object DefiNItioNSooeewereeserreeeeeanas 13
BT RIS ..ttt e et e et e et e ettt e et e e eat e e et eeenteeenbbeeateeenbaeensbeentbeentbeenbeentseeanreeers 13
B.2 Standard system objects, attributes, and refereNCEScccvveerieeerieerieeiieeieeeteeeieeeeteeeveeeveeevee e 14
B Definition of Particular IMplementation ... oo oottt sesieecereeeees 29
4.1 Attribute B s 29
.2 RETETENCE TYPES .eeouvreetiieiieetie ettt ettt ettt et ettt e et e e taeeteeetaeenteeantreenseeensaeenseesnsseenseeansseenseeensseenses 30
.3 IMUIPIE VAIUES ..ot eeeeeeneeeeeeessennnneeessassssesnnnnnnseessessnnnnnnees 31
4 SAIMPIC ...t e e e ettt e e e tteeeeetttaeeenttaeeeenreeeeenneeas 32
B ADDCIAIX .ottt ettt eeeeeeteeeeeeee et eneneeteeeeneneeneenens 34
5.1 Static MOAE] OF OIL ...ccuuiiiiiiiiiiiiiieii ettt et e et e et e eteeeaseeeabeeenseeesseensssessseensis 34
D.2 SyntaxX of O .o 35
5.3 Default definition of standard object attributes and references.co..vvvviuviviiiiiiieiiiiiiiiieeieeeeieeeennese 39
5.4 Sample 0f @ COMPLELE OIL FILE....uuuuveiiiiiiiiiiiiiiieeeeeieeeeeeeeeeeieeeeeeeeeeeeeeeeeeeseeneeeeesssessnnnesseeesssssmmnnnnees 42
5.5 GENETALOT NINES ...eieviiitiiitie et ie ettt ettt e et e et e e eteeetbeesseeenseeensesensseenseeensseenseeensseensseessseensseesseessis 52
6 Changes in SPECTTICATIONSoweeereeeeeeeneeeeeeeeeeenns 53
p.1 Changes from specification 1.0/2.0 £0 2.1coouiiieeiuiiiieiiiieeiiieeeeeeeeeeeeeeeeeeeee e e 53
.2 Changes from SPeCifiCation 2.1 10 2.2cccuuieeeeeeiieeeeeeieeeieeeieeeteee e eveeeveeeveeeeveesteeenveesnseesseeenneeennees 53
p.3 Changes from SPeCIfiCatioN 2.2 10 2.3 ..oooiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseseseeeseeeeeeeseseseseeeee 53
T T T — 55|
T o 2T 57|
List of Figures
[Figure 1-1: Example of development process for OSEK/VDX applications............................. 4
Figure 2-1: OIL Standard ODTECESoovoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereereeeeeeereeseneereerenesenranas 7|
Figure 5-1: Static Model 0f OIL........c.eiiiiiieiieteteiteeestsseseetteesessaeaeasasseseaeseneasseaeseseneaces 34|

OSEK/VDX OIL 2.3 © by OSEK Page 3

-ﬂ O SEK/VDX OSEK Implementation Language

‘ Specification 2.3

1 Introduction

1.1 General Remarks

This document refers to the OSEK OS specification 2.2 of the operating system. For a better
understanding of the document the reader should be familiar with the contents of the OS
specification.

1.2 Motivation

Today within the OSEK OS standardisation, only the runtime services and API are defined.
To reach the original goal of OSEK of portable software, a way has been defined to describe
the configuration of an OSEK application and operating system .

This description version 2.3 of an OSEK system only addresses a single central processing
unit (CPU) in an electronic control unit (ECU), not an ECU network.

“C” code
Application User’s source
configuration file code
(OIL)

“C” code

r_} Make tool

—_

. Third party tools & related files

Object libraries

. OS components, tools & related files

|:| User written/defined

Figure 1-1: Example of development process for OSEK/VDX applications

The figure above shows an example of a development process for OSEK/VDX applications.
The OIL description may be hand-written or generated by a system configuration tool.
Operating systems delivered in source code are compiled together with the application, others
delivered as a library are integrated by the linker.

OSEK/VDX OIL 2.3 © by OSEK Page 4

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

1.3 Acronyms

API Application Program Interface
BNF Backus-Naur Formli|
COM Communication
CPU Central Processing Unit

ECU Electronic Control Unit

ISR Interrupt Service Routine

NM Network Management

OIL OSEK Implementation Language
OS Operating System

UML Unified Modeling Language

' NAUR, Peter (ed.), "Revised Report on the Algorithmic Language ALGOL 60.", Communications of the ACM,
Vol. 3, No.5, pp. 299-314, May 1960 or

M. Marcotty & H. Ledgard, The World of Programming Languages, Springer-Verlag, Berlin 1986., pages 41 and
following.

OSEK/VDX OIL 2.3 © by OSEK Page 5

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

2 Language Definition

2.1 Preamble

The goal of OIL is to provide a possibility to configure an OSEK application inside a
particular CPU. This means for each CPU there is one OIL description.

All OSEK system objects are described using the OIL format.

2.2 General Concept

The OIL description of the OSEK application is considered to be composed of a set of system
objects. A CPU is a container for these application system objects.

OIL defines standard types for system objects. Each object is described by a set of attributes
and references. OIL defines explicitly all standard attributes for each standard system
object.

The possible references defined in OIL for standard objects are presented in the following
picture.

Each OSEK implementation can define additional specific attributes and references. Only
attributes may be added to the existing objects. Creating of new objects or other changes to
the grammar are not allowed. All non-standard attributes (optional attributes) are considered
to be fully implementation specific and have no standard interpretation. Each OSEK
implementation can limit the given set of values for object attributes (e.g. restrict the possible
value range for priorities).

OSEK/VDX OIL 2.3 © by OSEK Page 6

1l

O S E K/VDX OSEK Implementation Language

‘ Specification 2.3
CPU
oS RESOURCE
APPMODE TASK COUNTER
ISR EVENT ALARM
MESSAGE COM NM
reference to —»

Figure 2-1:

OIL standard objects

Description of the OIL objects:

CPU:
OS:

APPMODE:

ISR:

RESOURCE:

TASK:
COUNTER:
EVENT:
ALARM:

the CPU on which the application runs under the OSEK OS control.

the OSEK OS that runs on the CPU. No standard references are defined in
OIL from OS to other system objects but, of course, all system objects are
controlled by OS.

defines different modes of operation for the application. No standard
attributes for the APPMODE object.

interrupt service routines supported by OS.

the resource that can be occupied by a task.

the task handled by the OS.

the counter represents hardware/software tick source for alarms.
the event tasks may react on.

the alarm is based on a counter and can either activate a task or set an event
or activate an alarm-callback routine.

OSEK/VDX OIL 2.3

© by OSEK Page 7

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

MESSAGE: the message is defined in OSEK COM and defines a mechanism for data
exchange between different entities (entities beeing tasks or ISRs).

COM: the communication subsystem. The COM object has standard attributes to
define general properties for the COM.

NM: the network management subsystem. This subsystem is out of the scope of
the OSEK OS specification, so no standard attributes and references are
defined for the NM object.

2.3 OIL Basics

2.31 OIL file structure

The OIL description contains two parts - one for the definition of standard and
implementation specific features (implementation definition) and another one for the
definition of the structure of the application located on the particular CPU (application
definition).

The OIL description consists of one main OIL-file which can reference to includes (see

section[2.3.9).

2.3.2 Syntax

The grammar rules for an OIL file are presented in the document using a notation similar to

the Backus-Naur Form (BNF), see section Syntax of OIL

All keywords, attributes, object names, and other identifiers are case-sensitive.

Comments in the BNF notation are written as C" -style comments.

2.3.3 OIL versions
OIL version "2.0" corresponds to the OSEK OS specification 2.0 revision 1.

OIL version "2.1" also corresponds to the OSEK OS specification 2.0 revision 1. OIL version
"2.1" means an OIL-internal extension in syntax and semantics.

The OIL version “2.1” is not compatible to the OIL version “2.0”.
The OIL version “2.2” is compatible to OIL “2.1”. “2.2” only defines new standard attributes.

The OIL version “2.3” corresponds to the OS specification 2.2 and is compatible to OIL “2.2”.
“2.3” only defines new standard attributes.

234 Implementation Definition

For each object, the implementation definition defines all attributes and their properties for a
particular OSEK implementation.

