m Open Systems and the Corresponding Interfaces
-ﬂ for Automotive Electronics

OSEK / VDX

System Generation

OIL: OSEK Implementation Language
Version 2.4.1

January 23, 2003

This document is an official release and replaces all previously distributed documents. The OSEK group retains
the right to make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission
in writing from the OSEK/VDX steering committee.

OSEK/VDX OIL 2.4.1 © by OSEK Document: OIL241.doc

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

Preface

OSEK/VDX is a joint project within the automotive industry. It aims at an industry standard
for an open-ended architecture for distributed control units in vehicles.

For detailed information about OSEK's project goals and partners, please refer to the “OSEK
Binding Specification”.

This document describes the OSEK Implementation Language (OIL) concept for the
description for the OSEK real-time systems, capable of multitasking and communications,
which can be used for motor vehicles. It is not a product description that relates to a specific
implementation.

General conventions, explanations of terms and abbreviations have been compiled in the
additional inter-project "OSEK Overall Glossary", which is part of the OSEK Binding
Specification.

Note: To simplify matters, the term “OSEK” is used instead of “OSEK/VDX” throughout this
document.

OSEK/VDX OIL 2.4.1 © by OSEK Page 2

=il OSEK/VDX

OSEK Implementation Language

Specification 2.4.1

Table of contents
1 INTRODUCTION 5
1.1 GENERAL REMARKS0otieiiiiieiiuiteeesirteeesotseeeasesseessssseeassssessassssessssssssssssssssassssssssssssessssssssessssesssssssessssssessnns 5
1.2 IMOTIVATION. ..ceieiieeieetiieeee e e e e ettt e e e e eeet e e e e e e eeeeataaaeeaeeeeaassssseaaeeeeaasssssaaeseeeaassssaesaeeeeasssssaseeeseeaassraseaaeens 5
2 LANGUAGE DEFINITION 7
2.1 PREAMBLEuviiiiitie ettt et e et e e et e e e e e e e eett e e e eeataeeeetteeeeetteeeeataeeeeattaaeeetteaeeetreeeeataeeeeaaeaeaans 7
2.2 GENERAL CONCEPTuutiiiiittiteeeteeeeetteeeeiseeeeeasesestseseeasssseaasssesaassseesssseseaasssesasssaeesassssesanssesesssseesssseeeans 7
0 T O] 1 I 2 7NN (01 PP URPR PPN 8
231 OIL file STFUCIUFE ... oottt ettt ettt et ekt e bt et ese e s s e sneeene e et aneeeneeans 8
2.3.2 SPMIAX ittt et ettt ettt ettt an 8
2.3.3 OUL VEOFSIOMS ...ttt ettt e e e e e e e e e e e e e e eeannes 8
2.3.4 Implementation defiNitionN...............cccccoeiiiiiiiiiiiiiiiieeee ettt 9
2.3.5 APPLICAION AEFINILION ..ottt ettt ettt 9
2.3.6 Dependencies Detween QHIFIDULESc.c.ccccueeiieeiueesiieeie e eeee e sveesiae e saeesiaeesiae e e naseeenas 10
2.3.7 Automatic QttribUte ASSIGNIMENLc.cccvevueereereereeeieeseeseeee et e eseesesaesseeeaeeseesseesseessesseeses 10
2.3.8 DefAUIt VAIUES ...t 10
2.3.9 INCIUAC MECHANISTI ...t et 11
2310 COMIPCHLSooeeeeiee ettt ettt e e e e et e e e e e e et e e e e e e e e eraaaes 12
2.3. 11 DESCHIPIIONS ...ttt ettt ettt e sttt e et e ettt e e st e e e ab e e eabeessbeeeabeesateensseenseennseennnes 12
3 OIL OBJECT DEFINITIONS 13
3.1 RULES ..ttt ettt ettt ettt e ettt e e ettt e e e bt e e e s atbaeeesebeeeassseeeasssaaassssaaaassssaeeasssaaeanssaaaaassseeeanssaeessssseaans 13
3.2 OIL OBJECTS, STANDARD ATTRIBUTES AND REFERENCESccceittiiiuuiiieeeeeeiiiieieeeeeseeesinneseeesssssnnssneeeeens 14
3.2.1 CPU ... e et 14
3.2.2 O et et et e e 14
3.2.3 APPMODE ..o 15
3.24 TASK ...t 15
3.2.5 COUNTER. ..ottt e e e ettt e et e e 17
320 ALARM ... e e et 17
32,7 RESOURCE........coccoooiiiiiiiiii e 19
328 EVENT ..o 20
3.2.9 ISR .o 21
32,10 MESSAGE ...t 21
I B N 60 30
32,12 IPDU ..o 31
32013 INM ..o 33
4 DEFINITION OF A PARTICULAR IMPLEMENTATION 34
4.1 ATTRIBUTE TYPES ...iiiitttieiititeeitteeeeitteeeesiteeeeatseseaassseeasessesaasseeeaassseeassssssaassseseaasssesesssssessseseansssesessseens 34
4.1.1 UINT32 oo 34
1.2 INT 32 34
4.1.3 UINTOA ... e ettt e e e e e e e 34
GoLd INTO ... e 35
1.5 FLOAT ..o 35
L6 ENUM ... 35
417 BOOLEAN ... et 35
B8 STRING .o ettt 35
4.2 REFERENCE TYPES......uuttiiiiiiieeiiiieeeciteeeetteeeetteeeetateeestsaeaaastseeeassaeeasssaeeassseaeassseeassssaeessssesesnssseesnssseens 36
4.3 MULTIPLE VALUESuutiii ittt e oot e e eeeee e eeteeeeeetee e e e et e e e eaee e e eaaeeeeeaaeeeeeaeeeeeeseeeeeesseeeeesseeeeeseeeeeenseeeeesnnens 36
G4 EXAMPLE ...ttt ettt e et e e e e e e e et e e e et—eeeee——eeeet—aeeaatteaeeataaeeettaaeeatteaeaaareeeataeeas 36
5 SYNTAX AND DEFAULT DEFINITION 39
5.1 SYNTAX OF Ol ...oiiiiiiiiieiiie ettt ettt e e ettt e e ettt e e eeaaaee e eabeeeessseeesaasaeesnsseeaeassseeeansseeeesaseeeanns 39
OSEK/VDX OIL 2.4.1 © by OSEK Page 3

=il OSEK/VDX

OSEK Implementation Language
Specification 2.4.1

5.2 DEFAULT DEFINITION OF OIL OBJECTS AND STANDARD ATTRIBUTEScceeeuetiiieeeiieinneeeeeeeeeeeinnieeeeeeeeens 45
5.2.1 Subset for internal communication (CCCA and CCCB ORIY)..........cccoeveveioeiciiciiiiieieeee, 54
APPENDIX A GENERATOR HINTS 57
APPENDIX B CHANGES IN SPECIFICATIONS 58
APPENDIX C INDEX 60
APPENDIX D HISTORY 63
List of Figures
FIGURE 1-1: EXAMPLE OF DEVELOPMENT PROCESS FOR APPLICATIONS (OSEK OS ONLY)......... 5

List of Tables

TABLE 2-1: POSSIBLE COMBINATIONS OF ATTRIBUTES WITH DEFAULT VALUES FOR ENUM...... 11

OSEK/VDX OIL 2.4.1

© by OSEK

Page 4

-ﬂ OSEK/VDX OSEK Implementation Language

Specification 2.4.1

1 Introduction

1.1 General remarks

This document refers to the OSEK OS Specifications 2.2 and 2.2.x, the OSEK COM
Specifications 3.0 and 3.0.x and the OSEK Binding Specification 1.4. For a better
understanding of this document, the reader should be familiar with the contents of these other
specifications.

1.2 Motivation

To reach the goal of OSEK of portable software, a way has been defined to describe the
configuration of an application using OSEK.

This specification only addresses a single central processing unit (CPU) in an electronic
control unit (ECU), not an ECU network.

'

“C” code

Application User’s source
configuration file code
(OIL)

“C” code

r_} Make tool) o
Object libraries

_—

. Third party tools & related files

—_————— e ——_——

. OS components, tools & related files

|:| User written/defined

Figure 1-1: Example of development process for applications (OSEK OS only)

OSEK/VDX OIL 2.4.1 © by OSEK Page 5

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

Figure 1-1 shows an example of a development process for applications. The OIL description
may be hand-written or generated by a system configuration tool. Sub-systems delivered in
source code are compiled together with the application; others delivered as a library are
integrated by the linker.

OSEK/VDX OIL 2.4.1 © by OSEK Page 6

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

2 Language Definition

2.1 Preamble

The goal of OIL is to provide a mechanism to configure an OSEK application inside a
particular CPU. This means for each CPU there is one OIL description.

All OSEK system objects are described using OIL objects.

2.2 General concept

The OIL description of the OSEK application is considered to be composed of a set of OIL
objects. A CPU is a container for these OIL objects.

OIL defines standard types for its objects. Each object is described by a set of attributes and
references. OIL defines explicitly all standard attributes for each OIL object.

Each OSEK implementation can define additional implementation-specific attributes and
references. It is possible only to add attributes to existing OIL objects. Creating new OIL
objects, or other changes to the grammar, are not allowed. All non-standard attributes
(optional attributes) are considered to be fully implementation-specific and have no standard
interpretation. Each OSEK implementation can limit the given set of values for attributes (e.g.
restrict the possible value range for priorities).

Description of the OIL objects:

CPU: the CPU on which the application runs under the control of OSEK sub-
systems.
OS: the OSEK OS that runs on the CPU. No standard references are defined in

OIL from OSEK OS to other OIL objects.

APPMODE: defines different modes of operation for the application. No standard
attributes are defined for the APPMODE object.

ISR: interrupt service routines supported by the OS.

RESOURCE: aresource that can be occupied by a task.

TASK: a task handled by the OS.

COUNTER: a counter represents hardware/software tick source for alarms.

EVENT: an event tasks may react on.

ALARM: an alarm is based on a counter and can either activate a task, set an event or

activate an alarm-callback routine.

COM: the communication subsystem. The COM object has standard attributes to
define general properties for OSEK COM.

OSEK/VDX OIL 2.4.1 © by OSEK Page 7

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

MESSAGE: a message is defined in OSEK COM and defines a mechanism for data
exchange between different entities (entities being tasks or ISRs) and with

other CPUs.

IPDU: an IPDU is defined in OSEK COM. IPDUs carry messages used in external
communication.

NM: the network management subsystem.

2.3 OIL basics

2.3.1 OIL file structure

The OIL description contains two parts - one for the definition of standard and
implementation-specific features (implementation definition) and another one for the
definition of the structure of the application located on the particular CPU (application
definition).

The OIL description consists of one main OIL file that can refer to included files (see
section 2.3.9).

2.3.2 Syntax

The grammar rules for an OIL file are presented in the document using a notation similar to
the Backus-Naur Form (BNF'"), see section 5.1.

All keywords, attributes, object names, and other identifiers are case-sensitive.

Comments in the BNF notation are written as C" -style comments.

2.3.3 OIL versions

OIL version "2.0" corresponds to OSEK OS specification 2.0 revision 1.

OIL version "2.1" also corresponds to OSEK OS specification 2.0 revision 1. It contains an
OIL-internal extension in syntax and semantics. OIL version “2.1” is not compatible with OIL
version “2.0”.

OIL version “2.2” only defines new standard attributes. It is compatible with OIL version
6(2'1”.

