D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

OSEK/VDX

Operating System

Version 2.1 release candidate 1

18. January 2000

This document is an official release and replaces all previously distributed documents. The OSEK group retains the
right to make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in
writing from the OSEK/VDX steering committee.

OSEK OS 2.1 release candidate 1 © by OSEK Document: O20r11.doc

!

ml| OSEK/VDX ‘

Operating System
Specification 2.1 release candidate 1

What is OSEK/VDX?

OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architect ure for distributed control units in vehicles.

A real-time operating system, software interfaces and functions for communication and
network management tasks are thus jointly specified.

The term OSEK means ”Offene Systeme und deren Schnittstellen fiir die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means ,,Vehicle Distributed eXecutive®. The functionality of OSEK operating
system was harmonised with VDX. For simplicity OSEK will be used instead of OSEK/VDX

in the document.

OSEK/VDX partners

The following companies attended and contributed to the OSEK/VDX Technical Committee:

Accelerated Technology Inc.,
ACTIA,

Adam Opel AG,

AFT GmbH,

ATM Computer GmbH,
Blaupunkt,

BMW AG,

Borg Instruments GmbH,
Cambridge Consultants,
Continental Teves,

Cummins Engine Company,
DaimlerChrysler AG,

Delco Electronics,

Denso,

Epsilon GmbH,

ETAS GmbH & Co KG,
FIAT - Centro Ricerche,

FZI,

GM Europe GmbH,

Hella KG,

Hewlett Packard France,
Hitachi Micro Systems Europe Ltd.,
Hitex,

IBM Deutschland Entwicklung GmbH,
HIT - University of Karlsruhe,

Mecel,

Motorola,

National Semiconductor,

NEC Electronics GmbH,
NRTA,

Philips Car Systems,

Porsche AG,

PSA,

Renault,

Robert Bosch GmbH,

Sagem Electronic Division,
Siemens Automotive,

Softing GmbH,

ST Mircroelectronics,

Stenkil Systems AB,

Sysgo Real-Time Solutions GmbH,
TECSI,

Telelogic GmbH,

TEMIC,

Texas Instruments,
Thomson-CSF Detexis,
Trialog,

UTA - United Technologies Automotive,
VDO Adolf Schindling GmbH,
Vector Informatik,

Infineon, Visteon,

INRIA, Volkswagen AG,

Integrated Systems Inc., Volvo Car Corporation,

IRISA, Wind River Systems,

LucasVarity, 3Soft GmbH.

Magneti Marelli,

2 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Motivation

. High, recurring expenses in the development and variant management of non-
application related aspects of control unit software.

o Incompatibility of control units made by different manufacturers due to different
interfaces and protocols.

Goal
Support of the portability and reusability of the application software by:

. Specification of interfaces which are abstract and as application-independent as
possible, in the following areas: real-time operating system, communication and
network management.

o Specification of a user interface independent of hardware and network.

. Efficient design of architecture: The functionality shall be configurable and scaleable, to
enable optimal adjustment of the architecture to the application in question.

o Verification of functionality and implementation of prototypes in selected pilot projects.

Advantages

o Clear savings in costs and development time.

. Enhanced quality of the software of control units of various companies.

o Standardised interfacing features for control units with different architectural designs.

. Sequenced utilisation of the intelligence (existing resources) distributed in the vehicle,
to enhance the performance of the overall system without requiring additional hardware.

o Provides independence with regards to individual implementation, as the specification
does not prescribe implementation aspects.

Remarks by the authors

This document describes the concept of a real-time operating system, capable of multitasking,
which can be used for motor vehicles. It is not a product description which relates to a specific
implementation.

This document also specifies the OSEK operating system - Application Program Interface.

General conventions, explanations of terms and abbreviations have been compiled in the
additional inter-project "OSEK Overall Glossary".

Regarding implementation and system generation aspects please refer to the "OSEK
Implementation Language" (OIL) specification.