The implementation definition must be present in the OIL description and must contain all
standard attributes, which are listed in chapter. The value range of those attributes may be
restricted. Attribute definition is described in chapter 4]

OSEK/VDX OIL 2.3 © by OSEK Page 8

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

Additional attributes and their properties can be defined for the objects for the particular
OSEK implementation. Additional attributes are optional.

The include mechanism (see chapterm,|OIL ﬁla) can be used to define the implementation
definition as a separate file. Thus corresponding implementation definition files can be
developed and delivered with particular OSEK implementations and then included with the
application definition in user's OIL files.

2.3.5 Application Definition

The application definition comprises a set of system objects and the values for their attributes.
Except for the OS object the application definition can contain more than one system object of
a particular type.

Each object is characterized by a set of attributes and their values. No attribute may appear
that is not defined in the implementation definition. Attribute values must comply with the
attribute properties specified in the implementation definition.

Attributes that take a single value may only be specified once per object. Attributes that take a
list of values have to be specified as multiple statements.

Example for multiple statement
RESOURCE = RESI;
RESOURCE = RES2;

2.3.6 Dependencies between attributes

The OIL Specification allows to express dependencies between attributes. To be more open to
vendor specific and standard extensions the OIL syntax covers conditional attributes
(parameters).

OIL allows infinite nesting of those dependencies.
Only ENUM and BOOLEAN attribute values can be parameterized.

If attributes in several sets of one conditional attribute have the same name they must have the
same type.

OSEK/VDX OIL 2.3 © by OSEK Page 9

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

Example (implementation and application part of OIL file)
/* implementation part */

MESSAGE {
ENUM [
ACTIVATETASK { TASK TYPE Task; },
SETEVENT { TASK TYPE Task; EVENT TYPE EventToSet; },

NONE
] ACTIONI];

}i

/* application part */

MESSAGE ProdMessage {
ACTION = SETEVENT {
Task = TaskProd:"Producer Task";
EventToSet = MessageEvent:"Producer Task informed by MessageEvent";

}i

ACTION = ACTIVATETASK {
Task = TaskToNotify:"Notified Task";

}i

2.3.7 Automatic attribute assignment

Attribute values may be calculated by the generator. For those attributes the keyword
WITH _AUTO has to be defined in the implementation definition. In conjunction with
WITH_AUTO the attribute value AUTO is valid in the application part and as a default value.

2.3.8 Default values

Default values are used by the generator in the case that an attribute is missing in the
application definition.

Default values are mandatory for optional attributes. Because the syntax of the
implementation specific part requires the definition of default values a special default value
NO DEFAULT is defined to explicitly suppress the default mechanism. In that case the
attribute must be defined in the application part.

Default values are forbidden for standard attributes.
It is an error if a standard attribute is missing from the application definition.
The OIL grammar uses assignment in the implementation definition to specify default values.

List of all possible combinations of attributes with default values are shown in the example of
ENUM.

The OIL syntax allows six combinations for the implementation-specific part and three
combinations for the application part:

OSEK/VDX OIL 2.3 © by OSEK Page 10

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3
Implementation part Application part
param = A; param = AUTO; // nothing
ENUM (A, B, C] param = B; param A ERROR Param =B
ENUM [A, B, CI param = A ERROR ERROR
param = NO DEFAULT;
ENUM [A, B, C] param = AUTO; ERROR ERROR ERROR
ENUM WITH_AUT};’ (A, B, C] param A Generator- param =B
param = =i specific
ENUM WITH_AUTO [A, B, C] param A Generator- ERROR
param = NO DEFAULT; specﬂic
ENUM WITH_AUTO [S’ B, Cl param A Generator- Generator-
param = AUTO; specific specific

Example:

IMPLEMENTATION myOS {
TASK
UINT32 [1..0xff] STACKSIZE = 16; // If STACKSIZE is missing,
} // 16 is used as a default

}i

2.3.9 Include-mechanism

The include mechanism allows for separate definitions for some parts of OIL. The
implementation definition can be delivered with an OSEK implementation and used
(included) by the system designer.

The include statement has the same syntax as in ISO/ANSI-C:
#include <file>

#include "file"

e For each OIL tool there must be a way to specify search-paths for include files.
e #include <files> uses the search-path
e #include "file" uses the directory, where the including file resides

Placement of include directives

The same rules apply as for ISO/ANSI-C, e.g. the include statement has to be set on a seperate
line and can be set anywhere in the description files.

2310 Comments
The OIL file may contain C" -style comments (/* */ and //). C"" rules apply.

OSEK/VDX OIL 2.3 © by OSEK Page 11

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

2.3.11 Descriptions

To describe OIL objects, attributes, and values, the OIL syntax offers the concept of
descriptions. Descriptions are optional. They start after a colon (:), are enclosed in double
quotes ("), and must not contain a double quote.

Example:

BOOLEAN START = FALSE:"Automatic start of alarm on system start";

Descriptions give the user additional information about OIL objects, attributes and values in a
well defined format. The interpretation of descriptions is implementation specific.

OSEK/VDX OIL 2.3 © by OSEK Page 12

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3 Standard System Object Definitions

3.1 Rules

The application configuration files must conform some rules to be successfully processed.
Those rules are:

All objects are described using the OIL syntax.
Each object must have a unique name. Each object may be divided into several parts.
All object names must be accessible from the application.

An attribute defines some object properties (for example, the task priority). Attributes that
take a single value may only be specified once per object. Attributes that take a list of
values must be specified as multiple statements.

An object can have a set of references to other system objects. Per object there may be
more than one reference to the same type of object (e.g. more than one reference to
different events; see example in chapter|3.2.4.8).

Values must be defined for all standard attributes of all objects, except for multiple
attributes which can be empty.

The <name> non-terminal represents any ISO/ANSI-C identifier.

The <number> non-terminal represents any integer constant. The range of integers is
according to the target platform. Notations: decimal and hexadecimal. Decimal integers
with leading zeroes are not allowed as they might be misinterpreted as octal values!

The <string> non-terminal represents any 8-bit character sequence enclosed in double-
quotes ("), but not containing double-quotes.

The description represents any 8-bit character sequence enclosed in double-quotes ("), but
not containing double-quotes.

A reference defines a uni-directional link to another object (for example, the task X has to
be activated when the alarm Y expires).

Implementation-specific additional parameters are only allowed for optional attributes. Far
standard attributes it is forbidden to define implementation-specific additional parameters .

? for portability reasons

OSEK/VDX OIL 2.3 © by OSEK Page 13

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.2 Standard system objects, attributes, and references

For each system object the standard set of attributes with possible values is defined. These
standard object characteristics must be supported by any implementation.

3.2.1 CPU

CPU is used as a container for application objects.

322 osd

OS is the system object used to define OSEK operating system properties for an OSEK
application.

In a CPU exactly one OS object has to be defined.

3.2.2.1 STATUS

The STATUS attribute specifies whether a system with standard or extended status has to be
used. Automatic assignment is not supported for this attribute.

This attribute is an ENUM with following possible values:

e STANDARD

e EXTENDED

3.2.2.2 Hook routines

The following attribute names are defined for the hook routines supported by the OS:
e STARTUPHOOK

e ERRORHOOK

e SHUTDOWNHOOK

e PRETASKHOOK

e POSTTASKHOOK

These attributes are of type BOOLEAN.
If a hook routine will be used, the value is set to TRUE otherwise the value is set to FALSE.

The usage of the access macros to the service ID and the context related information in the
error hook is enabled by the following attributes of type BOOLEAN:

e USEGETSERVICEID
e USEPARAMETERACCESS

3.2.2.3 Sample

0S sampleOS ({
STATUS = STANDARD;
STARTUPHOOK = TRUE;
ERRORHOOK = TRUE;
SHUTDOWNHOOK = TRUE;

3 Attributes for Conformance Class and Scheduling are not defined as these are not part of the OS specification

OSEK/VDX OIL 2.3 © by OSEK Page 14

1l

OSEK/VDX

OSEK Implementation Language
Specification 2.3

PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;

OSEK/VDX OIL 2.3

© by OSEK

Page 15

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.2.3 APPMODE

APPMODE is the system object used to define OSEK operating system properties for an
OSEK OS application mode.

No standard attributes are defined for the APPMODE object.
In a CPU at least one APPMODE object has to be defined.

3.24 TASK
TASK objects represent OSEK tasks.

3.2.4.1 PRIORITY

The priority of the task is defined by the value of the PRIORITY attribute. This value has to
be understood as a relative value; this means the values of PRIORITY show only the relative
ordering of the tasks.