' NAUR, Peter (ed.), "Revised Report on the Algorithmic Language ALGOL 60.", Communications of the
ACM, Vol. 3, No.5, pp. 299-314, May 1960 or

M. Marcotty & H. Ledgard, The World of Programming Languages, Springer-Verlag, Berlin 1986., pages 41
and following.

OSEK/VDX OIL 2.4.1 © by OSEK Page 8

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

OIL version “2.3” corresponds to OSEK OS specification 2.2 and is compatible with OIL
version “2.2”. OIL version “2.3” only defines new standard attributes.

OIL version “2.4” corresponds to OSEK OS specifications 2.2 and 2.2.x and OSEK COM
specifications 3.0 and 3.0.x. It is not backwards compatible with OIL version "2.3" in two
respects:

e the ACCESSOR attribute in the TASK and ISR object has been replaced by the
MESSAGE attribute,

e the MESSAGE object has been completely redefined.

Two OIL sets of objects and standard attributes are defined:

Full set of objects and standard attributes: OS and full featured COM, supporting the
conformance classes: BCC1, BCC2, ECC1, ECC2, CCCA, CCCB, CCC0, CCC1.

Subset of objects and standard attributes: OS with internal communication only,
supporting the conformance classes: BCC1, BCC2, ECC1, ECC2, CCCA, CCCB.

234 Implementation definition

For each OIL object, the implementation definition defines all attributes and their properties
for a particular OSEK implementation.

The implementation definition must be present in the OIL description and must contain all
standard attributes, which are listed in section 3.2. The value range of those attributes may be
restricted. Attribute definition is described in chapter 4.

Additional attributes and their properties can be defined for the objects for a particular OSEK
implementation. Additional attributes are optional.

The include mechanism (see section 2.3.1) can be used to define the implementation
definition as a separate file. Thus, corresponding implementation definition files can be
developed and delivered with particular OSEK implementations and then included with the
application definition in user's OIL files.

An implementation of OIL must support either all objects and standard attributes or a specific
subset defined in section 5.2.1.

2.3.5 Application definition

The application definition comprises a set of objects and the values for their attributes. Except
for the OS, COM and NM objects, the application definition can contain more than one OIL
object of a particular type.

Each object is characterised by a set of attributes and their values. No attribute may appear
that is not defined in the implementation definition. Attribute values must comply with the
attribute properties specified in the implementation definition.

OSEK/VDX OIL 2.4.1 © by OSEK Page 9

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

Attributes that take a single value may only be specified once per object. Attributes that take a
list of values have to be specified as multiple statements.

Example for multiple statement:

RESOURCE = RES1;
RESOURCE = RES2;
2.3.6 Dependencies between attributes

The OIL Specification allows the expression of dependencies between attributes. To be more
open to vendor-specific and standard extensions the OIL syntax includes conditional
attributes (parameters). OIL allows infinite nesting of those dependencies.

To express dependencies, ENUM and BOOLEAN attributes can be parameterised. If
attributes in several sets of one conditional attribute have the same name, they must have the
same type.

2.3.7 Automatic attribute assignment

Attribute values may be calculated by the generator. For these attributes, the keyword
WITH_AUTO has to be used in the attribute's definition in the implementation definition. In
conjunction with WITH_AUTO, the attribute value AUTO is valid in the application
definition and as a default value.

2.3.8 Default values

Default values are used by the generator in the case that an attribute is missing in the
application definition.

Default values are mandatory for optional attributes. Because the syntax of the
implementation-specific part requires the definition of default values, a special default value
NO_DEFAULT is defined explicitly to suppress the default mechanism. In this case, the
attribute must be defined in the application part.

Default values are forbidden for standard attributes except if explicitly stated otherwise in the
specification. If a default value is allowed for a standard attribute, it is defined in the
specification in section 5.2.

It is an error if a standard attribute that does not have a default value defined in the
implementation definition is missing from the application definition.

The OIL grammar uses assignment in the implementation definition to specify default values.

All possible combinations of attributes with default values are shown in the following
example for ENUM (see Table 2-1). The OIL syntax allows six combinations for the
implementation-specific part and three combinations for the application part.

OSEK/VDX OIL 2.4.1 © by OSEK Page 10

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

Implementation part Application part
param = A; param = AUTO; // nothing
ENUM [a, B, C] param = B; param A ERROR param >B
ENUM (A, B, C] param & A ERROR ERROR
param = NO_ DEFAULT;
ENUM [A, B, C] param = AUTO; ERROR ERROR ERROR
ENUM WITH_AUTO [A, B, C] param = A Generator- param =B
param = B; specific
ENUM WITH_AUTO (A, B, C] param = A Generator- ERROR
param = NO DEFAULT; specific
ENUM WITH_AUTO [A, B, C] param = A Generator- Generator-
param = AUTO; specific specific

Table 2-1: Possible combinations of attributes with default values for ENUM

Example:

IMPLEMENTATION myOS {
TASK {
UINT32 [1..0xff] STACKSIZE = 16; // If STACKSIZE is missing,
// 16 1is used as a default
}i
}i

2.3.9 Include mechanism

The include mechanism allows for separate definitions for some parts of OIL. The
implementation definition can be delivered with an OSEK implementation and used
(included) by the system designer.

The include statement has the same syntax as in ISO/ANSI-C:
#include <file>

#include "file"
e For each OIL tool there must be a way to specify search-paths for include files.
e #include <file> uses the search-path

e #include "file" uses the directory where the including file resides

Placement of include directives

The same rules apply as for ISO/ANSI-C, e.g. the include statement has to be on a separate
line and can appear anywhere in the description files.

OSEK/VDX OIL 2.4.1 © by OSEK Page 11

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

2.3.10 Comments

The OIL file may contain C™-style comments (/* */ and //). C"" rules apply.

2.3.11 Descriptions

To describe OIL objects, attributes, and values, the OIL syntax offers the concept of
descriptions. Descriptions are optional. They start after a colon (:), are enclosed in double
quotes ("), and must not contain a double quote.

Example:

BOOLEAN START = FALSE:"Automatic start of alarm on system start";

Descriptions give the user additional information about OIL objects, attributes and values in a
well-defined format. The interpretation of descriptions is implementation-specific.

OSEK/VDX OIL 2.4.1 © by OSEK Page 12

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

3 OIL Object Definitions

3.1 Rules

The application configuration files must conform to some rules to be successfully processed.
These rules are:

All objects are described using the OIL syntax.
Each object must have a unique name. Each object may be divided into several parts.
All object names must be accessible from the application.

An attribute defines some object properties (for example, the task priority). Attributes that
take a single value may only be specified once per object. Attributes that take a list of
values must be specified as multiple statements.

An object can have a set of references to other objects. Per object, there may be more than
one reference to the same type of object (e.g. more than one reference to different events,
see example in section 3.2.4.8).

Unless stated otherwise, values must be defined for all standard attributes of all objects,
except for multiple attributes, which can be empty.

If default values are required for standard attributes, they are specified in this document
and must not be changed.

The <name> non-terminal represents any ISO/ANSI-C identifier.

The <number> non-terminal represents any integer constant. The range of integers is
determined by the target platform. Both decimal and hexadecimal integers are allowed, and
using the same notation as C. Decimal integers with leading zeroes are not allowed as they
might be misinterpreted as octal values.

The <string> non-terminal represents any 8-bit character sequence enclosed in double-
quotes ("), but not containing double-quotes.

The description represents any 8-bit character sequence enclosed in double-quotes ("), but
not containing double-quotes.

A reference defines a unidirectional link to another object (for example, the task X has to
be activated when the alarm Y expires).

Implementation-specific additional parameters are only allowed for optional attributes. For
portability reasons, it is forbidden to define implementation-specific additional parameters
for standard attributes.

OSEK/VDX OIL 2.4.1 © by OSEK Page 13

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

3.2 OIL objects, standard attributes and references

For each object, the standard set of attributes and their values is defined. They must be
supported by any implementation.

3.2.1 CPU

CPU is used as a container for all other objects.

3.2.2 0s?

OS is the object used to define OSEK OS properties for an OSEK application.
In a CPU exactly one OS object has to be defined.

3.2.21 STATUS

The STATUS attribute specifies whether a system with standard or extended status has to be
used. Automatic assignment is not supported for this attribute.

This attribute is of type ENUM and has one of the following possible values:
e STANDARD
e EXTENDED

3.2.2.2 Hook routines

The following attribute names are defined for the hook routines supported by OSEK OS:
e STARTUPHOOK

¢ ERRORHOOK

e SHUTDOWNHOOK

e PRETASKHOOK

e POSTTASKHOOK

These attributes are of type BOOLEAN.

If a hook routine is used, the value is set to TRUE otherwise the value is set to FALSE.

The usage of the access macros to the service ID and the context-related information in the
error hook is enabled by the following attributes of type BOOLEAN:

e USEGETSERVICEID
e USEPARAMETERACCESS

* Attributes for Conformance Class and Scheduling are not defined as these are not part of the OS specification

OSEK/VDX OIL 2.4.1 © by OSEK Page 14

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

3.2.23 USERESSCHEDULER

The USERESSCHEDULER attribute is of type BOOLEAN and defines whether the resource
RES SCHEDULER is used within the application.

3.2.24 Example

OS ExampleOS {
STATUS = STANDARD;
STARTUPHOOK = TRUE;
ERRORHOOK = TRUE;
SHUTDOWNHOOK = TRUE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;
USERESSCHEDULER = TRUE;

3.23 APPMODE

APPMODE is the object used to define OSEK OS properties for an OSEK OS application
mode.

No standard attributes are defined for APPMODE.

In a CPU, at least one APPMODE object has to be defined.

3.24 TASK

TASK objects represent OSEK tasks.

3.24.1 PRIORITY

The priority of a task is defined by the value of the PRIORITY attribute. This value has to be
understood as a relative value, i.e. the values of PRIORITY show only the relative ordering of
the tasks.

This attribute is of type UINT32.

OSEK OS defines the lowest priority as zero (0), larger values of the PRIORITY attribute
correspond to higher priorities.

3.24.2 SCHEDULE

The SCHEDULE attribute defines the preemptability of the task.

This attribute is of type ENUM and has one of the following possible values:
e NON

e FULL

OSEK/VDX OIL 2.4.1 © by OSEK Page 15

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

The FULL value of this attribute corresponds to a preemptable task, the NON value to a non-
preemptable task.

If the SCHEDULE attribute is set to NON, no internal resources may be assigned to this task.

3.243 ACTIVATION

The ACTIVATION attribute defines the maximum number of queued activation requests for
the task. A value equal to "1" means that at any time only a single activation is permitted for
this task (see OSEK OS specification).

This attribute is of type UINT32.

3.244 AUTOSTART

The AUTOSTART attribute determines whether the task is activated during the system start-
up procedure or not for some specific application modes.

This attribute is of type BOOLEAN.

If the task shall be activated during the system start-up, the value is set to TRUE otherwise
the value is set to FALSE. When set to TRUE, a list of application modes is defined in the
APPMODE sub-attribute of type APPMODE TYPE. These define in which application
modes the task is auto-started.

3.24.5 RESOURCE
The RESOURCE reference is used to define a list of resources accessed by the task.
This attribute is a multiple reference (see sections 4.2, 4.3) of type RESOURCE_TYPE.

3.2.4.6 EVENT
The EVENT reference is used to define a list of events the extended task may react to.

This attribute is a multiple reference (see sections 4.2, 4.3) of type EVENT TYPE.

3.24.7 MESSAGE
The MESSAGE reference is used to define a list of messages accessed by the task.
This attribute is a multiple reference (see sections 4.2, 4.3) of type MESSAGE_TYPE.