OSEK OS 2.1 release candidate 1 © by OSEK 3

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Table of Contents

I INEEOAUCTION. ...ttt ettt ettt ettt st estenbeenees 8
1.1 System philoSOPRY ...ccviiiiiiiieiii et 8
1.2 Purpose of this dOCUMENTccuiiiiiiiiieiieiie ettt 10
1.3 Structure of this dOCUMENTcc.oiiiiiiiiiiiiiiee e 11

2 SUITIIMIATY ..o iuttieeniteeeitee ettt e st e e satteesateeesateeeabeeeateeensbeeantseasnsaeesnseeeanseeensseesnnseesnnseessseesnneenas 13

3 Architecture of the OSEK operating SyStem..........cccueevuieriieriienieeiienieeieeiee e ereeseneenens 14
3.1 Processing I@VEISoouiiiuiiiiieeiieiiece et aae s 14
3.2 ConfOrmance CIASSESeeuiruirriirieriieieeit ettt sttt ettt ettt st e e 15

4 Task MANAZEIMENLeoiiiiiieiieeie ettt ettt ettt e tee e beesaeeesbe e seesabeeseesnseenseesnseenseennne 17
4.1 TaSK COMCEPL..cuiiiiiieiiieiie ettt ettt ettt et et e et e et essbe e bt e sabeensaesnseenseenanas 17
4.2 Task State MOACL........coiiriiriiiiiiieieeeeee ettt 17

4.2.1 EXtended taskscccerieriiiiiiieieee s 17
4.2.2 BaSIC tASKS t.ueiiiiiieiiiiecee e 19
4.2.3 Comparison of the task tyPes.......cccueeviiiiiiiiiiiieeiiee e 19
4.3 ActVAtINg @ tASK....cooiiiiiiiiieeii ettt enneeneeas 20
4.4 Task switching MEChANISMc.cocviiiiiiiiieiieeie e 20
4.5 TaSK PIIOTILY .eeuvieeiiieiie ettt ettt ettt e ettt e et e et esabeenbeeesbeesbeesaseensaesnaeenseennnas 20
4.6 SCheduling POLICYeeiiieiiieiieiieete ettt ettt te et e et siaeeabeesaeeenbeeeeas 21
4.6.1 Non pre-emptive SChedUling.........cccoeviiiiiiiiiiiieeceeeee e 21
4.6.2 Full pre-emptive schedulingccooiiiiiiiiiniiieieeceeee e 22
4.6.3 Mixed pre-emptive SChedulingcccoocuieiiiiiiieiiiniieeeeeeee e 23
4.6.4 Selecting the scheduling POLICYcceeviiiiiiiniieiieie e 24
4.7 Termination Of tASKS.....c.ceiiiiiiiiiieeiieeee et 24
4.8 APPIICAtION MOAESeoeuiieiiieiiieiie ettt ettt ettt e bt e sebe et e e ateenbeeennas 24
4.8.1 Start up PerfOrMANCE.ccueevieriieeieeiieeie ettt et e ete et e et e e ssaesbeebeeenaeeneeas 25
4.8.2 Support of exclusive appliCations...........c.eeeeerieeriieniieiiierieeieeeee et 25
4.8.3 Supported by all conformance classesccccveviieiiieniiiiiienieeieeeeee e, 25

5 INEETTUPE PIOCESSINEvvieuiieieiieniieeiieeteeeiteeteestteeteestteenseesseessseeseessseeseessseenseessseenseesseesseens 26

6 EVvent MEChaniSIM......cc.coiiiiiiiiiiiiiieieet ettt 29

7 RESOUICE MANAZEIMENLeeiutieeiiieriieerieeerteeeritee ettt eeieeesibeeesateesateestreesaseeesaseesnnseesseeesnses 31
7.1 Behaviour during access to 0CCUPIEd TESOUITESccueerurreueeriieeiieriieeiieeieenireeneenenns 31
7.2 Restrictions When USING TESOUICESccueeereerurerieerrienreeteenieeeseessaeeseesseesseessaesseens 31
7.3 Scheduler @S @ TESOUICTEecueeruieiiiiierieiiesitete ettt st 32
7.4 General problems with synchronisation mechanismsccccceeeeveeviienieenieennennnen. 32