This attribute has the type UINT32.

OSEK defines the lowest priority as zero (0), a bigger value of the PRIORITY attribute
corresponds to a higher priority (compare OSEK specification 2.1, ch. 4.5).

3.24.2 SCHEDULE
The SCHEDULE attribute defines the preemptability of the task.

This attribute is an ENUM with following possible values:
e NON
e FULL

The FULL value of this attribute corresponds to a preemptable task, the NON value to a non-
preemptable task.

If the SCHEDULE attribute is set to NON no internal resources may be assigned to this task.

3.24.3 ACTIVATION

The ACTIVATION attribute defines the maximum number of queued activation requests for
the task. A value equal to "1" means that at any time only single activation is permitted for
this task (see OSEK OS specification).

This attribute has the type UINT32.

3.244 AUTOSTART

The AUTOSTART attribute determines whether the task is activated during the system start-
up procedure or not for some specific application modes.

This attribute is a BOOLEAN .

If the task should be activated during the system start-up, the value is set to TRUE otherwise
the value is set to FALSE. When set to TRUE, a list of application modes is defined in the

OSEK/VDX OIL 2.3 © by OSEK Page 16

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

APPMODE sub-attribute of type APPMODE TYPE which defines in which application
modes the task is auto-started.

OSEK/VDX OIL 2.3 © by OSEK Page 17

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.245 RESOURCE
The RESOURCE reference is used to define a list of resources accessed by the task.

This attribute is a multiple reference (see chapter [4.d, [Reference Types) of type
RESOURCE _TYPE.

3.2.4.6 EVENT

The EVENT reference is used to define a list of events the extended task may react on.

This attribute i1s a multiple reference (see chapter , Reference Types) of type
EVENT TYPE.

3.24.7 ACCESSOR

The ACCESSOR is used to define multiple references to sent or received messages. In
addition the parameters WITHOUTCOPY and ACCESSNAME are defined.

This attribute is a parametrized ENUM with following possible values:
e SENT {MESSAGE TYPE MESSAGE; BOOLEAN WITHOUTCOPY;
STRING ACCESSNAME;}
e RECEIVED { MESSAGE TYPE MESSAGE; BOOLEAN WITHOUTCOPY;
STRING ACCESSNAME;}

ACCESSOR = SENT
The MESSAGE reference parameter defines the message to be sent by the task.

This parameter is a single reference (see chapter Reference Types) of type
MESSAGE TYPE.

The WITHOUTCOPY parameter specifies if a local copy of the message is used.
This attribute is a BOOLEAN.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attribute is a STRING.

ACCESSOR = RECEIVED
The MESSAGE reference parameter defines the message to be received by the task.

This parameter is a single reference (see chapter Reference Types) of type
MESSAGE TYPE.

OSEK/VDX OIL 2.3 © by OSEK Page 18

1l

OSEK/VDX

OSEK Implementation Language

Specification 2.3

The WITHOUTCOPY parameter specifies if a local copy of the message is used.
This attribute is a BOOLEAN.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attribute is a STRING.

3.24.8

Sample
TASK TaskA
PRIORITY = 2;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = TRUE ({
APPMODE = AppModel;
APPMODE = AppMode?2;
RESOURCE resourcel;

}i

RESOURCE = resource2;
RESOURCE = resource3’;
EVENT = eventl;

EVENT = event2;
ACCESSOR = SENT ({

MESSAGE= anyMessagel;

WITHOUTCOPY= TRUE;

ACCESSNAME= ‘“anyMessagelBuffer”;

}i

3.25 COUNTER
A COUNTER serves as a base for the ALARM mechanism.

3.2.5.1

3.2.5.2

MAXALLOWEDVALUE
The MAXALLOWEDVALUE attribute defines the maximum allowed counter value.
This attribute has the type UINT32.

TICKSPERBASE

The TICKSPERBASE attribute specifies the number of ticks required to reach a counter-
specific unit. The interpretation is implementation specific.

This attribute has the type UINT32.

OSEK/VDX OIL 2.3

© by OSEK

Page 19

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.2.5.3 MINCYCLE

The MINCYCLE attribute specifies the minimum allowed number of counter ticks for a cyclic
alarm linked to the counter.

This attribute has the type UINT32.

3.2.54 Sample

COUNTER Timer (
MINCYCLE = 16;
MAXALLOWEDVALUE = 127;
TICKSPERBASE = 90;

}i
3.2.6 ALARM

An ALARM may be used to asynchronously inform or activate a specific task. It is possible to
start ALARMS automatically at system start-up depending on the application mode.

3.2.6.1 COUNTER

The COUNTER reference defines the counter assigned to this alarm. Only one counter has to
be assigned to the alarm. Any alarm has to be assigned to a particular counter.

This attribute is a single reference (see chapter Reference Types).

3.2.6.2 ACTION
The ACTION attribute defines which type of task notification is used when the alarm expires.

This attribute is a parametrized ENUM with following possible values:
e ACTIVATETASK {TASK TYPE TASK;}
e SETEVENT {TASK TYPE TASK; EVENT TYPE EVENT;}

e ALARMCALLBACK {STRING ALARMCALLBACKNAME;}

For an alarm, only one action is allowed.

ACTION = ACTIVATETASK
The TASK reference parameter defines the task to be activated when the alarm expires.

This parameter is a single reference (see chapter IReference Types) of type TASK_TYPE.

ACTION =SETEVENT

The TASK reference parameter defines the task for which the event is to be set. The EVENT
reference parameter defines the event to be set when the alarm expires.

TASK is a single reference of type TASK TYPE. EVENT is a single reference of type
EVENT TYPE.

OSEK/VDX OIL 2.3 © by OSEK Page 20

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

ACTION = ALARMCALLBACK

The ALARMCALLBACKNAME parameter defines the name of the callback routine which is
called when the alarm expires.

3.2.6.3 AUTOSTART

The AUTOSTART attribute of type BOOLEAN defines if an alarm is started automatically at
system start-up depending on the application mode.

When set to TRUE sub-attributes are used to define the ALARMTIME, i.e. the time when the
ALARM shall expire first, the CYCLETIME, i.e. the cycle time of a cyclic ALARM and a list
of application modes (APPMODE) for which the AUTOSTART shall be performed.

BOOLEAN [
TRUE
UINT32 ALARMTIME;
UINT32 CYCLETIME;
APPMODE TYPE APPMODE[] ;
b
FALSE
] AUTOSTART;

OSEK/VDX OIL 2.3 © by OSEK Page 21

ml| OSEK/VDX

OSEK Implementation Language
Specification 2.3

3.2.6.4 Samples

ALARM WakeTaskA ({
COUNTER = Timer;
ACTION = SETEVENT {

TASK = TaskA;
EVENT = eventl;
Vi

AUTOSTART = FALSE;

ALARM WakeTaskB ({
COUNTER = SysCounter;
ACTION = ACTIVATETASK {
TASK = TaskB;
}i

AUTOSTART = TRUE ({
ALARMTIME = 50;
CYCLETIME = 100;
APPMODE AppModel;
APPMODE AppMode?2 ;

}
}i

ALARM ActivateCallbackC ({
COUNTER = SysCounter;
ACTION = ALARMCALLBACK ({

ALARMCALLBACKNAME =
Vi

AUTOSTART = FALSE;

}i

3.2.7 RESOURCE

Resource is used to co-ordinate concurrent access of several tasks to a shared resource, e.g.

"CallbackC";

the scheduler, any program sequence, memory or any hardware area.

There is one attribute of type ENUM defined to specify the RESOURCEPROPERTY. This

attribute can take the following values:

e STANDARD: A normal resource which is not linked to another resource and is not an

internal resource.

e LINKED: A resource which is linked to another resource with the property STANDARD
or LINKED. The resource to which the linking shall be performed is defined by the sub-
attribute LINKEDRESOURCE of type RESOURCE TYPE. The code generator of the

operating system must resolve chains of linked resources.

e INTERNAL: An internal resource which cannot be accessed by the application.

3.2.71 Sample
RESOURCE MsgAccess

RESOURCEPROPERTY = STANDARD;

OSEK/VDX OIL 2.3

© by OSEK

Page 22

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.2.8 EVENT

An EVENT object is represented by its mask. The name of the event is a synonym for its
mask.

The same event may be set for different tasks. Events with the same name are identical,
therefore the event mask is identical. Events with the same mask are generally not identical
1.e. their names may be different.