3.24.8 Example
TASK TaskA {
PRIORITY = 2;
SCHEDULE = NON;
ACTIVATION = 1;
AUTOSTART = TRUE {
APPMODE = AppModel;
APPMODE = AppMode?2;
}i
RESOURCE = resourcel;
RESOURCE = resource?2;
RESOURCE = resource3;

OSEK/VDX OIL 2.4.1 © by OSEK Page 16

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

EVENT = eventl;
EVENT = event2;
MESSAGE = anyMesssagel;

3.2.5 COUNTER

A COUNTER serves as a base for the ALARM mechanism.

3.2.5.1 MAXALLOWEDVALUE
The MAXALLOWEDVALUE attribute defines the maximum allowed counter value.
This attribute is of type UINT32.

3.2.5.2 TICKSPERBASE

The TICKSPERBASE attribute specifies the number of ticks required to reach a counter-
specific unit. The interpretation is implementation-specific.

This attribute is of type UINT32.

3.25.3 MINCYCLE

The MINCYCLE attribute specifies the minimum allowed number of counter ticks for a
cyclic alarm linked to the counter.

This attribute is of type UINT32.

3.2.54 Example

COUNTER Timer {
MINCYCLE = 16;
MAXALLOWEDVALUE = 127;
TICKSPERBASE = 90;

3.2.6 ALARM

An ALARM may be used to asynchronously inform or activate a specific task. It is possible
to start alarms automatically at system start-up depending on the application mode.

3.2.6.1 COUNTER

The COUNTER reference defines the counter assigned to this alarm. Only one counter has to
be assigned to the alarm. Any alarm has to be assigned to a particular counter.

This attribute is a single reference (see section 4.2).

OSEK/VDX OIL 2.4.1 © by OSEK Page 17

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

3.2.6.2 ACTION

The ACTION attribute defines which type of notification is used when the alarm expires.
This attribute is a parameterised ENUM with the following possible values:

e ACTIVATETASK {TASK TYPE TASK:;}

e SETEVENT {TASK TYPE TASK; EVENT TYPE EVENT;}

e ALARMCALLBACK {STRING ALARMCALLBACKNAME;}

For an alarm, only one action is allowed.

ACTION = ACTIVATETASK
The TASK reference parameter defines the task to be activated when the alarm expires.

This parameter is a single reference (see section 4.2) of type TASK TYPE.

ACTION = SETEVENT

The TASK reference parameter defines the task for which the event is to be set. The EVENT
reference parameter defines the event to be set when the alarm expires.

TASK is a single reference of type TASK TYPE. EVENT is a single reference of type
EVENT TYPE.

ACTION = ALARMCALLBACK

The ALARMCALLBACKNAME parameter defines the name of the callback routine that is
called when the alarm expires.

3.2.6.3 AUTOSTART

The AUTOSTART attribute of type BOOLEAN defines if an alarm is started automatically at
system start-up depending on the application mode.

When this attribute is set to TRUE, sub-attributes are used to define the ALARMTIME, i.e.
the time when the ALARM shall expire first, the CYCLETIME, i.e. the cycle time of a cyclic
ALARM and a list of application modes (APPMODE) for which the AUTOSTART shall be
performed.

BOOLEAN [
TRUE
{
UINT32 ALARMTIME;
UINT32 CYCLETIME;
APPMODE TYPE APPMODE[];
}y
FALSE
] AUTOSTART;

OSEK/VDX OIL 2.4.1 © by OSEK Page 18

=il OSEK/VDX

OSEK Implementation Language
Specification 2.4.1

3.2.64 Examples

ALARM WakeTaskA {
COUNTER = Timer;
ACTION = SETEVENT {

TASK = TaskA;
EVENT = eventl;
}:
AUTOSTART = FALSE;
bi

ALARM WakeTaskB {

COUNTER = SysCounter;

ACTION = ACTIVATETASK {
TASK = TaskB;

bi

AUTOSTART = TRUE ({
ALARMTIME = 50;
CYCLETIME = 100;
APPMODE AppModel;
APPMODE AppMode?2;

}s
}i

ALARM RunCallbackC {
COUNTER = SysCounter;
ACTION = ALARMCALLBACK {
ALARMCALLBACKNAME = "CallbackC";
bi
AUTOSTART = FALSE;

3.2.7 RESOURCE

A RESOURCE object is used to co-ordinate the concurrent access by tasks and ISRs to a

shared resource, e.g. the scheduler, any program sequence, memory or any hardware area.

There is one attribute of type ENUM defined to specify the RESOURCEPROPERTY. This

attribute can take the following values:

e STANDARD: A normal resource that is not linked to another resource and is not an

internal resource.

e LINKED: A resource that is linked to another resource with the property STANDARD or
LINKED. The resource to which the linking shall be performed is defined by the sub-
attribute LINKEDRESOURCE of type RESOURCE TYPE. The code generator for the

operating system must resolve chains of linked resources.

e INTERNAL: An internal resource that cannot be accessed by the application.

3.2.71 Example

RESOURCE MsgAccess

{
RESOURCEPROPERTY = STANDARD;

}i

OSEK/VDX OIL 2.4.1

© by OSEK

Page 19

i |

OSEK/VDX

OSEK Implementation Language
Specification 2.4.1

3.2.8 EVENT

An EVENT object is represented by its mask. The name of the event is a synonym for its

mask.

The same event may be set for different tasks. Events with the same name are identical,
therefore the event mask is identical. Events with the same mask are generally not identical

i.e. their names may be different.

3.2.8.1

MASK

The event mask is an integer number MASK of type UINT64. The other way to assign an
event mask is to declare it as AUTO. In this case, one bit is automatically assigned to the
event mask. This bit is unique with respect to the tasks that reference the event.

3.2.8.2
EVENT event
MASK = 0

}i
EVENT event

Examples

1 {
x01;

2 |

MASK = AUTO;

b

In C Code, the user is allowed to combine normal event masks and AUTO event masks.

C Code:

WaitEvent (eventl | event2);

The next example shows the same EVENT object (i.e. with the same name) used by different

tasks:

EVENT emergency {
MASK = AUTO;

b

TASK taskl
EVENT =
EVENT =

}s

TASK task2
EVENT =
EVENT =

i

TASK task7
EVENT
EVENT

}i

{
myEventl;
emergency;

{
emergency;
myEvent2;

{
emergency;
myEvent2;

In C Code, the user is allowed to use the emergency event with all three tasks.

C Code:

SetEvent (taskl, emergency):;
(task2, emergency):;

SetEvent

OSEK/VDX OIL 2.4.1

© by OSEK

Page 20

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

SetEvent (task7, emergency):;

Another use for the same event name for events of different tasks is in control loops:
C Code:

TaskType myList[]

int myListLen = 3;

int 1=0;

for (i=0;i<myListLen;i++) {
SetEvent (myList[i], emergency) ;

= {taskl, task2, task7};

}

3.2.9 ISR

ISR objects represent OSEK interrupt service routines (ISR).

3.2.9.1 CATEGORY
The CATEGORY attribute defines the category of the ISR.
This attribute is of type UINT32, only values of land 2 are allowed.

3.2.9.2 RESOURCE
The RESOURCE reference is used to define a list of resources accessed by the ISR.
This attribute is a multiple reference (see sections 4.2, 4.3) of type RESOURCE_TYPE.

3.293 MESSAGE
The MESSAGE reference is used to define a list of messages accessed by the ISR.
This attribute is a multiple reference (see sections 4.2, 4.3) of type MESSAGE_TYPE.

3.2.94 Example

ISR TimerInterrupt {
CATEGORY = 2;
RESOURCE = someResource;
MESSAGE= anyMessage?2;
}i

3.210 MESSAGE

MESSAGE objects represent OSEK messages.

The MESSAGE object has three attributes, MESSAGEPROPERTY (see section 3.2.10.1),
NOTIFICATION (see section 3.2.10.16) and NOTIFICATIONERROR (see section
3.2.10.16).

OSEK/VDX OIL 2.4.1 © by OSEK Page 21

=il OSEK/VDX

OSEK Implementation Language
Specification 2.4.1

3.2.10.1 MESSAGEPROPERTY

The MESSAGEPROPERTY attribute has the following sub-attributes:

MESSAGEPROPERTY Sub-attributes Described in
section
SEND STATIC INTERNAL CDATATYPE 3.2.10.2
SEND STATIC EXTERNAL CDATATYPE 3.2.10.2
TRANSFERPROPERTY 3.2.10.3
IPDU 3.2.10.4
BITPOSITION 3.2.10.5
SIZEINBITS 3.2.10.6
SWAPBYTES 3.2.10.7
FILTER 3.2.10.8
NETWORKORDERCALLOUT | 3.2.10.9
CPUORDERCALLOUT 3.2.10.10
INITIALVALUE 3.2.10.11
SEND DYNAMIC EXTERNAL TRANSFERPROPERTY 3.2.10.3
IPDU 3.2.10.4
BITPOSITION 3.2.10.5
MAXIMUMSIZEINBITS 3.2.10.12
NETWORKORDERCALLOUT | 3.2.10.9
CPUORDERCALLOUT 3.2.10.10
INITIALVALUE 3.2.10.11
SEND ZERO INTERNAL none none
SEND ZERO EXTERNAL IPDU 3.2.10.4
NETWORKORDERCALLOUT | 3.2.10.9
CPUORDERCALLOUT 3.2.10.10
RECEIVE ZERO INTERNAL SENDINGMESSAGE 3.2.10.13
RECEIVE ZERO EXTERNAL IPDU 3.2.10.4

OSEK/VDX OIL 2.4.1

© by OSEK

Page 22

OSEK Implementation Language
Specification 2.4.1

=il OSEK/VDX

MESSAGEPROPERTY Sub-attributes Described in
section
NETWORKORDERCALLOUT | 3.2.10.9
CPUORDERCALLOUT 3.2.10.10
RECEIVE UNQUEUED INTERNAL | SENDINGMESSAGE 3.2.10.13
FILTER 3.2.10.8
INITIALVALUE 3.2.10.11
RECEIVE _QUEUED INTERNAL SENDINGMESSAGE 3.2.10.13
FILTER 3.2.10.8
QUEUESIZE 3.2.10.14
RECEIVE UNQUEUED EXTERNAL | CDATATYPE 3.2.10.2
FILTER 3.2.10.8
LINK 3.2.10.15
INITIALVALUE 3.2.10.11
RECEIVE QUEUED EXTERNAL CDATATYPE 3.2.10.2
QUEUESIZE 3.2.10.14
FILTER 3.2.10.8
LINK 3.2.10.15
RECEIVE DYNAMIC EXTERNAL | LINK 3.2.10.15
INITIALVALUE 3.2.10.11
RECEIVE ZERO SENDERS CDATATYPE 3.2.10.2
INITIALVALUE 3.2.10.11

A transmit message that is at the same time received internally and transmitted externally is
declared as external (using one of the SEND xx EXTERNAL properties). Internal receivers
of this message refer to it using the SENDINGMESSAGE attribute.

The property RECEIVE ZERO_SENDERS is used for messages with zero senders.

The message attributes are defined in the following.

3.2.10.2 CDATATYPE

The CDATATYPE attribute describes the data type of the message data using C language
types (e.g. int or a structure name).

This attribute is of type STRING.

OSEK/VDX OIL 2.4.1 © by OSEK Page 23

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

The purpose of this attribute is the representation of the message in a form that is meaningful
to the application.

3.2.10.3 TRANSFERPROPERTY

The TRANSFERPROPERTY attribute is of type ENUM and describes the action that OSEK
COM takes when this message is sent by the application. Possible actions are:

TRANSFERPROPERTY = TRIGGERED

The IPDU containing the message may or may not be sent immediately depending upon the
IPDU’s TRANSMISSIONMODE.

TRANSFERPROPERTY = PENDING

No action is taken.