7.4.1 Explanation of priority INVETSIONcccueeruierieeriieriieeiteeniieeieeniieereeneeeeeeenaeeens 32
742 DEAAIOCKS ...eueiiiiiiiiieiieiec ettt st 33
7.5 OSEK Priority Ceiling Protocol..........ccciiiiiiiiiiiiiiiieiecieeeceee e 33
7.6 OSEK Priority Ceiling Protocol with extensions for interrupt levels........................ 34

8 ALAITIIS ..ottt ettt a e et sttt et sa et 37
Bl COUNLETS ...ttt ettt ettt et ettt e sbe e et esaeesaneenneeeane 37
8.2 Alarm mMAanagemMENTc.cecuieriieriieeieeitieeieeiteesteeteesteeebeesteesbeeseeseeeebeeseaeebeenaeeenne 37

O MIESSA@ES . uvveeeuiteeeiitee ettt e et te e ettt e et e ettt e et e e e et e e bt e et e e e et e e e at e e e at e e e bt e e eabteeeabeeennbeeenabeeennes 39

10 Error handling, tracing and debuggingccceevveeiiieriiiiiienieeieeee et 40

4 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

I
10.1 HOOK TOULINES.eeiiieiiiieeeeiiiee e eeiiee e ettt e ettt e e e ettt e e e e etve e e e eeteeeeeeeasaeeeeeasaeaeeesseeaeanns 40
10.2 Error handling........c.ooeeiiiieiie ettt tee et e s e e e e e are e enee e 41
10.3 SYSTEIM STATT-UP .eeeeeieiiiieeeeiiiee ettt e et ee e ettt e e et e e e e sabeeeesseteeeeesnnsaeessnnneeeeannns 42
10.4 System ShULAOWILeoeiiiiiiiiecie ettt tee e eaee e s e e aeeesaseeenneeens 43
1O.5 DEDUZZING.....cccviieiiieeciie ettt eeiee ettt e ettt e et eesteeesteeessaeeessseeesseesssseessseeessseeessseeessseenns 44
11 DeScription Of SYSEIM SEIVICES ...ccuvviiiiieeriiieeiieeeitieeetieesteeesreeessreesseeessseeessseesssseessseeesssees 45
11.1 Definition of SYSTEM ODJECESuviiriuiieeiieeeiiiecieeeeteeeetee et e ereeeere e e e e ereeesaseeesaaeeens 45
L1.2 CONVENLIONSuvviieieiiiieeeeiie e e ettt e e e ettt e e e e et eeeeeateeeeeeateeeeeessseeeeesseeeeansssseeeansseeeeannes 45
LT1.2.1 TYPE OF CALIS weeeneiiieiie ettt et e e e e 45
11.2.2 Legitimacy OF CallS ...cceouviieiiiieiii ettt 45
11.2.3 EIrror CharacCteriStICS....ccouuiiiieiiiiieeeciieeeeeiie ettt e ettt e et e et e e e etae e e e eaaeeaeas 45
12 Specification of Operating SYStEIM SETVICES.ueerureerreeerreeeirieesreeesreeesreeessreessseeesseesssnens 47
12.1 COmMMON AATALYPES ..eeeevrieeiiieiiiieeiieeeieeeeieeesiteeeseteeeeaeesseeeesseeessseeessseeessseeensseesnsseenns 47
12.2 Task ManaQ@EMENLc.eeeeiuieeiiieeiiieeiteeeieeeeteeesieeesreeeseaeeesreesssaeessseeessseeessseesnsseenns 48
|00 B B T 1 2 T 5 USRI 48
12.2.2 Constructional €lementscccouiiiieiiiiiiieiiiee e 49
12.2.2.1 DeClareTaskcccvieiiiiiiieeiiecieeceeste ettt et sae e ae et e etb e e saeesaeessneesaeesneens 49
12.2.3 SYSEEIM SETVICES ..eeerurreeerieeiieeeieeeeieeesteeessteeessseesseeesseeessseesssseeessseesssseesseesnnnes 49
12.2.3.1 ACHIVALETASK ...eeeivieiiiiieiieciieeee sttt ettt ettt e et e e e estbeeaeeeataeesaesnsaeensaeens 49
12.2.3.2 TerminateTasK.......cccuieriieiiieeiiecieecte ettt te e et e e s be e e b e e st e e e naeessbeesnseesnseennseens 49
12.2.3.3 CRAINTASK ..eeviiiiiieiie ettt ettt et tee et e e ta e et e enbeeenseeensaeenseesnsaeennseeas 50
12.2.3.4 SCREAULE vveooveeeeee oo s e s e e see e s s ees s eeseseee s esseeesseseesseresseeees 51