3.2.8.1 MASK

The event mask is an integer number MASK of type UINT64. The other way to assign an
event mask is to declare it as AUTO. In this case, one bit is automatically assigned to the
event mask. This bit is unique with respect to the tasks that reference the event.

3.2.8.2 Samples

EVENT eventl {
MASK = 0x01;

EVENT event2 {
MASK = AUTO;

In the C-Code the user is allowed to combine normal event masks and AUTO event masks.
C-Code:

WaitEvent (eventl | event2);

OSEK/VDX OIL 2.3 © by OSEK Page 23

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

Example for the same event object (same event name) for events used by different tasks:
EVENT emergency {

MASK = AUTO;
}i

TASK taskl {
EVENT = myEventl;
EVENT = emergency;

}i

TASK task2 {
EVENT emergency;
EVENT myEvent2;

}i

TASK task7 {
EVENT emergency;
EVENT myEvent2;

}i

In the C-Code the user is allowed to use the emergency event with all three tasks.
C-Code:

SetEvent (taskl, emergency)

SetEvent (task2, emergency) ;
SetEvent (task7, emergency) ;

Another use for the same event name for events of different tasks is in control loops:
C-Code:

TaskType myList[] = {taskl, task2, task7};

int myListLen = 3;

int i=0;

for (i=0;i<myListLen;i++)
SetEvent (myList [i], emergency) ;

}

3.29 ISR
ISR objects represent OSEK interrupt service routines (ISR).

3.2.9.1 CATEGORY

The CATEGORY attribute defines the category of the ISR. This attribute is a UINT32, only
values of land 2 are allowed.

3.2.9.2 RESOURCE
The RESOURCE reference is used to define a list of resources accessed by the ISR.

This attribute i1s a multiple reference (see chapter , Reference Types) of type
RESOURCE _TYPE.

OSEK/VDX OIL 2.3 © by OSEK Page 24

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.2.9.3 ACCESSOR

The ACCESSOR is used to define multiple references to sent or received messages. In
addition the parameter ACCESSNAME is defined.

This attribute is a parametrized ENUM with following possible values:
e SENT {MESSAGE TYPE MESSAGE; STRING ACCESSNAME:;}
e RECEIVED { MESSAGE TYPE MESSAGE; STRING ACCESSNAME;}

ACCESSOR = SENT
The MESSAGE reference parameter defines the message to be sent by the ISR.

This parameter is a single reference (see chapter [Reference Types]) of type
MESSAGE TYPE.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attribute is a STRING.

ACCESSOR = RECEIVED
The MESSAGE reference parameter defines the message to be received by the ISR.

This parameter is a single reference (see chapter [Reference Types) of type
MESSAGE TYPE.

The ACCESSNAME parameter defines the reference which can be used by the application to
access the message data.

This attribute is a STRING.

3.294 Sample

ISR TimerInterrupt
CATEGORY 2;
RESOURCE someResource;
ACCESSOR = RECEIVED {
MESSAGE= anyMessage2;
ACCESSNAME= “anyMessage2Buffer”;

3.210 MESSAGE
MESSAGE objects represent OSEK messages.

OSEK/VDX OIL 2.3 © by OSEK Page 25

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.2.10.1 TYPE
The TYPE attribute defines if the message has a queue or not.

This attribute is a parametrized ENUM with following possible values:
e UNQUEUED {}
e QUEUED {UINT64 QUEUEDEPTH;}

TYPE = UNQUEUED

No queue is available for the message. No subattributes are defined.

TYPE = QUEUED
A queue of QUEUEDEPTH elements is defined.
QUEUEDEPTH is of type UINT64.

The QUEUED attributevalue specifies if the message has a queue. If used for internal
communication the COM conformance class will be CCCB.

3.2.10.2 CDATATYPE

The CDATATYPE parameter describes the data type of message data according to the C-
language (e.g. int or a structure name).

This attribute is a STRING.

3.2.10.3 ACTION

The ACTION attribute defines which type of task notification is used when the message is
received. For unqueued messages more than one action per message is possible.

This attribute is a parametrized ENUM with following possible values:

NONE {}

ACTIVATETASK {TASK TYPE TASK;}

SETEVENT {TASK_TYPE TASK; EVENT TYPE EVENT;}
CALLBACK {STRING CALLBACKNAME:;}

FLAG {STRING FLAGNAME:;}

For unqueued messages a list of actions is allowed according to OSEK COM specification
2.2.

For queued messages one action is allowed.

ACTION =NONE

No action is performed by sending this message.

OSEK/VDX OIL 2.3 © by OSEK Page 26

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

ACTION = ACTIVATETASK
The TASK reference parameter defines the task to be activated when the message is sent.

This parameter is a single reference (see chapter [Reference Types)) of type TASK_TYPE.

ACTION =SETEVENT

The TASK reference parameter defines the task for which the event is to be set. The EVENT
reference parameter defines the event to be set when the message is sent.

TASK is a single reference of type TASK TYPE. EVENT is a single reference of type
EVENT TYPE.

ACTION = CALLBACK
The CALLBACK parameter defines the function which is called when the message is sent.
This attribute is a STRING.

ACTION = FLAG
The FLAG parameter defines the name of the flag which is set when the message is sent.

This attribute is a STRING.

If used for internal communication the COM conformance class will be CCCB.

3.2.10.4 Sample

MESSAGE newInfos {
TYPE = UNQUEUED;
CDATATYPE = "infoStruct";
ACTION= SETEVENT ({
TASK= anyTask;
EVENT= anyEvent;
}i
ACTION= SETEVENT ({
TASK= otherTask;
EVENT= otherEvent;
}i
ACTION= CALLBACK ({
CALLBACKNAME= "msgReceivedl";
}i

OSEK/VDX OIL 2.3 © by OSEK Page 27

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

3.211 COM

COM is the system object used to define OSEK COM communication subsystem properties.
In a CPU not more than one COM object can be defined.

3.2.111 USEMESSAGERESOURCE

The USEMESSAGERESOURCE attribute specifies if the message resource mechanism is
used. If used for internal communication the COM conformance class will be CCCB.

This attribute has the type BOOLEAN.

3.2.11.2 USEMESSAGESTATUS

The USEMESSAGESTATUS attribute specifies if the message status is available. If used for
internal communication the COM conformance class will be CCCB.

This attribute has the type BOOLEAN.

3.2.11.3 Sample

COM sampleCOM ({
USEMESSAGERESOURCE = TRUE;
USEMESSAGESTATUS = FALSE;

Vi

3.212 NM

NM objects represent the network management subsystems. No standard attributes are defined
for the NM object.

OSEK/VDX OIL 2.3 © by OSEK Page 28

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

4 Definition of Particular Implementation

OIL is intended to be used for the description of applications in any OSEK implementation.
The implementation definition describes a set of attributes for each system object and valid
values for these attributes. All standard attributes must be defined in this part. For standard
attributes this part can only limit the value range, but in no case extend the value range or
change the value type. Optional attributes must specify a default value, AUTO (if defined
WITH_AUTO), or NO_DEFAULT.

The reference to an object or set of objects can be also defined by this part.

4.1 Attribute types

Any implementation specific attribute has to be defined before it is used.

The attribute type and attribute value range (if it exists) has to be defined. The range of
attribute values can be defined in two ways: either the minimum and maximum allowed
attribute values are defined (the [0..12] style) or the list of possible attribute values are
presented. A mix of both is not allowed.

The WITH_AUTO specifier can be combined with any attribute type except for references. If
WITH_AUTO is specified the attribute can have the value AUTO and the possibility of
automatic assignment by an off-line tool.

OIL data types are listed below. Note that these data types are not necessarily the same as the
corresponding C data types.

4.1.1 UINT32

Any unsigned integer number (possibly restricted to a range of numbers, see <impl attr def>
chapter Syntax of OIL).

UINT32 [1..255] NON SUSPENDED TASKS;
UINT32 [0,2,3,5] Freelnterrupts;
UINT32 aNumber;

This data type allows to express any 32 bit value in the range of [0..(2*%-1)].

41.2 INT32
Any signed integer number in the range of [-2°'..(2*'-1)].

4.1.3 UINT64

Any unsigned integer number in the range [0..(2°*-1)]

41.4 INT64

Any signed integer number in the range [-2%..(2%-1)].