3.2.10.4 IPDU
The IPDU reference is used to define the IPDU that carries this MESSAGE.

3.2.10.5 BITPOSITION

The BITPOSITION attribute is of type UINT32 and specifies the offset from bit 0 of the
IPDU to bit 0 of the message.

Bit position is calculated as follows: The IPDU is regarded as an unsigned integer of the
length of the IPDU. The least significant bit of the IPDU is regarded as bit 0.

3.2.10.6 SIZEINBITS

The SIZEINBITS attribute is of type UINT32 and specifies, in bits, the size of a static-length
message in an IPDU.

3.2.10.7 SWAPBYTES

The SWAPBYTES attribute is of type BOOLEAN and specifies whether the bytes of the
MESSAGE should be swapped in order to correct for different endianness in the application
and network.

The default value for SWAPBYTES is FALSE and means that no byte swapping is
performed.

3.2.10.8 FILTER

The FILTER attribute specifies the action of the message filter. This attribute is of type
ENUM and has the following values, which are defined in the COM specification.

FILTER = ALWAYS
This value has no sub-attributes. It is the default value for FILTER.

OSEK/VDX OIL 2.4.1 © by OSEK Page 24

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

FILTER = NEVER

This value has no sub-attributes.

FILTER = MASKEDNEWEQUALSX

This value has the sub-attributes MASK and X.
FILTER = MASKEDNEWDIFFERSX

This value has the sub-attributes MASK and X.
FILTER = NEWISEQUAL

This value has no sub-attributes.

FILTER = NEWISDIFFERENT

This value has no sub-attributes.

FILTER = MASKEDNEWEQUALSMASKEDOLD
This value has the sub-attribute MASK.

FILTER = MASKEDNEWDIFFERSMASKEDOLD
This value has the sub-attribute MASK.

FILTER = NEWISWITHIN

This value has the sub-attributes MIN and MAX.
FILTER = NEWISOUTSIDE

This value has the sub-attributes MIN and MAX.
FILTER = NEWISGREATER

This value has no sub-attributes.

FILTER = NEWISLESSOREQUAL

This value has no sub-attributes.

FILTER = NEWISLESS

This value has no sub-attributes.

FILTER = NEWISGREATEROREQUAL

This value has no sub-attributes.

FILTER = ONEEVERYN

This value has the sub-attributes PERIOD and OFFSET.

3.2.10.9 NETWORKORDERCALLOUT

The NETWORKORDERCALLOUT attribute defines the name of the network-order callout
routine for this MESSAGE. The default value corresponds to no callout specified.

This attribute is of type STRING.

OSEK/VDX OIL 2.4.1 © by OSEK Page 25

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

3.2.10.10 CPUORDERCALLOUT

The CPUORDERCALLOUT attribute defines the name of the CPU-order callout routine for
this MESSAGE. The default value corresponds to no callout specified.

This attribute is of type STRING.

3.2.10.11 INITIALVALUE

The INITIALVALUE attribute is of type UINT64 and specifies the initial value of a
MESSAGE.

The default value for INITTALVALUE is 0.

3.2.10.12 MAXIMUMSIZEINBITS

The MAXIMUMSIZEINBITS attribute is of type UINT32 and specifies in bits the maximum
size that a dynamic message might reach.

3.2.10.13 SENDINGMESSAGE

The SENDINGMESSAGE attribute is used by a receiver of an internal message to identify
the sender of the message. Therefore, this attribute is a reference to a sent message within this
OIL file.

3.2.10.14 QUEUESIZE

The QUEUESIZE attribute is of type UINT32 and defines the maximum number of messages
that the queue for a queued message can store.

3.2.10.15 LINK

The LINK attribute is of type ENUM. It determines whether this message has its own field
within the IPDU or fans out from another message's IPDU field. OSEK COM allows a field in
a received IPDU to correspond to one or more MESSAGE objects. When the IPDU is
received, all the corresponding MESSAGE objects receive the same data.

LINK = TRUE

When LINK is set to TRUE a sub-attribute called RECEIVEMESSAGE refers to another
message that must be received from the network. The link must point to a MESSAGE with
LINK set to FALSE. This implies that the field in the IPDU fans out to more than one
MESSAGE object.

The RECEIVEMESSAGE sub-attribute is a reference to another MESSAGE object.
LINK = FALSE

When LINK is set to FALSE the sub-attributes IPDU (see section 3.2.10.4) and
BITPOSITION (see section 3.2.10.5) must be defined.

The sub-attributes NETWORKORDERCALLOUT (see section 3.2.10.9) and
CPUORDERCALLOUT (see section 3.2.10.10) may be defined.

OSEK/VDX OIL 2.4.1 © by OSEK Page 26

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

In the case of dynamic-length messages, the sub-attribute MAXIMUMSIZEINBITS (see
section 3.2.10.12) must also be defined.

In the case of static-length messages, the sub-attribute SIZEINBITS (see section 3.2.10.6)
must also be defined, and SWAPBYTES (see section 3.2.10.7) may be defined.

3.2.10.16 NOTIFICATION and NOTIFICATIONERROR

The notification classes are called NOTIFICATION and NOTIFICATIONERROR.
Depending on the message property this is either a send or a receive notification. Each
notification class is defined as an ENUM with the following values:

NONE

No notification is performed. This is the default value for NOTIFICATION and
NOTIFICATIONERROR.

ACTIVATETASK

To perform the required notification a task is activated. The task is named by the TASK sub-
attribute, which is a reference to a TASK object.

SETEVENT

To perform the required notification an event is set for a task. The event and task are named
by the EVENT and TASK sub-attributes.

The EVENT sub-attribute is a reference to an EVENT object. The TASK sub-attribute is a
reference to a TASK object.

COMCALLBACK

To perform the required notification a callback routine is called. The name of the callback
routine is specified in the CALLBACKROUTINENAME sub-attribute. The MESSAGE sub-
attribute must list all the messages that are sent and/or received by this callback routine.

FLAG

To perform the required notification a FLAG is set. The flag is named using the FLAGNAME
sub-attribute, which is of type STRING.

INMCALLBACK

To perform the required notification a callback routine in an OSEK NM sub-system is called.
The name of the callback routine is specified with the CALLBACKROUTINENAME sub-
attribute. The callback routine is called with a parameter specified by the MONITOREDIPDU
sub-attribute, which is of type UINT32, but must be within the range 0 to 65535 inclusive.
MONITOREDIPDU allows the IPDU to be identified to the NM sub-system.

Both of these attributes are defined as WITH_AUTO so that the system configuration tool can
automatically create values consistent between COM and NM if it is able to.

OSEK/VDX OIL 2.4.1 © by OSEK Page 27

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

3.2.10.17 Example

MESSAGE myMessl {

MESSAGEPROPERTY = SEND STATIC EXTERNAL {
CDATATYPE = "long";
TRANSFERPROPERTY = PENDING;
IPDU = slow CAN traffic;
BITPOSITION = 5;

SIZEINBITS = 17;

FILTER = NEWISWITHIN ({
MAX = 0x1234;
MIN = 0x12;

}i

INITIALVALUE = 0x12;

}i

NOTIFICATION = FLAG {

FLAGNAME = "slow CAN finished";

}i

}i

MESSAGE speed {
MESSAGEPROPERTY RECEIVE UNQUEUED EXTERNAL {

CDATATYPE = "long";

LINK = FALSE {
IPDU = vehicle data;
BITPOSITION = 0O;
SIZEINBITS = 7;
SWAPBYTES = TRUE;
NETWORKORDERCALLOUT = "vehicle data active";

}i
}i
NOTIFICATION = ACTIVATETASK {
TASK = speedo_update;
}i
i
MESSAGE speed copy {
MESSAGEPROPERTY = RECEIVE UNQUEUED EXTERNAL {
CDATATYPE = "long";
LINK = TRUE {
RECEIVEMESSAGE = speed;
// size etc. are therefore inherited from the
// MESSAGE called speed.

b

MESSAGE water temperature {
MESSAGEPROPERTY = SEND STATIC INTERNAL {
CDATATYPE = "short";
}i
i
MESSAGE water temperature copyl {
MESSAGEPROPERTY = RECEIVE UNQUEUED INTERNAL {
SENDINGMESSAGE = water temperature;
FILTER = NEWISWITHIN {
MAX = 0x1234;
MIN = 0x12;
}i
INITIALVALUE = 0x12;
}i

OSEK/VDX OIL 2.4.1 © by OSEK Page 28

= OSEK Implementation Language
-ﬂ O SEK/VDX Specification 2.4.1

NOTIFICATION = COMCALLBACK {
CALLBACKROUTINENAME = "valid water temperature";
MESSAGE = water temperature copyl;

MESSAGE = speed;
i

}i
MESSAGE water temperature copy2 {
MESSAGEPROPERTY = RECEIVE UNQUEUED INTERNAL {

SENDINGMESSAGE = water temperature;
FILTER = NEWISOUTSIDE ({
MAX = 0x1234;
MIN = 0x12;
b
INITIALVALUE = 0x12;
ri
NOTIFICATION = COMCALLBACK ({
CALLBACKROUTINENAME = "invalid water temperature";

MESSAGE = water temperature copyl;
}i
i

MESSAGE next radio_ station pushed {
MESSAGEPROPERTY = SEND ZERO_ EXTERNAL ({

IPDU = next radio station;
}i
bi
MESSAGE next radio station pushed event ({
MESSAGEPROPERTY = RECEIVE ZERO INTERNAL {
SENDINGMESSAGE = next radio station pushed;
bi
NOTIFICATION = SETEVENT ({
TASK = change radio station;
EVENT = next station;

}i

OSEK/VDX OIL 2.4.1 © by OSEK

Page 29

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

3.211 COM

COM is the object used to define OSEK COM sub-system properties.
In a CPU object, only one COM object can be defined.

3.2.11.1 COMTIMEBASE

The COMTIMEBASE attribute defines the time base for OSEK COM. This attribute is of
type FLOAT. The OSEK COM time base defined by COMTIMEBASE is one second
multiplied by the parameter value. Any time that is specified in OSEK COM is multiplied by
this time base to arrive at the intended real time.

The default value for COMTIMEBASE is 0.001, which is equal to one millisecond.

3.2.11.2 Error hook routine

The following attributes are defined for the hook routine supported by OSEK COM. These
attributes are of type BOOLEAN. The hook routine is used if the value is set to TRUE. The
hook routine is not used if the value is set to FALSE.

e COMERRORHOOK

The usage of the access macros to the service ID and the context-related information in the
error hook routine is enabled by the following attributes:

e COMUSEGETSERVICEID
e COMUSEPARAMETERACCESS
The default value for these parameters is FALSE.

3.2.11.3 COMSTARTCOMEXTENSION

The COMSTARTCOMEXTENSION attribute defines whether the user-supplied function
StartCOMExtension is called from the OSEK COM function StartCOM.

The function is called if the value is set to TRUE. The function is not called if the value is set
to FALSE, which is the default value for this attribute.

3.2.114 COMAPPMODE
The COMAPPMODE attribute lists all COM application modes that are supported.
This attribute is of type STRING and can have multiple values.

3.2.11.5 COMSTATUS
The COMSTATUS attribute defines the level of error checking.

This attribute is of type ENUM. Extended error checking is done if the value of
COMSTATUS is set to COMEXTENDED. Standard error checking is done if the value of
COMSTATUS is set to COMSTANDARD, which is the default value.