12.2.3.5 GLTASKID ..coiiiiciiieiiiecieee ettt ettt ettt ae e s e e st eessbeessbaeenbeessseensseesssaennsanns 51
12.2.3.6 GetTASKSLALE ..oeetiieiiieiie ettt ettt e et s e e be e aaeebb e e saeetaeensaeensaeensneens 52
12.2.4 COMNSLANES ...uviiiieieeeeeiciiiieeeeeeeeeecctitre e e e e e eeeetaareeeeeeeeeeeastrareeeaeeeeeassraseseaaaeeaaananes 52
12.2.5 NamMING CONVENTION ..eeeuvvieeriieeiireaireesireesteeesseeessseeessseessseeessseeesssesesssesssssesennns 52
12.3 Interrupt handlingcoooviiiiiiiiiiieee et e e e e e saaeeen 53
|00 20 R B T 1 2 T 5 USSP 53
12.3.2 SYSLEIM SETVICES ..eeerureeeeiieeireeeieeeeieeesteeessteeessaeessseesseeessseesssseesnsseesssseessseesnnnes 53
12.3.2.1 ENEEIISR ...ttt ettt ae e st e et e et e e nbeessbeeenaeesnsaennaeens 53
12.3.2.2 LeAVEISR ...oiiiiieieee ettt ettt et et e ettt e et e et e eta e e aaeetaeenaaaens 54
12.3.2.3 ENaDICINLEITUPL....eeetiiiiieeiii ettt ettt ettt et e e e e s beesnaeessbeeenbeessbeeenseesnnaeenvaens 54
12.3.2.4 DiSabIEINLEITUPL....ceuvieeirieiiieeieeeiee ettt et e te e e e e s beessbeessbaesnbeessbeesnseesnseessseens 55
12.3.2.5 GetInterruUPtDESCIIPIOT . .eeivieeiieeiieeieeeieeeteesteeeteesteeeteesbeeebeesebaeenbeesnseeenseesnseeenseens 55
12.3.2.6 ENabI@ATIINEEITUPES ...eeovvieiiieeieeeiiieeie et este ettt esteesiteeseveeseaeesseeebaeessaeesaeensaessseensnenns 55
12.3.2.7 DiSablEAIIINLEITUPLS ..eecvveererieeieeiiieeieeeteeeteesveeeteesteesteesbeessseessseessseessseessseessseensseens 56
12.3.2.8 ReESUMEOSTNLEITUPLS ..ouvveevrierireeriieenieeiieeseeeireesteeesseeeseesteeeseessseesseesseesseesssesssseesns 56
12.3.2.9 SUSPENAOSTNEEITUPLS ... eveeierieereeiiieeteeeteeeteesteeeteesteesseesseessseesssaessseessseesssessssesssseens 57
12.3.3 COMSLANES ...uviiiieieieeccciiiieee e e e ettt e e e e e e eear e e e e e eeeeeatbbareeeaeeeeeansraseseaeaeeeaannes 58
12.3.4 NamMING CONVENTION ..eeeuvvieeirieeirreeireeateeesteeesteeessseeessseesssseessseeesssesessseesssseesnnns 58
12.4 ReSOUICE MANAZEIMENT ...ceeiutiiieeiiiieeeeiiteeeeeiieeeeereteeeeeateeeesssreeeesssseeeessnnseeessssnneeesnnns 58
|0 S R B T 1 72 T 5 USSR 58
12.4.2 Constructional €lementscccouiiiieiiiiii e e 58
12.4.2.1 DeECLarC€RESOUICEvieeevieiiieeieeeiieeieeeite et eseveesveesbeesaeessbeeasseesssaessseessseesssesssseensseens 58
12.4.3 SYSLEIM SETVICES ..eeerurieeirieeiieeeiieesieeesteeessteesssseesseeesseeessseesssseeessseesssseessseesnnnes 58
12.4.3.1 GERESOUICEeeviieiiieiieeiie ettt ettt stte et e et e et e e steeetaeesaeesbbeessaesnseeenseesnsaeesseens 58
12.4.3.2 ReEICASERESOUICE. ...c.uvieieiieiiieeiieeciiieete ettt eete ettt et e ettt e saaeetbeesseeesbeesaessaeenseessseensneens 59
12.4.4 COMSLANES ...uviiiiiieiieccciiteeeeeeeeeecciitee e e e e e e eeettreeeeeeeeeeeattrareeeaeeeeeaseraseseaaaeeaaannnes 60
12.5 EVENt CONIOL.......oiiiiiiiiiieee et e e e e e e e e etae e e e eeaaaeeeeans 60
|0 T B B 1 2 I 5 USSP 60
12.5.2 Constructional €lementscccouiiiieiiiiieieiiie e 60
12.5.2.1 DeCLATCEVENL....ccutiiiiieeiiieiiieeie ettt ettt e et eesaee et eesaaeebbeesaesnsaeesneensaeesseens 60