OSEK/VDX OIL 2.3 © by OSEK Page 29

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

41.5 FLOAT
Any floating point number according to IEEE-754 standard (Range: +/- 1,176E-38 to +/-
3,402E+38).

FLOAT [1.0 .. 25.3] ClockFrequency; // Clock frequency in Mhz

4.1.6 ENUM

ENUM defines a list of ISO/ANSI-C enumerators. Any enumerator from this list can be
assigned to an attribute of the according type.

ENUM [NON, FULL] SCHEDULE;

ENUM [mon, tue, wed, thu, fri] myWeek;
ENUM types can be parameterized, i.e. the particular enumerators can have parameters. The
parameter specification is denoted in curly braces after the enumerator. Any kind of attribute
type is allowed as parameter of an enumerator.

ENUM [

ACTIVATETASK {TASK TYPE TASK;},

SETEVENT {TASK TYPE TASK; EVENT TYPE EVENT; }
] ACTION;

4.1.7 BOOLEAN

The attribute of this type can have either TRUE or FALSE value.
BOOLEAN DontDoIt;

DontDoIt = FALSE;

BOOLEAN types can be parameterized, i.e. the particular boolean values can have
parameters. Parameter specification are denoted in curly braces after an explicit enumeration
of the boolean values. Any kind of attribute type is allowed as parameter of a boolean value.

BOOLEAN [
TRUE {TASK TYPE TASK; EVENT TYPE EVENT;},
FALSE {TASK TYPE TASK;}

] IsEvent;

4.1.8 STRING

Any 8-bit character sequence enclosed in double-quotes, but not containing double-quotes,
can be assigned to this attribute.

4.2 Reference Types

A reference type is a data type that refers to a system object, e.g. to a task, to an event, to an
alarm, etc.

Reference types can be used to establish links between system objects, e.g. within an alarm
description a reference type attribute can refer a task object that is to be activated by the alarm.

The definition of a reference type specifies which type of system objects are referred, e.g. the
referred system objects are of type TASK, of type EVENT, of type ALARM, etc.

The reference type is taken from the referenced object (e.g. a reference to a task shall use the
TASK TYPE keyword as reference type). A reference can refer to any system object.

OSEK/VDX OIL 2.3 © by OSEK Page 30

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

A single reference type refers to exactly one object.

A definition of a single reference type consists of the system object type to be referred
followed by the symbolic name of the reference type being defined.

4.3 Multiple values

It is possible to use one attribute name to refer to a set of values of the same type. The set may
be empty. For example, the EVENT attribute of a task object can refer to a set of events.
Multiple values are allowed for all types.

A definition of a multiple reference type consists of the system object type to be referred
followed by the symbolic name of the reference type being defined followed by an empty pair
of brackets '[]'.

Example: EVENT TYPE MYEVENTS[];

A definition of a multiple attribute is the symbolic name followed by an empty pair of
brackets '[]'.

Example: INT32 InterruptNumber[] ;

A definition of a multiple parameterized ENUM or BOOLEAN type consists of the ENUM
(or BOOLEAN) type definition followed by an empty pair of brackets []'".

IMPLEMENTATION x {

MESSAGE {

ENUM [
ACTIVATETASK

{

TASK TYPE TASK;
}: "Task to be activated",

SETEVENT

{

TASK TYPE TASK;
EVENT TYPE EVENT;
}: "Event to be set",

NONE
] ACTIONI];

}i
}i

CPU y {

MESSAGE newInfos // broadcast

{

ITEMTYPE = "infoStruct";
ITEMS = 1;
ACTION = ACTIVATETASK {TASK= taskA;};

ACTION = ACTIVATETASK {TASK= taskB;};

}i
}i

OSEK/VDX OIL 2.3 © by OSEK Page 31

-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

4.4 Sample

The implementation can define some additional attributes for a standard object or restrict the
value range of standard attributes.

The example below shows:

1.
2.

A

8.
9.

The limitation of the ENUM value range for the standard OS attribute STATUS.

The definition of an implementation specific attribute NON SUSPENDED TASKS of
type UINT32 with a value range.

The limitation of the UINT32 value range for the standard task attribute PRIORITY.
The default value for StackSize is set to 16.
The limitation of the ENUM value range for the standard alarm attribute ACTION.

The definition of an implementation specific attribute START of type BOOLEAN for
alarms.

The definition of an implementation specific attribute ITEMTYPE of type STRING for
messages.

The definition of a reference to message objects for ISRs.

The possible usage of the defined or modified attributes in the application definition.

10. Separation of the object MyTask1 into two definitions.

IMPLEMENTATION SpecialOS {

}i

0s {

ENUM [EXTENDED] STATUS;
UINT32 [1..255] NON SUSPENDED TASKS = 16;

}i

TASK {
UINT32 [1 .. 256] PRIORITY; // define range of standard
// attribute PRIORITY
INT32 StackSize= 16; // stacksize in bytes for a task
Vi
ALARM {

ENUM [ACTIVATETASK {TASK_TYPE TASK;}] ACTION;

// define possible value(s) of standard attribute ACTION

BOOLEAN START = FALSE; // define implementation specific
// attribute START of type BOOLEAN

}i

MESSAGE {
STRING ITEMTYPE = ""; // define implementation specific
// attribute ITEMTYPE of type STRING

OSEK/VDX OIL 2.3 © by OSEK Page 32

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

ISR {
MESSAGE TYPE RCV_MESSAGES[] = NO_ DEFAULT;
// define implementation specific
// attribute RCV_MESSAGES of type
// 'multiple reference to objects
// of type MESSAGE'

Vi
}; // End IMPLEMENTATION SpecialOS

CPU SampleCPU (
0S MyOs {

}i

TASK MyTaskl {
PRIORITY = 17;

}i

TASK MyTaskl {
StackSize = 64;

}i

ALARM MyAlarml {
ACTION = ACTIVATETASK {
TASK = MyTaskl;

}i
START = TRUE;
}i

MESSAGE MyMsgl
ITEMTYPE = "SensorData";

}i

MESSAGE MyMsg2 {
ITEMTYPE = "Acknowledge";

}i
ISR MyIsrl {
RCV_MESSAGES = MyMsgl;
RCV_MESSAGES = MyMsg2;
}i

}; // End CPU SampleCPU

This example is not a complete OIL file therefore the dots represent missing parts.

OSEK/VDX OIL 2.3 © by OSEK Page 33

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

5 Appendix

5.1 Static model of OIL

The following figure shows the static model of OIL in UML (unified modeling language)
notation.

1 1
CPU
1 !
abstract
1 1 0..*
! 1?1 11 N1 0.1
0.. ALARM
0S
dard Attrib 0..*
Standard Attributes Standard Attributes
STATUS
STARTUPHOOK gg%LE?
ERRORHOOK 0.* 0.1 ACTIVATETASK {
SHUTDOWNHOOK - TASK }
PRETASKHOOK EVENT SETEVENT {
POSTTASKHOOK 0% TASK, EVENT }
USEGETSERVICEID Standard Attributes K :
USEPARAMACCESS ALARMCALLBACK {
MASK CALLBACKNAME
AUTOSTART
0.*]
NM 0..% 0.*
= 1 1
Standard Attributes| 0% COUNTER
TASK 1
N Standard Attributes
Standard Attributes 1+ MAXALLOWEDVALUE
PRIORITY TICKSPERBASE
L SCHEDULE MINCYCLE
ACTIVATION
APPMODE AUTOSTART
RESOURCE[]
Standard Attributes EVENT[]
ACCESSOR 0.*
0..*
RESOURCE
%
Standard Attributes
0..1 LK
0.* 0.* 0 RESOURCEPROPERTY
CoM MESSAGE |0--* ISR o
. 0.* a
Standard Attributes Standard Attributes Standard Attribute
USEMESSAGERESOURCE TYPE CATEGORY
USEMESSAGESTATUS CDATATYPE ACCESSOR
ACTION RESOURCE]

Figure 5-1: Static model of OIL

* The UML-Diagram does not show the relations between ACTIONs of messages and TASK or EVENT

OSEK/VDX OIL 2.3 © by OSEK Page 34

=

=1

OSEK/VDX

OSEK Implementation Language
Specification 2.3

5.2 Syntax of OIL
The OIL file has the following structure:

<file>

<OIL_version>

<implementation definitions>

<application definitions>
<OIL version> ::=
"OIL VERSION"

<version> <descriptions> ";"

<version>

<strings>
<implementation definitions> =
"IMPLEMENTATION" <name> "{" <implementation spec list> "}"
<description> ";"