OSEK/VDX OIL 2.4.1 © by OSEK Page 30

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

3.2.11.6 Example

COM ExampleCOM {
COMTIMEBASE = 0.001;
COMERRORHOOK = TRUE;
COMUSEGETSERVICEID = FALSE;
COMUSEPARAMETERACCESS = FALSE;
COMSTARTCOMEXTENSION = FALSE;
COMAPPMODE = "COMNormalMode";
COMAPPMODE = "COMDiagnosticMode";
COMSTATUS = COMEXTENDED;

3.212 IPDU

3.2.12.1 SIZEINBITS

The SIZEINBITS attribute specifies the length of an IPDU in bits. This attribute is of type
UINT32.

3.2.12.2 IPDUPROPERTY

The IPDUPROPERTY attribute is of type ENUM and describes the direction of the IPDU
transfer. Possible values are:

e SENT
e RECEIVED
3.2.12.3 TRANSMISSIONMODE

The TRANSMISSIONMODE attribute specifies the transmission mode. This attribute is of
type ENUM. Possible values are:

e PERIODIC

e DIRECT

e MIXED

TRANSMISSIONMODE is a sub-attribute of IPDUPROPERTY = SENT.

3.2.124 TIMEPERIOD

The TIMEPERIOD attribute defines, depending on the chosen transmission mode, the
parameter | TMP_TPD or I TMM_TPD. This attribute is of type UINT64. The unit of the
TIMEPERIOD parameter is multiples of the COM time base.

TIMEPERIOD is a sub-attribute of TRANSMISSIONMODE = PERIODIC and
TRANSMISSIONMODE = MIXED.

OSEK/VDX OIL 2.4.1 © by OSEK Page 31

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

3.2.12.5 TIMEOFFSET

The TIMEOFFSET attribute defines, depending on the chosen transmission mode, the
parameter | TMP_TOF or I TMM_TOF. This attribute is of type UINT64. The unit of the
TIMEOFFSET parameter is multiples of the COM time base.

The value AUTO is the default value for this attribute and means that TIMEOFFSET assumes
the same value as TIMEPERIOD.

TIMEOFFSET is a sub-attribute of TRANSMISSIONMODE = PERIODIC and
TRANSMISSIONMODE = MIXED.

3.2.12.6 MINIMUMDELAYTIME

The MINIMUMDELAYTIME attribute specifies, depending on the chosen transmission
mode, the parameter [TMD MDT or I TMM MDT. This attribute is of type UINT64. The
unit of the MINIMUMDELAY TIME parameter is multiples of the COM time base.

The default value for MINIMUMDELAYTIME is 0, which means that no minimum delay
time is enforced.

MINIMUMDELAYTIME is a sub-attribute of TRANSMISSIONMODE = DIRECT and
TRANSMISSIONMODE = MIXED.

3.2.12.7 TIMEOUT

The TIMEOUT attribute defines, depending on the chosen IPDU property and, if
IPDUPROPERTY = SENT, on the chosen transmission mode, the parameter | DM _RX TO,
I DM TMD TO,I DM TMP TO orI DM TMM TO.

This attribute is of type UINT64. The unit of the TIMEOUT parameter is multiples of the
COM time base. The notification of an IPDU timeout takes place per message.

The default value for TIMEOUT is 0, which is interpreted as no timeout.

3.2.12.8 FIRSTTIMEOUT

The FIRSTTIMEOUT attribute specifies, if IPDUPROPERTY = RECEIVED, the parameter
I DM _FRX TO. This attribute is of type UINT64. The unit of the FIRSTTIMEOUT
parameter is multiples of the COM time base.

The value AUTO is the default value for this attribute and means that FIRSTTIMEOUT
assumes the same value as TIMEOUT.

FIRSTTIMEOUT is a sub-attribute of IPDUPROPERTY = RECEIVED.

3.2.12.9 IPDUCALLOUT

The IPDUCALLOUT attribute defines the name of the IPDU callout routine. The default
value corresponds to no callout specified. This attribute is of type STRING.

OSEK/VDX OIL 2.4.1 © by OSEK Page 32

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

3.2.12.10 LAYERUSED

The LAYERUSED attribute defines the underlying layer that is used. The default value
corresponds to no underlying layer specified. This attribute is of type STRING.

3.2.12.11 Example

IPDU mySendIPDU ({
SIZEINBITS = 64;
IPDUPROPERTY = SENT {

TRANSMISSIONMODE = PERIODIC ({
TIMEPERIOD = 2;
TIMEOFFSET = 100;

}s
MINIMUMDELAYTIME = 0O;
TIMEOUT = 250;
}i
IPDUCALLOUT = "";
LAYERUSED = "network";
}i

IPDU myReceiveIPDU {
SIZEINBITS = 64;
IPDUPROPERTY = RECEIVED {
TIMEOUT = 250;
FIRSTTIMEOUT = 100;

}i
IPDUCALLOUT = "";
LAYERUSED = "network";

3.213 NM

NM objects represent the network management sub-system. No standard attributes are
defined for the NM object.

OSEK/VDX OIL 2.4.1 © by OSEK Page 33

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

4 Definition of a particular implementation

OIL is intended to be used for the description of applications in any OSEK implementation.
The implementation definition describes a set of attributes for each object and valid values for
these attributes. All standard attributes must be defined here. For standard attributes, the
implementation definition can only limit the value range, but in no case extend the value
range or change the value type. Optional attributes must specify a default value, AUTO (if
defined WITH_AUTO), or NO_DEFAULT.

4.1 Attribute types

Any implementation-specific attribute has to be defined before it is used.

The attribute type and attribute value range (if it exists) has to be defined. The range of
attribute values can be defined in two ways: either the minimum and maximum allowed
attribute values are defined (the [0..12] style) or the list of possible attribute values is
presented. A mix of both is not allowed.

The WITH_AUTO specifier can be combined with any attribute type except for references. If
WITH_AUTO is specified the attribute can have the value AUTO and the possibility of
automatic assignment by an off-line tool.

OIL data types are listed below. Note that these data types are not necessarily the same as the
corresponding C data types.

41.1 UINT32

Any unsigned integer number (possibly restricted to a range of numbers, see <impl_attr def>
section 5.1).

UINT32 [1..255] NON_SUSPENDED TASKS;
UINT32 [0,2,3,5] Freelnterrupts;
UINT32 aNumber;

This data type allows expressing any 32-bit value in the range of [0..(2**-1)].

41.2 INT32

Any signed integer number in the range of [-2*'..(2*'-1)].

41.3 UINT64

Any unsigned integer number in the range [0..(2°*1)]

OSEK/VDX OIL 2.4.1 © by OSEK Page 34

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

414 INT64

Any signed integer number in the range [-2%..(2%-1)].

41.5 FLOAT

Any floating point number according to IEEE-754 standard (Range: +/- 1,176E-38 to +/-
3,402E+38).

FLOAT [1.0 .. 25.3] ClockFrequency; // Clock frequency in MHz

41.6 ENUM

ENUM defines a list of ISO/ANSI-C enumerators. Any enumerator from this list can be
assigned to an attribute of the according type.

ENUM [NON, FULL] SCHEDULE;
ENUM [mon, tue, wed, thu, fri] myWeek;

ENUM types can be parameterised, i.e. the particular enumerators can have parameters. The
parameter specification is denoted in curly braces after the enumerator. Any kind of attribute
type is allowed as parameter of an enumerator.

ENUM [

ACTIVATETASK {TASK TYPE TASK;},

SETEVENT {TASK TYPE TASK; EVENT TYPE EVENT;}
] ACTION;

41.7 BOOLEAN

An attribute of this type can take the values TRUE and FALSE.
BOOLEAN DontDoTt;

DontDoIt = FALSE;

BOOLEAN types can be parameterised, i.e. the particular Boolean values can have
parameters. Parameter specifications are denoted in curly braces after an explicit enumeration
of the Boolean values. Any kind of attribute type is allowed as parameter of a Boolean value.
BOOLEAN [
TRUE {TASK TYPE TASK; EVENT TYPE EVENT;},

FALSE {TASK TYPE TASK;}
] IsEvent;

41.8 STRING

Any 8-bit character sequence enclosed in double-quotes, but not containing double-quotes,
can be assigned to this attribute.

OSEK/VDX OIL 2.4.1 © by OSEK Page 35

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

4.2 Reference Types
A reference type is a data type that refers to an OIL object, e.g. to a TASK object, to an
EVENT object, to an ALARM object, etc.

Reference types can be used to establish links between objects, e.g. within an ALARM object
description a reference type attribute can refer to the TASK object that is to be activated by
the alarm.

The definition of a reference type specifies which type of object is referred to, e.g. the
referenced objects are of type TASK, of type EVENT, of type ALARM, etc.

The reference type is taken from the referenced object (e.g., a reference to a task shall use the
TASK TYPE keyword as reference type). A reference can refer to any object.

A single reference type refers to exactly one object.

A definition of a single reference type consists of the object type to be referred followed by
the symbolic name of the reference type being defined.

4.3 Multiple values

It is possible to use one attribute name to refer to a set of values of the same type. The set may
be empty. For example, the EVENT attribute of a TASK object can refer to a set of events.
Multiple values are allowed for all types.

A definition of a multiple reference type consists of the object type to be referred followed by
the symbolic name of the reference type being defined followed by an empty pair of brackets

V[]V
Example: EVENT TYPE MYEVENTS[];

A definition of a multiple attribute is the symbolic name followed by an empty pair of
brackets '[]'.

Example: INT32 InterruptNumber[];

4.4 Example

The implementation can define some additional attributes for an OIL object or restrict the
value range of standard attributes.

The example below shows:

1. The limitation of the ENUM value range for the standard OS attribute STATUS.

2. The definition of an implementation-specific attribute NON_SUSPENDED TASKS of
type UINT32 with a value range.

The limitation of the UINT32 value range for the standard task attribute PRIORITY.
4. The default value for StackSize is set to 16.

OSEK/VDX OIL 2.4.1 © by OSEK Page 36

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

8.
9.

The limitation of the ENUM value range for the standard alarm attribute ACTION.

The definition of an implementation-specific attribute START of type BOOLEAN for
alarms.

The definition of an implementation-specific attribute ITEMTYPE of type STRING for
messages.

The definition of a reference to MESSAGE objects for ISRs.

The possible usage of the defined or modified attributes in the application definition.

10. Separation of the object MyTask]1 into two definitions.

IMPLEMENTATION SpecialOS {

}i

0s {

ENUM [EXTENDED] STATUS;
UINT32 [1..255] NON SUSPENDED TASKS = 16;

}i

TASK {
UINT32 [1 .. 256] PRIORITY; // define range of standard
// attribute PRIORITY
INT32 StackSize= 16; // stacksize in bytes for a task
bi
ALARM {
ENUM [ACTIVATETASK {TASK_TYPE TASK;}] ACTION;

// define possible value(s) of standard attribute ACTION
BOOLEAN START = FALSE; // define implementation-specific
// attribute START of type BOOLEAN

}i

MESSAGE {
STRING ITEMTYPE = ""; // define implementation-specific
// attribute ITEMTYPE of type STRING
ISR {
MESSAGE TYPE RCV_MESSAGES[] = NO_DEFAULT;

// define implementation-specific
// attribute RCV_MESSAGES of type
// 'multiple reference to objects
// of type MESSAGE'

}i

// End IMPLEMENTATION SpecialOS

CPU ExampleCPU {

OSEK/VDX OIL 2.4.1 © by OSEK Page 37

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

0S MyOs {

b

TASK MyTaskl {
PRIORITY = 17;
}s
TASK MyTaskl {
StackSize = 64;
}i
ALARM MyAlarml {
ACTION = ACTIVATETASK {
TASK = MyTaskl;
}i
START = TRUE;
b
MESSAGE MyMsgl {
ITEMTYPE = "SensorData";
b
MESSAGE MyMsg2 {
ITEMTYPE = "Acknowledge";
b

ISR MyIsrl {
RCV_MESSAGES = MyMsgl;
RCV_MESSAGES = MyMsg2;

}i
}; // End CPU ExampleCPU

This example is not a complete OIL file therefore the ellipses represent missing parts.