OSEK OS 2.1 release candidate 1 © by OSEK 5

D-ﬂ O SEK/VDX Operating System

Specification 2.1 release candidate 1

]
12.5.3 SYSLEIM SEIVICES ...eeuvieurieriieeiieiieeieesiteeteesttesreesseesteeseessseenseessseaseessseenseessseans 60
12.5.3.1 SEEEVENL......oiiiiiiiiieiiee ettt ettt e et e e e tte e e e baeeeestbeeeessbaeeesssaeeeensseaeessseeeensses 60
12.5.3.2 ClEATEVENTeiiiiiiiiieiie ettt et ettt e e e e s be e s b e e sabeesaneesebeesaneees 61
12.5.3.3 GEIEVENL.....iiiiiiiiiiciieee ettt e et e e e rta e e e e tbeeeetbeeeeestbeeeentaeaeestaeeeesssaeennsseas 61
12.5.3.4 WaAIEVENT......iiiiiiiiiiiciee ettt et ettt et e etee e taeeeaeeestseeesaeestaaeenseees 61
L2.6 ALAIINIS ...oooiiviiieeeieee et e et e e et e e e et e e e e e e e e e e e e e eeaaeeeeearaaens 62
L12.6.1 DAta LYPES weeeurieeiiieeiiieeiieeeitee ettt et st e ettt e et e et st esbreesateesanee s 62
12.6.2 Constructional €lemMENtS.........c...eeieeiviieieeieeee e e 62
12.6.2.1 DeClar@AIArmcccvvieiiieiiieiie ettt ettt et e et e e tb e et e e staeeeaaeestbeenanee e 62
12.6.3 SYSEEIM SEIVICES ...eeuvieutierireeiieniieeteeseteeteesttesseesseesseeseeasseeseessseaseessseenseessseans 63
12.6.3.1 GEtAIAIMBASEecouviieiiiieiie ettt ettt et e et e e te e e re e e teeeraeebaeeaaee e 63
12.6.3.2 GELAILAII ...ccuviiiiiieiiieiee ettt ettt ettt e et e et e e stbe e tbeestbe e taeesabeesaseessbeenaseesaseassseens 63
12.6.3.3 SEtREIAIAIM ...ccviiiiiiiiiieee e ettt e e e b e e aae e stbeesaseesebeesanee e 64
12.6.3.4 SELADSALAIIN ...uviiiiiieiie ettt et e e e ete e e teeetb e e taeetaeesaeestseesaeebseenseeenes 64
12.6.3.5 CanCElAIAIMI.......ccouiiiiiieiie ettt ettt ettt e e te e eteeetaeeteeetaeesaeetaeeseeees 65
12.6.4 COMNSLANESvvvvriieieieeieeieiirreeeeeeeeeeeetree e e e et eeseraeeeeeeeeeeestrreeeeeeeeeensearrreeeeeeeens 66
12.7 Operating system eXeCution CONIOL..........ccueriieriierireiiienie ettt see e 66
L12.7.1 DAt EYPES weeeurieeiiieeiiieeiieeeitee et ettt e et e st sib e et e et e et esaa e sbreesateeeanaeas 66
12.7.2 SYSEIM SEIVICES ...eeuvieurierireeieentieeieesiteeteesteeesseesseesseeseessseensaessseaseesssesnseessseans 66
12.7.2.1 GetActive ApplicationNMOdEe.ccuveriieiieieeie ettt 66
L I A 1 -y | © 1 S USSR SR 66
12.7.2.3 ShUtdOWNOSooiiiiiiieeteeeeee et ettt et e et e e etb e e tae e s tbe e aseesabeesaseesabeesaseens 66
12.7.3 COMSLANLSovvivriieieeeeieeiireeeeee e e eeet e e e e e eeeer e e e e e eeeeestbreeeeeeeeeeeseaarreeeeeeeens 67