<implementation spec list>
<implementation spec>
| <implementation spec list> <implementation specs>

<implementation specs>

<object> "{" <implementation list> "}" <descriptions> ";"
<object> =
nogn | "TASK" |
| "MESSAGE" |

"COUNTER" | "EVENT"

n"CoM" | TNM" |

"ALARM" |
"APPMODE"

"RESOURCE" |

<implementation lists>
/* empty list */
| <implementation defs>
| <implementation list> <implementation defs>

<implementation def> <impl attr def> | <impl ref defs>

<impl attr def>
"UINT32" <auto specifier> <number range> <attribute namex>
<multiple specifier><default number> <description>

| "INT32" <auto_specifiers> <number range> <attribute name>
<multiple specifier> <default number> <description>

| "UINT64" <auto_specifier> <number range> <attribute name>

7

<multiple specifier> <default number> <description> ";

| "INT64" <auto_specifier> <number ranges> <attribute name>
<multiple specifier> <default number> <descriptions>
| "FLOAT" <auto_specifier> <float range> <attribute name>
<multiple specifier> <default float> <descriptions>
| "ENUM" <auto_specifier> <enumerations> <attribute name>
<multiple specifier> <default name> <description>
| "STRING" <auto_specifiers> <attribute name>
<multiple specifier> <default string> <descriptions>
| "BOOLEAN" <auto_specifier> <bool values> <attribute name>
<multiple specifier> <default bool> <description>
<impl parameter list> ::=
/* empty definition */
|"{" <impl def list> "}"

<impl def list>
/* empty definition */
| <implementation def>
| <implementation def> <impl def list>

7

7

7

n ISRII

OSEK/VDX OIL 2.3 © by OSEK

Page 35

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

<auto specifiers> ::=
/* empty definition */
| "WITH AUTO"

<number_ range> ::=
/* empty definition */
| "[" <number> ".." <number> "]"
| "[" <number list> "]"

<number list> ::=
<number> | <number list> "," <numbers>

<default numbers> ::=
/* empty definition */
| "=" <number> | "=" "NO DEFAULT" | "=" "AUTO"

<description> ::=
/* empty definition */
| ":" <string>

<float_range> ::=
/* empty definition */
| "[" <float> ".." <float> "]"

<default floats> ::=
/* empty definition */
| "=n <float> | "=" "NO DEFAULT" | "=" "AUTO"

<enumeration> ::=
"[" <enumerator list> "]"

<enumerator list> ::=
<enumerator>
| <enumerator list> "," <enumerators

<enumerators> ::=
<name> <desgcriptions
| <name> <impl parameter list> <descriptions

<bool values> ::=
/* empty definition */
| "[" "TRUE" <impl parameter list> <descriptions ",6"
"FALSE" <impl parameter list> <description> "]"

<default name> ::=
/* empty definition */
| "_" name> | n_mn n NO_DEFAULT] | n_n_ NAYTO"

<default string> ::=
/* empty definition */
| "=" <string> | "=" "NO_DEFAULT" | "=" "AUTO"

<default bool> ::=
/* empty definition */
| "=" <booleans | "=" "NO DEFAULT" | "=" "AUTO"

<impl ref defs> ::=
<object ref type> <reference name> <multiple specifiers>

m.n
7

<descriptions>

OSEK/VDX OIL 2.3 © by OSEK

Page 36

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3
<object ref type> ::=
"OS _TYPE" | "TASK TYPE" | "COUNTER TYPE" | "ALARM TYPE"
| "RESOURCE_TYPE" | "EVENT TYPE" | "ISR_TYPE"
| "MESSAGE TYPE" | "COM_TYPE" | "NM_TYPE" | "APPMODE TYPE"
<reference name> ::= <name> | <object>

<multiple specifier> ::=
/* empty definition */
| u[u u]u

<application definition> ::=
"CPU" <name> "{" <object definition list> "}" <description> ";"

<object definition list> ::=
/* empty definition */
| <object definitions>
| <object definition list> <object definitions>

<object definition> ::=
<object name> <description> ";"
| <object name> "{" <parameter list> "}" <descriptions> ";"

<object name> ::= <object> <name>

<parameter list> ::=
/* empty definition */
| <parameters
| <parameter list> <parameters>

<parameter> ::=
<attribute name> "=" <attribute value> <description> ";"
<attribute name> ::= <name> | <object>

<attribute value> ::=
<name>
<name> "{" <parameter lists> "}
<booleans>
<boolean> "{" <parameter lists> "}
<numbers>
<float>
<strings>
n AUTO n

<name> ::= Name

<string> ::= String
<boolean> ::= "FALSE" | "TRUE"

<number> ::= <dec number> | <hex numbers

<dec_number> ::=
<sign> <int digitss>

<sign> ::=
/* empty definition */
| ngn
| n_m

OSEK/VDX OIL 2.3 © by OSEK Page 37

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

<int digits> ::=
<zero digits>
| <pos digits>
| <pos digit> <dec digits»>

<dec_digits> ::=
| <dec digits>
| <dec_digit> <dec_digits»>

<float> ::=
<sign> <dec_digits> "." <dec digits> <exponents

<exponent> ::=
/* empty definition */
| "e" <sign> <dec_digits»>
| "E" <sign> <dec_digitss>

<zero digit> ::=
_II O n

<pos_digits> ::=
- nqn | nomn | n3mn | ngn | ngn | ngn | n7n | ngn | ngn

<dec_digit> ::= <zero digit> | <pos digit>

<hex numbers>

"Ox" <hex digits>

<hex_digits> =
<hex digits>
| <hex digit> <hex digitss>

<hex digits> ::=
- npn | ngn | el | npn | ngn | ngEn
| ngn | npn | nan | ngn | nan | nfEn
| non | nqn | nomn | n3n | ngn | ngn | ngn | n7n | ngn | ngn

OSEK/VDX OIL 2.3 © by OSEK Page 38

1l

OSEK/VDX

Specification 2.3

OSEK Implementation Language

5.3 Default definition of standard object attributes and references

The Igleﬁnition of standard attribute types and parameters can be presented in the following

form™

IMPLEMENTATION Standard f{
0s {

}i

ENUM [STANDARD, EXTENDED] STATUS;
BOOLEAN STARTUPHOOK;

BOOLEAN ERRORHOOK;

BOOLEAN SHUTDOWNHOOK;

BOOLEAN PRETASKHOOK;

BOOLEAN POSTTASKHOOK;

BOOLEAN USEGETSERVICEID;

BOOLEAN USEPARAMETERACCESS;

APPMODE {

TASK {

}i

ISR {

}i

BOOLEAN [
TRUE

APPMODE_ TYPE APPMODE[] ;
b
FALSE
] AUTOSTART;
UINT32 PRIORITY;
UINT32 ACTIVATION;
ENUM [NON, FULL] SCHEDULE;
EVENT TYPE EVENTI[];
RESOURCE_TYPE RESOURCEI[] ;
ENUM [
SENT
{
MESSAGE TYPE MESSAGE;
BOOLEAN WITHOUTCOPY ;
STRING ACCESSNAME ;

b

RECEIVED
MESSAGE TYPE MESSAGE;
BOOLEAN WITHOUTCOPY ;
STRING ACCESSNAME ;

}

] ACCESSORI] ; }i

UINT32 [1, 2] CATEGORY;
RESOURCE_TYPE RESOURCEI[] ;
ENUM [
SENT
{
MESSAGE TYPE MESSAGE;
STRING ACCESSNAME ;

b

RECEIVED

{

MESSAGE TYPE MESSAGE;

STRING ACCESSNAME ;

}

] ACCESSORI] ;

> Ordering of the elements is free.