OSEK/VDX OIL 2.4.1 © by OSEK Page 38

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

5 Syntax and default definition

5.1 Syntax of OIL

The OIL file has the following structure:

<file> ::=
<0IL version>
<implementation definition>

<application definition>

<OIL version> ::=

"OIL VERSION" "=" <version> <description> ";"
<version> ::= <string>
<implementation definition> ::=

"IMPLEMENTATION" <name> "{" <implementation spec list> "}"

<description> ";"

<implementation spec list>
<implementation spec>

| <implementation spec list> <implementation spec>

<implementation spec> ::=

<object> "{" <implementation list> "}" <description> ";"

<object> ::=

"Oos"™ | "TASK"™ | "COUNTER" | "ALARM" | "RESOURCE" | "EVENT" | "ISR"

| "MESSAGE" | "CoM" | "NM" | "APPMODE" | "IPDU"
<implementation list> ::=

/* empty list */

| <implementation def>

| <implementation list> <implementation def>
<implementation def> ::= <impl attr def> | <impl ref def>
<impl attr def> ::=

"UINT32" <auto specifier> <number range> <attribute name>
OSEK/VDX OIL 2.4.1 © by OSEK Page 39

=il OSEK/VDX

Specification 2.4.1

OSEK Implementation Language

<multiple specifier><default number> <description> ";"

| "INT32" <auto specifier> <number range> <attribute name>

<multiple specifier> <default number> <description> ";"

| "UINT64" <auto specifier> <number range> <attribute name>

<multiple specifier> <default number> <description> ";"

| "INT64" <auto specifier> <number range> <attribute name>

<multiple specifier> <default number>

<description> ";"

| "FLOAT" <auto specifier> <float range> <attribute name>

<multiple specifier> <default float>

<description> ";"

| "ENUM" <auto_specifier> <enumeration> <attribute name>

<multiple specifier> <default name>

| "STRING" <auto specifier> <attribute name>

<multiple specifier> <default string>

<description> ";"

<description> ";"

| "BOOLEAN" <auto specifier> <bool values> <attribute name>

<multiple specifier> <default bool>

<impl parameter list> ::=
/* empty definition */
|"{" <impl def list> "}"

<impl def list> ::=
/* empty definition */
| <implementation def>

| <implementation def> <impl def list>

<auto specifier> ::=
/* empty definition */
| "WITH AUTO"

<number range> ::=

/* empty definition */

| "[" <number> ".." <number> "]"

| "[" <number list> "]"
<number list> ::=

<number> | <number list> "," <number>

<default number> ::=

/* empty definition */

‘ wn_mn n_mn

<number> | "=" "NO DEFAULT" |

<description> ";"

"AUTO"

OSEK/VDX OIL 2.4.1 © by OSEK

Page 40

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

<description> ::=
/* empty definition */

| ":" <string>

<float range> ::=
/* empty definition */

| "[" <float> ".." <float> "]"

<default float> ::=
/* empty definition */
| "=" <float> | "=" "NO_DEFAULT" | "=" "AUTO"

<enumeration> ::=

"[" <enumerator list> "]"

<enumerator list>
<enumerator>

| <enumerator list> "," <enumerator>

<enumerator> ::=
<name> <description>

| <name> <impl parameter list> <description>

<bool values> ::=
/* empty definition */
| "[" "TRUE" <impl parameter list> <description> ",6"

"FALSE" <impl parameter list> <description> "]"

<default name> ::=
/* empty definition */
| nwn_mw <name> | nwn_mw "NO_DEFAULT" I nwn_mw "AUTO"

<default string> ::=
/* empty definition */
| "=" <string> | "=" "NO_DEFAULT" | "=" "AUTO"

<default bool> ::=
/* empty definition */
| "=" <boolean> | "=" "NO DEFAULT" | "=" "AUTO"

OSEK/VDX OIL 2.4.1 © by OSEK Page 41

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

<impl ref def> ::=

<object ref type> <reference name> <multiple specifier> <description>

wemn
’

<object ref type> ::=

"OS_TYPE" | "TASK TYPE" | "COUNTER TYPE" | "ALARM TYPE"
| "RESOURCE TYPE" | "EVENT TYPE" | "ISR TYPE"
| "MESSAGE TYPE" | "COM TYPE" | "NM TYPE" | "APPMODE TYPE"
| "IPDU TYPE"
<reference name> ::= <name> | <object>

<multiple specifier> ::=
/* empty definition */

‘ "w [" "J "

<application definition> ::=

"CPU" <name> "{" <object definition list> "}" <description> ";"

<object definition list> ::=
/* empty definition */
| <object definition>

| <object definition list> <object definition>

<object definition> ::=
<object name> <description> ";"

| <object name> "{" <parameter list> "}" <description> ";"

<object name> ::= <object> <name>

<parameter list> ::=
/* empty definition */
| <parameter>

| <parameter list> <parameter>

<parameter> ::=
<attribute name> "=" <attribute value> <description> ";"
<attribute name> ::= <name> | <object>

OSEK/VDX OIL 2.4.1 © by OSEK Page 42

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

<attribute value> ::=
<name>
| <name> "{" <parameter list> "}"
| <boolean>
| <boolean> "{" <parameter list> "}"
| <number>
| <float>
| <string>

| "AUTO"

<name> ::= Name

<string> ::= String

<boolean> ::= "FALSE" | "TRUE"

<number> ::= <dec number> | <hex number>

<dec_number> ::=

<sign> <int digits>

<sign> ::=
/* empty definition */
| "+"

| w_mn

<int digits> ::=
<zero digit>
| <pos digit>

| <pos _digit> <dec digits>

<dec_digits> ::=
| <dec digit>

| <dec_digit> <dec digits>

<float> ::=

<sign> <dec digits> "." <dec digits> <exponent>

<exponent> ::=

/* empty definition */

OSEK/VDX OIL 2.4.1 © by OSEK Page 43

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

| "e" <sign> <dec digits>

| "E" <sign> <dec digits>

<zero digit> ::=

"O"

<pos_digit> ::=
"l" ‘ "2" ‘ "3" ‘ "4" ‘ "5" | "6" | "7" | "8" | "9"

<dec_digit> ::= <zero digit> | <pos_digit>

<hex number> "0x" <hex digits>
<hex digits> ::=
<hex digit>

| <hex digit> <hex digits>

<hex digit> ::=
"A" ‘ n B n ‘ n C n ‘ n D n ‘ n E n | n F n
‘ Al a" ‘ "b" ‘ n C n ‘ n d" ‘ n e n | n f n

‘ HOH ‘ "l" ‘ H2" ‘ "3" ‘ "4" | "5" | "6" | "7" | "8" | "9"

OSEK/VDX OIL 2.4.1 © by OSEK Page 44

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

5.2 Default definition of OIL objects and standard attributes

The definition of standard attribute types and parameters can be presented in the following
form’:

IMPLEMENTATION Standard {

0s {
ENUM [STANDARD, EXTENDED] STATUS;
BOOLEAN STARTUPHOOK;
BOOLEAN ERRORHOOK;
BOOLEAN SHUTDOWNHOOK;
BOOLEAN PRETASKHOOK;
BOOLEAN POSTTASKHOOK;
BOOLEAN USEGETSERVICEID;
BOOLEAN USEPARAMETERACCESS;
BOOLEAN USERESSCHEDULER = TRUE;

}i

APPMODE {
}i

TASK {

BOOLEAN [

TRUE

{

APPMODE_TYPE APPMODE[];

by

FALSE
] AUTOSTART;
UINT32 PRIORITY;
UINT32 ACTIVATION;
ENUM [NON, FULL] SCHEDULE;
EVENT TYPE EVENT[];
RESOURCE_TYPE RESOURCE[] ;
MESSAGE _TYPE MESSAGE[];

ISR {
UINT32 [1l, 2] CATEGORY;
RESOURCE TYPE RESOURCE[];
MESSAGE TYPE MESSAGE[];

}i

COUNTER {
UINT32 MINCYCLE;
UINT32 MAXALLOWEDVALUE;
UINT32 TICKSPERBASE;

b

ALARM {
COUNTER_TYPE COUNTER;
ENUM [
ACTIVATETASK {TASK TYPE TASK;},
SETEVENT {TASK TYPE TASK; EVENT TYPE EVENT;}
ALARMCALLBACK {STRING ALARMCALLBACKNAME; }
] ACTION;

? Ordering of the elements is free.

OSEK/VDX OIL 2.4.1 © by OSEK Page 45

=il OSEK/VDX

OSEK Implementation Language
Specification 2.4.1

BOOLEAN [
TRUE
{
UINT32 ALARMTIME;
UINT32 CYCLETIME;
APPMODE TYPE APPMODEI[];
s
FALSE
] AUTOSTART;

}i

EVENT {
UINT32 WITH AUTO MASK;

}s

RESOURCE {
ENUM [
STANDARD,
LINKED {
RESOURCE TYPE LINKEDRESOURCE;
bo
INTERNAL
] RESOURCEPROPERTY;
}i
MESSAGE {
ENUM [

SEND STATIC INTERNAL {
STRING CDATATYPE;

by
SEND STATIC EXTERNAL {

STRING CDATATYPE;

ENUM [
TRIGGERED,
PENDING

] TRANSFERPROPERTY;

IPDU_TYPE IPDU;
UINT32 BITPOSITION;
UINT32 SIZEINBITS;
BOOLEAN SWAPBYTES =

ENUM [

ALWAYS,
NEVER,

MASKEDNEWEQUALSX {
UINT64 MASK;
UINT64 X;

by

MASKEDNEWDIFFERSX {
UINT64 MASK;
UINT64 X;

by

NEWISEQUAL,
NEWISDIFFERENT,

FALSE;

MASKEDNEWEQUALSMASKEDOLD {

UINT64 MASK;

OSEK/VDX OIL 2.4.1

© by OSEK

Page 46

i |

O SEK/VDX OSEK Implementation Language

Specification 2.4.1

s

MASKEDNEWDIFFERSMASKEDOLD {
UINT64 MASK;

}y

NEWISWITHIN {
UINT64 MINj;
UINT64 MAX;

}y

NEWISOUTSIDE {
UINT64 MIN;
UINT64 MAX;

}y

NEWISGREATER,
NEWISLESSOREQUAL,
NEWISLESS,
NEWISGREATEROREQUAL,

ONEEVERYN {
UINT64 PERIOD;
UINT64 OFFSET;

}
] FILTER = ALWAYS;

STRING NETWORKORDERCALLOUT = "";
STRING CPUORDERCALLOUT = "";
UINT64 INITIALVALUE = O;

s
SEND DYNAMIC EXTERNAL {

ENUM [
TRIGGERED,
PENDING

] TRANSFERPROPERTY;

IPDU _TYPE IPDU;

UINT32 BITPOSITION;

UINT32 MAXIMUMSIZEINBITS;

STRING NETWORKORDERCALLOUT = "";
STRING CPUORDERCALLOUT = "";
UINT64 INITIALVALUE = O;

s

SEND ZERO_ INTERNAL {
}y

SEND ZERO EXTERNAL {
IPDU TYPE IPDU;
STRING NETWORKORDERCALLOUT = "";
STRING CPUORDERCALLOUT = "";

}y

RECEIVE ZERO INTERNAL {
MESSAGE TYPE SENDINGMESSAGE;

}y

RECEIVE ZERO EXTERNAL {
IPDU TYPE IPDU;
STRING NETWORKORDERCALLOUT = "";
STRING CPUORDERCALLOUT = "";