12.8 HOOK TOULINESuvvveeeeiiiieeeeeiieee ettt eeeae e e e et e e e e aaaeeeeeaaeeeeeeaaeeeeenanseeeeeaneeeeas 67
12.8.1 EITOTHOOKovviiiieiieieeeeeee et eeanes 67
12.8.2 PreTaskHOOKccovviiiiiiiiic e 68
12.8.3 POStTASKHOOK........vviiiieiiiiieeeieeee e e 68
12.8.4 StartupHOOKiiiiiiiieie et 68
12.8.5 ShutdOWNHOOKoooiiiiiiiiiiiiiie e 68
13 Implementation and application SPECIfiC tOPICS......cccuirrurerirerrierieeiienieeieeriee e siee e ees 69
13.1 Implementation NINES..........ccceeiiieiiieiie ettt siee e e eeeeaneens 69
13.1.1 Aspects of implementationccceerieriiienieniieeriieeie et 69
13.1.2 Parameters of implementationcccueecuieriieeiiiesieiie et 69
13.1.2.1 FUNCHONALIEY ... eeeieieieiieit ettt ettt ettt et e st esteenseessessaeseenseenseensesnseenns 69
13.1.2.2 HArdWAare TESOUICEScccveeevuieirieerieereeeteeeereeeeteeeeteeeseeeseeeseeessseessseessseessseessseessseenes 70
13.1.2.3 PerfOrMANCE.....c.veiiiiiieiiiiciiee ettt ettt ettt et e e tae e tbe e aaeestbeesaseeseseenaneees 70
13.1.2.4 Configuration of run time CONLEXL........ccurrierierierieerieeteeeeeeeseeieeeeeaeseeseeesseesseeneeenes 70
13.2 Application design hiNtS.........cccueeiiiiiiieiiieiie ettt ens 71
13.2.1 ResOUrce ManageImMeENtcc.eeerueeerieerriieeriiieenieeesieeesreeesiseessareesnneeesneeesneees 71
13.2.1.1 Occupation in LIFO OFdercc.eevuieiiieiieieciesiiesie ettt 71
13.2.1.2 Call 1eVel Of API-SEIVICESccuiiiuiieeuiieiiieeeiie ettt eeite et etre e tae e taeeeaeeestaeeeaeeesaaeereeenes 71
13.2.1.3 Resources still occupied at task termination.............cceecveeeereesierceesieseenesee e sieeee e 72
13.2.2 Placement of APL CallS..........cooiuviiiiiiiiiiieeie e 72
13.2.3 INterrupt SEIVICE TOULINES ...ecuveerieriireniieriieeieetieeieetteeiteeseessaeebeesseesnseensnesnseens 72
13.2.3.1 Local variables in ISRS 0f CategOory 3cceeiieiieiieieit e 72
13.2.3.2 Nested interrupts of different Categories.........coevverieriieciieierieriee e 73
13.2.3.3 Direct manipulation of interrupt 1eVels.........ccoeoivoiiriirieieeee e 74
13.2.4 Priority and pre-CmpPtioncc.eeeeeerieenieeriieeieesieeseeeieeereeseeesaeeseesseenseesneeas 74
13.2.5 Parameter to pass to ShutdownOS...........ccceeriiiriiiiiiinieeere e 74
13.2.6 Error handling..........cooieiiiiiiiiiieiiecie ettt e 74
13.2.7 Errors and Warningsc.ceecveeeiienieeieeniieeieeieeeeeenieeseeeseesaesseesseesnseessnesnseens 75
13.3 Implementation SPECIfiC tOOLSccuiiiiiiiriiiiiieiieeie et 75