OSEK/VDX OIL 2.3 © by OSEK

Page 39

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

COUNTER {
UINT32 MINCYCLE;
UINT32 MAXALLOWEDVALUE;
UINT32 TICKSPERBASE;

}i

ALARM {
COUNTER TYPE COUNTER;
ENUM [
ACTIVATETASK {TASK TYPE TASK;},
SETEVENT {TASK TYPE TASK; EVENT TYPE EVENT;}
ALARMCALLBACK {STRING ALARMCALLBACKNAME; }
] ACTION;
BOOLEAN [
TRUE
UINT32 ALARMTIME;
UINT32 CYCLETIME;
APPMODE TYPE APPMODE[] ;
FALSE
] AUTOSTART;
EVENT {
UINT32 WITH AUTO MASK;
RESOURCE
ENUM [
STANDARD,
LINKED ({
RESOURCE TYPE LINKEDRESOURCE;
INTERNAL
] RESOURCEPROPERTY;
MESSAGE {
ENUM [
UNQUEUED,
QUEUED {UINT64 QUEUEDEPTH; }
] TYPE;
STRING CDATATYPE;
ENUM [
NONE,
ACTIVATETASK
TASK TYPE TASK;
SETEVENT
TASK TYPE TASK;
EVENT TYPE EVENT;
CALLBACK
STRING CALLBACKNAME;
FLAG
STRING FLAGNAME;
] ACTIONI[]; // action to perform if message is sent or received
coM {

BOOLEAN USEMESSAGERESOURCE;

OSEK/VDX OIL 2.3 © by OSEK Page 40

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

BOOLEAN USEMESSAGESTATUS;

}i

OSEK/VDX OIL 2.3 © by OSEK Page 41

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

5.4 Sample of a complete OIL file

OIL VERSION = "2.3";

IMPLEMENTATION MySpecificImplementation

{

0s

{

}i

ENUM [STANDARD, EXTENDED] STATUS;
BOOLEAN STARTUPHOOK;

BOOLEAN ERRORHOOK;

BOOLEAN SHUTDOWNHOOK;

BOOLEAN PRETASKHOOK;

BOOLEAN POSTTASKHOOK;

BOOLEAN USEGETSERVICEID;

BOOLEAN USEPARAMETERACCESS;

/* Implementation specific attribute added */
UINT32 [1..255] NON SUSPENDED TASKS = 16;
FLOAT [1.0 .. 25.3] ClockFrequency = 8.0; // Clock frequency in Mhz

APPMODE

{
}i

TASK

{

BOOLEAN [
TRUE

{
b

FALSE
] AUTOSTART;

APPMODE_TYPE APPMODE([] ;

ENUM [NON, FULL] SCHEDULE;
EVENT TYPE EVENTI[];
RESOURCE_TYPE RESOURCEI[] ;

UINT32 [1..256] PRIORITY; // Value range defined
UINT32 [1..24] ACTIVATION; // Value range defined
ENUM [

SENT

{

MESSAGE TYPE MESSAGE;

BOOLEAN WITHOUTCOPY ;

STRING ACCESSNAME;
RECEIVED

MESSAGE TYPE MESSAGE;

BOOLEAN WITHOUTCOPY ;

STRING ACCESSNAME;

] ACCESSORI] ;

/* Implementation specific attributes added */

UINT32 STACKSIZE = 16;

ENUM [STACKINTERNAL, STACKEXTERNAL] STACKTYPE = STACKINTERNAL;
MESSAGE TYPE MESSAGESENT [] ;

MESSAGE TYPE MESSAGERECEIVED|] ;

ENUM WITH AUTO [MINIMUM, MAXIMUM] OPTIMIZE = AUTO;

OSEK/VDX OIL 2.3 © by OSEK Page 42

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

OSEK/VDX OIL 2.3 © by OSEK Page 43

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

ISR

UINT32 [1, 2] CATEGORY;
RESOURCE TYPE RESOURCEI] ;
ENUM [
SENT
{
MESSAGE TYPE MESSAGE;
STRING ACCESSNAME;

b

RECEIVED
MESSAGE TYPE MESSAGE;
STRING ACCESSNAME;

}

] ACCESSORI];

/* Implementation specific attributes added */
UINT32 STACKSIZE = 32;
UINT32 [0,1,3,4,7] ISRPRIORITY = 1: "Only ISR-priorities 0,1,3,4,7
are supported by MySpecificImplementation";
BOOLEAN [
TRUE

TASK TYPE TASKI[];
}: "and true means true",
FALSE

}: "false means false"
] taskNotification= FALSE;

}i
COUNTER

UINT32 MINCYCLE;
UINT32 MAXALLOWEDVALUE;
UINT32 TICKPERBASE;

}i

ALARM
COUNTER_TYPE COUNTER;
ENUM [
ACTIVATETASK

TASK TYPE TASK;
}: "Task to be activated",

SETEVENT
TASK TYPE TASK;
EVENT TYPE EVENT;
}: "Event to be set"

ALARMCALLBACK

{
STRING ALARMCALLBACKNAME;
}: "Callback to be called"
] ACTION;

BOOLEAN [

TRUE {
UINT32 ALARMTIME;
UINT32 CYCLETIME;

OSEK/VDX OIL 2.3 © by OSEK Page 44

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

APPMODE_TYPE APPMODE [] ;

FALSE
] AUTOSTART;

/* Implementation specific attribute added */
BOOLEAN START = FALSE: "Automatic start of alarm on system start";
BOOLEAN CYCLIC = FALSE: "Cyclic alarm";

}i
EVENT

{
UINT32 WITH AUTO [1..0xff] MASK; // Value range defined

}i

RESOURCE
ENUM [
STANDARD,
LINKED {
RESOURCE TYPE LINKEDRESOURCE;
}I

INTERNAL
] RESOURCEPROPERTY;

MESSAGE
{
ENUM [
UNQUEUED,
QUEUED {UINT64 QUEUEDEPTH; }
] TYPE;
STRING CDATATYPE;
ENUM [
NONE,
ACTIVATETASK

{
b

SETEVENT

{

TASK TYPE TASK;

TASK TYPE TASK;
EVENT TYPE EVENT;

b

CALLBACK

{
b

FLAG

{

STRING CALLBACKNAME ;

STRING FLAGNAME;

] ACTIONI[]; // action to perform if message is sent or received

}i

COM

{

BOOLEAN USEMESSAGERESOURCE;
BOOLEAN USEMESSAGESTATUS;

}i

OSEK/VDX OIL 2.3 © by OSEK Page 45

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

OSEK/VDX OIL 2.3 © by OSEK Page 46

ml| OSEK/VDX

OSEK Implementation Language
Specification 2.3

// "Sample application definition";
CPU Sample CPUl

?S Stdos
STATUS = STANDARD;
STARTUPHOOK = TRUE;
ERRORHOOK = TRUE;
SHUTDOWNHOOK = TRUE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;

0S Stdos

NON_ SUSPENDED TASKS = 4;

ClockFrequency = 10.0: "Frequency in MHz"; // float and description

}i

COM StdCoM

USEMESSAGERESOURCE= FALSE;
USEMESSAGESTATUS= TRUE;

ISR myTimerInterrupt

// ISR STACKSIZE default value

CATEGORY = 2;

ISRPRIORITY = 3;

ISR myExtInterrupt

CATEGORY = 2;

ISRPRIORITY = 4;

RESOURCE = MsgAccess;

taskNotification= TRUE
TASK= taskl;
TASK= task2;

ACCESSOR = RECEIVED {

MESSAGE= anyMessage2;

ACCESSNAME= "anyMessage2Buffer";

}i
}i

TASK TaskSND
{
AUTOSTART = FALSE;
PRIORITY = 3;
ACTIVATION = 1;
SCHEDULE = FULL;
RESOURCE = ResMsgAccess;
ACCESSOR = SENT
MESSAGE= newInfos;
WITHOUTCOPY= TRUE;

ACCESSNAME= "newInfosBuffer";

TASK TaskRCV
AUTOSTART = FALSE;
PRIORITY = 1;
ACTIVATION = 1;
SCHEDULE = FULL;

OSEK/VDX OIL 2.3

© by OSEK

Page 47

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

RESOURCE = MsgAccess;

}i

OSEK/VDX OIL 2.3 © by OSEK Page 48

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

TASK TaskProd
AUTOSTART = FALSE;
PRIORITY = 2;
ACTIVATION = 1;
SCHEDULE = FULL;
EVENT = timeEvent;

TASK TaskCons
AUTOSTART = FALSE;
PRIORITY = 4;
ACTIVATION = 1;
SCHEDULE = NON;

EVENT timeEvent

{
MASK = AUTO;
}i

RESOURCE MsgAccess

RESOURCEPROPERTY = STANDARD;

COUNTER SystemTimer

MAXALLOWEDVALUE = 65535;
TICKSPERBASE = 10;
MINCYCLE = 1;

COUNTER MsgCounter

MAXALLOWEDVALUE = 6;
TICKSPERBASE = 1;
MINCYCLE = 10;

}i

ALARM MsgAlarm

{

COUNTER = SystemTimer;
ACTION = ACTIVATETASK

TASK = TaskSND;

}i

AUTOSTART = FALSE;