}y
RECEIVE UNQUEUED INTERNAL {

OSEK/VDX OIL 2.4.1 © by OSEK Page 47

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

MESSAGE TYPE SENDINGMESSAGE;
ENUM [

ALWAYS,
NEVER,

MASKEDNEWEQUALSX {
UINT64 MASK;
UINT64 X;

by

MASKEDNEWDIFFERSX {
UINT64 MASK;
UINT64 X;

by

NEWISEQUAL,
NEWISDIFFERENT,

MASKEDNEWEQUALSMASKEDOLD {
UINT64 MASK;
Hy

MASKEDNEWDIFFERSMASKEDOLD {
UINT64 MASK;

by

NEWISWITHIN {
UINT64 MIN;
UINT64 MAX;

by

NEWISOUTSIDE {
UINT64 MIN;
UINT64 MAX;

by

NEWISGREATER,
NEWISLESSOREQUAL,
NEWISLESS,
NEWISGREATEROREQUAL,

ONEEVERYN {
UINT64 PERIOD;
UINT64 OFFSET;
}

] FILTER = ALWAYS;

UINT64 INITIALVALUE = O;
y

RECEIVE QUEUED INTERNAL {
MESSAGE TYPE SENDINGMESSAGE;
ENUM [

ALWAYS,
NEVER,

MASKEDNEWEQUALSX {
UINT64 MASK;
UINT64 X;

by

MASKEDNEWDIFFERSX {
UINT64 MASK;
UINT64 X;

by

OSEK/VDX OIL 2.4.1 © by OSEK Page 48

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

NEWISEQUAL,
NEWISDIFFERENT,

MASKEDNEWEQUALSMASKEDOLD {
UINT64 MASK;
s

MASKEDNEWDIFFERSMASKEDOLD {
UINT64 MASK;
}y

NEWISWITHIN {
UINT64 MIN;
UINT64 MAX;

}y

NEWISOUTSIDE {
UINT64 MIN;
UINT64 MAX;

}y

NEWISGREATER,
NEWISLESSOREQUAL,
NEWISLESS,
NEWISGREATEROREQUAL,

ONEEVERYN {
UINT64 PERIOD;
UINT64 OFFSET;
}

] FILTER = ALWAYS;

UINT32 QUEUESIZE;

by

RECEIVE UNQUEUED EXTERNAL {
STRING CDATATYPE;
ENUM [

ALWAYS,
NEVER,

MASKEDNEWEQUALSX {
UINT64 MASK;
UINT64 X;

}y

MASKEDNEWDIFFERSX {
UINT64 MASK;
UINT64 X;

by

NEWISEQUAL,
NEWISDIFFERENT,

MASKEDNEWEQUALSMASKEDOLD {
UINT64 MASK;
}y

MASKEDNEWDIFFERSMASKEDOLD ({
UINT64 MASK;
}y

NEWISWITHIN {
UINT64 MIN;
UINT64 MAX;

}y

OSEK/VDX OIL 2.4.1 © by OSEK Page 49

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

NEWISOUTSIDE {
UINT64 MIN;
UINT64 MAX;

by

NEWISGREATER,
NEWISLESSOREQUAL,
NEWISLESS,
NEWISGREATEROREQUAL,

ONEEVERYN {
UINT64 PERIOD;
UINT64 OFFSET;
}

] FILTER = ALWAYS;
BOOLEAN [

TRUE {
MESSAGE _TYPE RECEIVEMESSAGE;
b,

FALSE {
IPDU _TYPE IPDU;
UINT32 BITPOSITION;
UINT32 SIZEINBITS;
BOOLEAN SWAPBYTES = FALSE;
STRING NETWORKORDERCALLOUT = "";
STRING CPUORDERCALLOUT = "";

}

] LINK;
UINT64 INITIALVALUE = O;

by
RECEIVE QUEUED EXTERNAL {

STRING CDATATYPE;
UINT32 QUEUESIZE;

ENUM [

ALWAYS,
NEVER,

MASKEDNEWEQUALSX {
UINT64 MASK;
UINT64 X;

y

MASKEDNEWDIFFERSX {
UINT64 MASK;
UINT64 X;

by

NEWISEQUAL,
NEWISDIFFERENT,

MASKEDNEWEQUALSMASKEDOLD {
UINT64 MASK;
}y

MASKEDNEWDIFFERSMASKEDOLD {
UINT64 MASK;
Hy

NEWISWITHIN {
UINT64 MIN;

OSEK/VDX OIL 2.4.1 © by OSEK Page 50

i |

O SEK/VDX OSEK Implementation Language

Specification 2.4.1

UINT64 MAX;
b

NEWISOUTSIDE {
UINT64 MIN;
UINT64 MAX;

}y

NEWISGREATER,
NEWISLESSOREQUAL,
NEWISLESS,
NEWISGREATEROREQUAL,

ONEEVERYN {
UINT64 PERIOD;
UINT64 OFFSET;
}

] FILTER = ALWAYS;
BOOLEAN [

TRUE {
MESSAGE TYPE RECEIVEMESSAGE;

}y

FALSE {
IPDU _TYPE IPDU;
UINT32 BITPOSITION;
UINT32 SIZEINBITS;
BOOLEAN SWAPBYTES = FALSE;
STRING NETWORKORDERCALLOUT = "";
STRING CPUORDERCALLOUT = "";

}

] LINK;

I
RECEIVE DYNAMIC EXTERNAL {
BOOLEAN [

TRUE {
MESSAGE TYPE RECEIVEMESSAGE;

o

FALSE {
IPDU_TYPE IPDU;
UINT32 BITPOSITION;
UINT32 MAXIMUMSIZEINBITS;

STRING NETWORKORDERCALLOUT = "";

STRING CPUORDERCALLOUT = "";
}

] LINK;
UINT64 INITIALVALUE = O;
s
RECEIVE ZERO SENDERS ({
STRING CDATATYPE;
UINT64 INITIALVALUE = O;

}

] MESSAGEPROPERTY;

OSEK/VDX OIL 2.4.1 © by OSEK

Page 51

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

ENUM [
NONE,

ACTIVATETASK {
TASK TYPE TASK;
s

SETEVENT {
TASK TYPE TASK;
EVENT TYPE EVENT;
y

COMCALLBACK {
STRING CALLBACKROUTINENAME;
MESSAGE TYPE MESSAGE[];

y

FLAG {
STRING FLAGNAME;

s

INMCALLBACK {
STRING WITH AUTO CALLBACKROUTINENAME;
UINT32 WITH AUTO MONITOREDIPDU;

}

] NOTIFICATION = NONE;

ENUM [
NONE,

ACTIVATETASK {
TASK TYPE TASK;
by

SETEVENT {
TASK TYPE TASK;
EVENT TYPE EVENT;
by

COMCALLBACK {
STRING CALLBACKROUTINENAME;
MESSAGE TYPE MESSAGE[];

s

FLAG {
STRING FLAGNAME;
y

INMCALLBACK {
STRING WITH AUTO CALLBACKROUTINENAME;
UINT32 WITH AUTO MONITOREDIPDU;

}

] NOTIFICATIONERROR = NONE;

COM {
FLOAT COMTIMEBASE = 0.001;
BOOLEAN COMERRORHOOK = FALSE;
BOOLEAN COMUSEGETSERVICEID = FALSE;
BOOLEAN COMUSEPARAMETERACCESS = FALSE;
BOOLEAN COMSTARTCOMEXTENSION = FALSE;
STRING COMAPPMODE[];

ENUM [

OSEK/VDX OIL 2.4.1 © by OSEK Page 52

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

COMSTANDARD,
COMEXTENDED
] COMSTATUS = COMSTANDARD;

}i

IPDU {
UINT32 SIZEINBITS;
ENUM [
SENT {
ENUM [

DIRECT {
UINT64 MINIMUMDELAYTIME = O;

}y

PERIODIC {
UINT64 TIMEPERIOD;
UINT64 WITH AUTO TIMEOFFSET = AUTO;

}y

MIXED {
UINT64 TIMEPERIOD;
UINT64 WITH AUTO TIMEOFFSET = AUTO;
UINT64 MINIMUMDELAYTIME = O;

}
] TRANSMISSIONMODE;
UINT64 TIMEOUT = O;
}y
RECEIVED ({

UINT64 TIMEOUT = O;
UINT64 WITH AUTO FIRSTTIMEOUT = AUTO;

}
] IPDUPROPERTY;

STRING IPDUCALLOUT = "";
STRING LAYERUSED = "";

NM {
}i

OSEK/VDX OIL 2.4.1 © by OSEK Page 53

=

o

OSEK/VDX

OSEK Implementation Language
Specification 2.4.1

5.21

Subset for internal communication (CCCA and CCCB only)

This subset is different from the full definition in the following objects:
e MESSAGE object (changes),
e COM object (changes),

e [PDU object (removed).

IMPLEMENTATION Standard {

0s {
ENUM
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

[STANDARD, EXTENDED]
STARTUPHOOK ;
ERRORHOOK ;
SHUTDOWNHOOK ;
PRETASKHOOK ;
POSTTASKHOOK ;
USEGETSERVICEID;
USEPARAMETERACCESS;
USERESSCHEDULER = TRUE;

}s

APPMODE {
bi

TASK {
BOOLEAN [
TRUE
{
APPMODE TYPE APPMODE[];
|
FALSE
] AUTOSTART;
UINT32 PRIORITY;
UINT32 ACTIVATION;
ENUM [NON, FULL] SCHEDULE;
EVENT TYPE EVENT[];
RESOURCE TYPE RESOURCEI[];
MESSAGE TYPE MESSAGE[];

UINT32 [1, 2] CATEGORY;
RESOURCE_TYPE RESOURCE[];
MESSAGE TYPE MESSAGE[];

COUNTER {
UINT32 MINCYCLE;
UINT32 MAXALLOWEDVALUE;
UINT32 TICKSPERBASE;

bi

ALARM {
COUNTER _TYPE COUNTER;

STATUS;

OSEK/VDX OIL 2.4.1

© by OSEK

Page 54

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

ENUM [
ACTIVATETASK {TASK TYPE TASK;},
SETEVENT {TASK TYPE TASK; EVENT TYPE EVENT;}
ALARMCALLBACK {STRING ALARMCALLBACKNAME; }
] ACTION;
BOOLEAN [
TRUE
{
UINT32 ALARMTIME;
UINT32 CYCLETIME;
APPMODE TYPE APPMODE[];
b
FALSE
] AUTOSTART;
b
EVENT {

UINT32 WITH AUTO MASK;
b

RESOURCE {

ENUM [
STANDARD,
LINKED {

RESOURCE TYPE LINKEDRESOURCE;

b
INTERNAL

] RESOURCEPROPERTY;

i

MESSAGE {
ENUM [

SEND STATIC INTERNAL {
STRING CDATATYPE;
}y

RECEIVE UNQUEUED INTERNAL {
MESSAGE TYPE SENDINGMESSAGE;
UINT64 INITIALVALUE = O;

}y

RECEIVE QUEUED INTERNAL {
MESSAGE TYPE SENDINGMESSAGE;
UINT32 QUEUESIZE;

}

] MESSAGEPROPERTY;

ENUM [
NONE,

ACTIVATETASK {
TASK TYPE TASK;
by

SETEVENT {
TASK TYPE TASK;
EVENT TYPE EVENT;
by

OSEK/VDX OIL 2.4.1 © by OSEK Page 55

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

COMCALLBACK {
STRING CALLBACKROUTINENAME;
MESSAGE TYPE MESSAGE[];

by

FLAG {
STRING FLAGNAME;

}
] NOTIFICATION = NONE;

COM {
BOOLEAN COMERRORHOOK = FALSE;
BOOLEAN COMUSEGETSERVICEID = FALSE;
BOOLEAN COMUSEPARAMETERACCESS = FALSE;
BOOLEAN COMSTARTCOMEXTENSION = FALSE;
STRING COMAPPMODE[];

ENUM [
COMSTANDARD,
COMEXTENDED

] COMSTATUS = COMSTANDARD;

NM {
}s

OSEK/VDX OIL 2.4.1 © by OSEK Page 56

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

Appendix A Generator hints

All topics concerning generator hints are not part of the specification. They are
recommendations.