6 © by OSEK OSEK OS 2.1 release candidate 1

1

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

I
14 Changes from specification 1.0 t0 2.1cc.ceeriiieiiiiiiiieeiee e e e 77
14.1 Changes from specification 1.0 t0 2.011cccvieeiiiiieiiiiie e 77
14.1.1 Conceptual ChaN@ES.........ccccuiieiiiieiiiecieecee ettt 77
14.1.1.1 CoNfOrmMANCE ClASSESvveeruvierieeriiierieeiiieeteesiteesteesteesaeessseessseesssaessseessseesseesseensseens 77
LA 1. 1.2 IMIESSAEES --veuveueeiietientieteenteeitesitesttestee st e et et e st es e eaeeeb e e b e e bt emseemtesaeesaeesaeenbeenseenteenneas 77
14.1.1.3 Multiple requesting of task actiVationcc.ceceeeeiieiiiesiiie e eieeeiee e 77
14.1.1.4 ApPPliCAtion MOGES......ccvieiuiieiiieiiieeie ettt ettt e steesaeesbeesbeesebeessbeessseessseessseensseens 77
TA.1.1.5 COUNLELS ...uveeiiieiiieeiieetteetteeteeetee et e et e eteeesteeesseeestaeenseeessseenseesnsseenssesnsseenseeesseenssenns 77
14.1.1.6 HOOK TOULINESvveeeiiieiieeiieeiee ettt esiteeteeetteeteeetteetaeessaeestaeesneensseesnessseensneensseensseens 78
14.1.1.7 OS €XECULION CONLIOL....uuiiiiiieiiiiiiieiieeiit e et et seeeereeseeebaeesaeeetaeesseessaeesneens 78
14.1.2 ClarifiCatiONSc.uviiieeiiiiee ettt e e e e e et e e e eara e e e eeaaeeaas 78
14.1.2.1 Scheduling of non pre-emptive tasks...........ceeereeriiriierienienereee e 78
14.1.2.2 Services available on Which leVel..........cccoooviiiiiiiiiiiiiccec e 78
14.1.2.3 INtEITUPE PIOCESSINE..cuveeutieiiieiieitieitterteenteett et et et e et e st e bt e be e bt et emeeeaeeeaeesaeenbeeaeennens 78
14.1.2.4 PriOTIEY CEIIINE..ccuieitiieitieiiieeieeeiee et et e et e st e et eesbeessaeesebeessaeesseesseeesseenseeesseenssenns 78
14.1.2.5 Types and CONSLANESc..eerurierieeiiierieeriieesieesieesreesteesseessseessseessseessseessseessseesseenssenns 78
14.1.2.6 NAMING CONVENMEIONS ..ceuvveerrierereerrreerreetreeseeestseesseessseeesseesssseesseesssesesseesssseessessssessssessns 78
14.1.3 Changes of the dOCUMENtAtIONeveeeviieiiieeiee e e e 79
14.1.3.1 DOCUMENE SEIUCTUIE ...eevveeerieriieereiienieestteesteestteessteessreessseessseesseeesseesseesssseesseesnsseesseenns 79
T4.1.3.2 INEW CRAPLETS ...eevvieiiieeiiieeiieeste et ete ettt sete et e e st e e sibeessbeessbaessseesssaeasseessseensseesssaensseens 79
14.1.3.3 RemMOVEA ChaPLEIS ...eeoeiieiiieiieeiie ettt e ettt e e et e e aaeestbeessaeessaeennneens 79
14.2 Changes from specification 2.011 t0 2.1ooeeiiiieiiieieeeee e 79
14.2.1 Behaviour of ChainTask/TerminateTask with allocated resources is
UNAETINEA. ..o e et e e e et e e e eaeeas 79
14.2.2 GetTaskID is allowed in ISRS.ooooiiiiiiiiecee e 79
14.2.3 Interrupt handling has been clarified and extended............c.cccccvvvvviiencieennenns 80
14.2.4 Error checking of GetResource/ReleaseResource have been modified. 80
14.2.5 Added constant OSTICKSPERBASE..........ccoiiiiiieeeeeeeee e 80
14.2.6 ShutdownOS is allowed in ISRs and certain hook routines..................cccuee.... 80
14.2.7 Behaviour of ShutdownOS after ShutdownHook returns is
implementation defined............cceooviiieiiiiiiii i 80
14.2.8 Added constant OSDEFAULTAPPMODE...........cccooiiiiiiiieeeeeee. 80
14.2.9 ErrorHook is never called recursively.ccccoecveeeeiieiciiiiciiiiieeie e 80
14.2.10 Local Messages added to specifiCation.ccceeerveeerieeeiieeniieeeiieeeiee e 80
IS TA@X ettt e et e e e e e et e e e e aa e e e e e ta e e e e earaeeeearaaeeaaaaaaaas 81
I5.1 LASt OF fIQUIES .. .viiiiiieeiie ettt ettt e et e e et e e s teeesseeeessbeeesaeeessaesnseeenns 82
ORI 5 T3 () o TSR 83