}i

ALARM ProdAlarm

{

COUNTER = SystemTimer;
ACTION = SETEVENT

TASK = TaskProd;
EVENT = timeEvent;

AUTOSTART = FALSE;

}i

ALARM EvMsgAlarm

{

COUNTER = MsgCounter;
ACTION = ACTIVATETASK

{

TASK = TaskCons;

OSEK/VDX OIL 2.3 © by OSEK Page 49

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

AUTOSTART = FALSE;

OSEK/VDX OIL 2.3 © by OSEK Page 50

=

=1

OSEK/VDX

OSEK Implementation Language
Specification 2.3

TASK TaskProd

STACKSIZE

7

= 24;

TASK TaskCons

{

STACKTYPE
STACKSIZE

}i

STACKEXTERNAL;
8;

MESSAGE newInfos {

TYPE =
CDATATYPE

UNQUEUED;

= "infoStruct";

ACTION= SETEVENT {

TASK =
EVENT =

}i

TaskProd;
timeEvent;

ACTION= CALLBACK {

CALLBACKNAME=

}i
};

}: "This CPU is intended to run the Sample

"msgReceivedl";

application";

OSEK/VDX OIL 2.3

© by OSEK

Page 51

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

5.5 Generator hints

All topics concerning generator hints are not part of the specification. They are
recommendations.

5.5.1 Generator interface
Recommendation for parameters of system generator

e parameter -a for accept unknown attributes (i.e. ignore attributes which are defined in the
implementation-specific part of OIL but for which the generator has no rule)

parameter -1 for include paths

parameter -f for command file

parameter -r for generating resource statistics

parameter -v for version

parameter -t for test/verify

From the user point of view, all implementation-specific switches (of the generator) should be
attributes of the matching OIL objects. This would allow the user to place all the
implementation-specific information in the OIL file and not into command-line parameters.

5.5.2 Resource usage statistics

The generator should provide all resources of the operating system used by the application
(e.g. number of tasks, priorities, ...) to the user.

5.5.3 Naming convention for OIL files

For ease of use the main OIL file should have the file extension .OIL. The extensions for other
files that are included in the main OIL file are free.

OSEK/VDX OIL 2.3 © by OSEK Page 52

E'-ﬂ O S E K/VDX OSEK Implementation Language

‘ Specification 2.3

6 Changes in specifications

6.1 Changes from specification 1.0/2.0 to 2.1

The specifications 1.0/2.0 were no official versions, so no change description is provided.

6.2 Changes from specification 2.1 to 2.2

6.2.1 Resources

According to the OS specification 2.1, resources may be used in interrupt service routines. A
standard attribute to reference a resource object was added.

6.2.2 Messages

The OS specification 2.1 referes to OSEK COM as two additional conformance classes for
local message handling. Standard attributes for messages were added. References from
TASKSs and ISRs to messages were added, too.

6.2.3 COM

The COM object got two standard attributes. Additionaly it was defined, that the COM object
may be defined only once.

6.3 Changes from specification 2.2 to 2.3

The following changes were made to support the new features of the OS specification 2.2.

6.3.1 ALARM
An AUTOSTART attribute was added to the ALARM object.
The ACTION attribute was amended by a third value ALARMCALLBACK.

6.3.2 ISR
The ISR category 3 was removed.

6.3.3 RESOURCE

The RESOURCEPROPERTY attribute was introduced to handle the new concepts of linked
and internal resources.

6.3.4 TASK
The AUTOSTART attribute was modified to support different application modes.

6.3.5 oS
New attributes USEGETSERVICEID and USEPARAMETERACCESS.

OSEK/VDX OIL 2.3 © by OSEK Page 53

E'-ﬂ O S E K/VDX OSEK Implementation Language

Specification 2.3

OSEK/VDX OIL 2.3 © by OSEK Page 54

ml| OSEK/VDX

OSEK Implementation Language

‘ Specification 2.3

7 Index

ACCESSOR CYCLETIME 21
definition 18, 25 description

ACTION definition 13
definition 20, 26 ECU

ACTIVATION acronym 5
definition 16 EVENT

ALARM definition 18, 20, 23
ACTION 20 description 7
COUNTER 20 MASK 23
deﬁni.tioln 20 grammar rules 8
gi;g;\%t}on 2(7) implementation definition 8,9
TASK 18, 20, 25 INTERNAL 22

ALARMCALLBACK 20, 21 ISR

ALARMTIME 21 ACCESSOR 25

acronym 5

API CATEGORY 24
acronym 5 definition 24

application definition 8 description 7

APPMODE 7,16,17,21 RESOURCE 24
definition 16 LINKED 22

attribute MASK
definition 13 definition 23
type 29 MAXALLOWEDVALUE
value range 29 definition 19

attributes MESSAGE
non-standard 9 ACTION 26

AUTOSTART 21 CDATATYPE 26
definition 16 definition 25

BNF description 8
acronym TYPE 26

case-sensitive MINCYQLE

CATEGORY definition 20
definition 24 name

COM definition 13
acronym 5 NM
definition 28 acronym 5
description 8 definition 28
USEMESSAGERESOURCE 28 description 8
USEMESSAGESTATUS 28 number

comments 8,11 definition 13

container 6 OIL

COUNTER acronym >
definition 19, 20 version 8
description 7 0s 7
MAXALLOWEDVALUE 19 acronym 5
MINCYCLE 20 definition 14, 28
TICKSPERBASE 19 PRIORITY

CPU definition 16
acronym 5 reference
definition 14 definition 13
description 7

OSEK/VDX OIL 2.3 © by OSEK Page 55

ml| OSEK/VDX

OSEK Implementation Language

‘ Specification 2.3

RESOURCE PRIORITY 16
definition 18, 22, 24 RESOURCE 18
description 7 SCHEDULE 16

RESOURCEPROPERTY 22 TICKSPERBASE

SCHEDULE definition 19
definition 16 TYPE

STATUS definition 26
definition 14 UML

string acronym 5
definition 13 USEGETSERVICEID 14

TASK USEMESSAGERESOURCE
ACCESSOR 18 definition 28
ACTIVATION 16 USEMESSAGESTATUS
AUTOSTART 16 definition 28
g:?i‘gggn 16, 18, 20, 2; USEPARAMETERACCESS 14
EVENT 18

OSEK/VDX OIL 2.3 © by OSEK Page 56

1l

OSEK/VDX

OSEK Implementation Language

‘ Specification 2.3

8 History

Version Date Remarks

2.0 December 16, 1997 Authors:

Published as Jirgen Aminger IBM GmbH

Recommendation Vladimir Belov Motorola SPRL
Jiirgen Betzelt Daimler-Benz AG
Volker Ebner Vector Informatik
Bob France Motorola SPS
Gerhard Goser Siemens Automotive SA
Martin Huber Daimler-Benz AG
Adam Jankowiak Daimler-Benz AG
Winfried Janz Vector Informatik
Helmar Kuder Daimler-Benz AG
Ansgar Maisch University of Karlsruhe
Rainer Miiller IBM GmbH
Salvatore Parisi Centro Ricerche Fiat
Jochem Spohr ATM Computer GmbH
Stephan Steinhauer Daimler-Benz AG
Karl Westerholz Siemens Semiconductors
Andree Zahir ETAS GmbH & Co. KG

Version Date Remarks

2.1 June 30, 1999 Authors:

Specification Michael Barbehenn Motorola
Irina Bratanova Motorola
Manfred Geischeder BMW
Gerhard Goser Siemens Automotive
Andrea Hauth 3Soft
Adam Jankowiak DaimlerChrysler
Winfried Janz Vector Informatik
Helmar Kuder DaimlerChrysler
Stefan Schimpf ETAS
Markus Schwab Infineon

Carsten Thierer
Hans-Christian Wense
Andree Zahir

University of Karlsruhe
Motorola
ETAS

OSEK/VDX OIL 2.3

© by OSEK

Page 57

1l

OSEK/VDX

OSEK Implementation Language

‘ Specification 2.3
Version Date Remarks
2.2 July 4, 2000 Authors:
Specification Manfred Geischedder BMW
Irina Bratanova Motorola
Winfried Janz Vector
Reiner Kriesten IIT, Uni Karlsruhe
Jochem Spohr IMH
Peter Gro3hans IMH
Walter Koch Siemens
Hartmut Horner Vector
23 August 28,2001 Authors:
Specification OS working group ISO
OSEK/VDX OIL 2.3 © by OSEK Page 58