Generator interface
Recommendations for system generator parameters

e parameter -a for accept unknown attributes (i.e. ignore attributes which are defined in the
implementation-specific part of OIL but for which the generator has no rule)

e parameter -i for include paths

e parameter -f for command file

e parameter -r for generating resource statistics
e parameter -v for version

e parameter -t for test/verify

From the point of view of the user, all implementation-specific switches (of the generator)
should be attributes of the matching OIL objects. This would allow the user to place all the
implementation-specific information in the OIL file and not into command-line parameters.

Resource usage statistics

The system generator should provide to the user a breakdown of all system resources used by
the application (e.g. number of tasks, priorities,...).

Naming convention for OIL files

For ease of use, the main OIL file should have the file extension .OIL. The extensions for
other files that are included in the main OIL file are undefined.

OSEK/VDX OIL 2.4.1 © by OSEK Page 57

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

Appendix B Changes in specifications

Changes from specification 1.0/2.0 to 2.1

The specifications 1.0/2.0 were no official versions, so no change description is provided.

Changes from specification 2.1 to 2.2

Resources

According to the OS specification 2.1, resources may be used in interrupt service routines. A
standard attribute to reference a RESOURCE object was added.

Messages

The OS specification 2.1 refers to OSEK COM as two additional conformance classes for
local message handling. Standard attributes for messages were added. References from
TASKSs and ISRs to messages were added, too.

COM

The COM object acquired two standard attributes. Additionally it was stated that the COM
object may be defined only once.

Changes from specification 2.2 to 2.3

The following changes were made to support the new features of the OS specification 2.2.

ALARM
An AUTOSTART attribute was added to the ALARM object.
The ACTION attribute was amended with a third value, ALARMCALLBACK.

ISR
The ISR category 3 was removed.

RESOURCE

The RESOURCEPROPERTY attribute was introduced to handle the new concepts of linked
and internal resources.

TASK
The AUTOSTART attribute was modified to support different application modes.

oS
New attributes USEGETSERVICEID and USEPARAMETERACCESS.

OSEK/VDX OIL 2.4.1 © by OSEK Page 58

D-ﬂ O SEK/VDX OSEK Implementation Language

Specification 2.4.1

Changes from specification 2.3 to 2.4

OS object: new attribute USERESSCHEDULER.

MESSAGE object: definition of this object was completely re-written.

COM object: definition of this object was completely re-written.

IPDU object: definition of this object was added.

TASK object / ISR object: ACCESSOR attribute was replaced by MESSAGE attribute.
The concept of a subset for internal communication was introduced.

Default values for standard attributes were introduced.

Changes from specification 2.4 to 2.4.1

Small error corrections, but no changes in content.

OSEK/VDX OIL 2.4.1 © by OSEK Page 59

i |

OSEK/VDX

OSEK Implementation Language

Specification 2.4.1

Appendix C Index

ACTION comments 8,12
definition 18 COMTIMEBASE
ACTIVATION definition 30
definition 16 COMUSEGETSERVICEID
ALARM definition 30
ACTION 18 COMUSEPARAMETERACCESS
COUNTER 17 definition 31
definition 17 container 7
COUNTER
description 7
definition 17
EVENT 18
description 7
TASK 18
ALARMCALLBACK 18 MAXALLOWEDVALUE 17
ALARMTIME 18 MINCYCLE 17
application definition 8 TICKSPERBASE 17
APPMODE 7,15, 16, 18 CPU
definition 15 definition 14
attribute description 7
definition 13 CPUORDERCALLOUT
type 34 definition 26
value range 34 CYCLETIME 18
attributes description
non-standard 9 definition 13
AUTOSTART 18 EVENT
definition 16 definition 16, 18, 20
BITPOSITION description 7
definition 24 MASK 20
case-sensitive 8 FILTER
CATEGORY definition 24
definition 21 FIRSTTIMEOUT
CDATATYPE definition 32
definition 23 grammar rules 8
COM implementation definition 8,9
definition 30 INITIALVALUE
description 7 definition 26
INMCALLBACK
example 31
hook routines 30 definition 27
COMERRORHOOK INTERNAL 19
IPDU
definition 30)
description 8,31
OSEK/VDX OIL 2.4.1 © by OSEK Page 60

=il OSEK/VDX

OSEK Implementation Language

Specification 2.4.1

example 33 NOTIFICATIONRX
reference 24 description 27
IPDUCALLOUT NOTIFICATIONRXERROR
definition 32 description 27
IPDUPROPERTY NOTIFICATIONTX
definition 31 description 27
ISR NOTIFICATIONTXERROR
CATEGORY 21 description 27
definition 21 number
description 7 definition 13
RESOURCE 21 OIL
LAYERUSED version 8
definition 33 oS 7
LINK definition 14, 30
definition 26 PRIORITY
LINKED 19 definition 15
MASK QUEUESIZE
definition 20 definition 26
MAXALLOWEDVALUE reference
definition 17 definition 13
MAXIMUMSIZE RESOURCE
definition 26 definition 16, 19, 21
MESSAGE description 7
definition 21 RESOURCEPROPERTY 19
description 8 SCHEDULE
definition 15
example 28
SENDING_MESSAGE
properties 22
definition 26
reference 16,21 SIZE
MINCYCLE
- definition 24
definition 17 SIZE (of IPDU)
MINIMUMDELAYTIME
- definition 31
definition 32 STATUS
name
definition 14
definition 13 .
string
NETWORKORDERCALLOUT
- definition 13
definition 25 SWAPBYTES
NM
- definition 24
definition 33 TASK
description 8 ACTIVATION 16
notification classes
AUTOSTART 16
description 27
OSEK/VDX OIL 2.4.1 © by OSEK Page 61

D-ﬂ O S E IQVDX OSEK Implementation Language

Specification 2.4.1

definition 15,18 TIMEOUT

description 7 definition 32

EVENT 16 TIMEPERIOD

PRIORITY 15 definition 31

RESOURCE 16 TRANSFERPROPERTY

SCHEDULE 15 definition 24
TICKSPERBASE TRANSMISSIONMODE

definition 17 definition 31
TIMEOFFSET USEGETSERVICEID 14

USEPARAMETERACCESS 15
definition 32

OSEK/VDX OIL 2.4.1 © by OSEK Page 62

OSEK Implementation Language

=il OSEK/VDX

Specification 2.4.1
Appendix D History
Version Date Authors
2.0 December 16, 1997
Jirgen Aminger IBM GmbH
Vladimir Belov Motorola SPRL
Jirgen Betzelt Daimler-Benz AG
Volker Ebner Vector Informatik
Bob France Motorola SPS
Gerhard Goser Siemens Automotive SA
Martin Huber Daimler-Benz AG
Adam Jankowiak Daimler-Benz AG
Winfried Janz Vector Informatik
Helmar Kuder Daimler-Benz AG
Ansgar Maisch University of Karlsruhe
Rainer Miiller IBM GmbH
Salvatore Parisi Centro Ricerche Fiat
Jochem Spohr ATM Computer GmbH
Stephan Steinhauer Daimler-Benz AG
Karl Westerholz Siemens Semiconductors
Andree Zahir ETAS GmbH & Co. KG
2.1 June 30, 1999
Michael Barbehenn Motorola
Irina Bratanova Motorola
Manfred Geischeder BMW
Gerhard Goser Siemens Automotive
Andrea Hauth 3Soft
Adam Jankowiak DaimlerChrysler
Winfried Janz Vector Informatik
Helmar Kuder DaimlerChrysler
Stefan Schimpf ETAS
Markus Schwab Infineon
Carsten Thierer University of Karlsruhe
Hans-Christian Wense Motorola
Andree Zahir ETAS
2.2 July 4, 2000
Irina Bratanova Motorola
Manfred Geischedder BMW
Peter GroBhans IMH
Hartmut Horner Vector
Winfried Janz Vector
Walter Koch Siemens
Reiner Kriesten IIIT, Uni Karlsruhe
Jochem Spohr IMH
2.3 August 28, 2001
OS working group ISO
2.4 December 2, 2002
Oliver Bremicker SiemensVDO Automotive
Alexander Burst ETAS
Hartmut Horner Vector Informatik
Robert Hugel Bosch
Winfried Janz Vector
Simone Kriso ETAS
Thomas Lutz SiemensVDO Automotive
Christophe Marchand PSA Peugeot Citroén
Gary Morgan LiveDevices
Maurice Miicke Volkswagen
Sven-Oliver Schneele BMW
Jochem Spohr IMH
Maxim Tchervinsky Motorola
241 January 23, 2003
Oliver Bremicker SiemensVDO Automotive
Gary Morgan LiveDevices
Jochem Spohr IMH
OSEK/VDX OIL 2.3 © by OSEK Page 63

	Introduction
	General remarks
	Motivation

	Language Definition
	Preamble
	General concept
	OIL basics
	OIL file structure
	Syntax
	OIL versions
	Implementation definition
	Application definition
	Dependencies between attributes
	Automatic attribute assignment
	Default values
	Include mechanism
	Comments
	Descriptions

	OIL Object Definitions
	Rules
	OIL objects, standard attributes and references
	CPU
	OS
	STATUS
	Hook routines
	USERESSCHEDULER
	Example

	APPMODE
	TASK
	PRIORITY
	SCHEDULE
	ACTIVATION
	AUTOSTART
	RESOURCE
	EVENT
	MESSAGE
	Example

	COUNTER
	MAXALLOWEDVALUE
	TICKSPERBASE
	MINCYCLE
	Example

	ALARM
	COUNTER
	ACTION
	AUTOSTART
	Examples

	RESOURCE
	Example

	EVENT
	MASK
	Examples

	ISR
	CATEGORY
	RESOURCE
	MESSAGE
	Example

	MESSAGE
	MESSAGEPROPERTY
	CDATATYPE
	TRANSFERPROPERTY
	IPDU
	BITPOSITION
	SIZEINBITS
	SWAPBYTES
	FILTER
	NETWORKORDERCALLOUT
	CPUORDERCALLOUT
	INITIALVALUE
	MAXIMUMSIZEINBITS
	SENDINGMESSAGE
	QUEUESIZE
	LINK
	NOTIFICATION and NOTIFICATIONERROR
	Example

	COM
	COMTIMEBASE
	Error hook routine
	COMSTARTCOMEXTENSION
	COMAPPMODE
	COMSTATUS
	Example

	IPDU
	SIZEINBITS
	IPDUPROPERTY
	TRANSMISSIONMODE
	TIMEPERIOD
	TIMEOFFSET
	MINIMUMDELAYTIME
	TIMEOUT
	FIRSTTIMEOUT
	IPDUCALLOUT
	LAYERUSED
	Example

	NM

	Definition of a particular implementation
	Attribute types
	UINT32
	INT32
	UINT64
	INT64
	FLOAT
	ENUM
	BOOLEAN
	STRING

	Reference Types
	Multiple values
	Example

	Syntax and default definition
	Syntax of OIL
	Default definition of OIL objects and standard attributes
	Subset for internal communication (CCCA and CCCB only)