OSEK OS 2.1 release candidate 1 © by OSEK 7

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

1 Introduction

The specification of the OSEK operating system is to represent a uniform environment which
supports efficient utilisation of resources for automotive control unit application software. The
OSEK operating system is a single processor operating system meant for distributed
embedded control units.

1.1 System philosophy

Automotive applications are characterised by stringent real-time requirements. Therefore the
OSEK operating system offers the necessary functionality to support event driven control
systems.

The specified operating system services constitute a basis to enable the integration of software
modules made by various manufacturers. To be able to react to the specific features of the
individual control units as determined by their performance and the requirements of a
minimum consumption of resources, the prime focus was not to achieve 100% compatibility
between the application modules, but their direct portability.

As the operating system is intended for use in any type of control units, it must support time-
critical applications on a wide range of hardware. A high degree of modularity and ability for
flexible configuration are prerequisites to make the operating system suitable for low-end
microprocessors and complex control units alike. These requirements have been supported by
definition of "conformance classes" (see chapter 3.2, Conformance classes) and a certain
capability for application specific adaptations.

For time-critical applications dynamic generation of system objects was left out. Instead,
generation of system objects was assigned to the system generation phase. Error inquiries
within the operating system are obviated to a large extent, so as not to affect the speed of the
overall system unnecessarily. On the other hand, a system version with extended error
inquiries has been defined. It is intended for the test phase and for less time-critical
applications. Even at that stage defined uniform system appearance is ensured.

Standardised interfaces

The interface between the application software and the operating system is defined by system
services. The interface is identical for all implementations of the operating system on various
processor families.

System services are specified in an ISO/ANSI-C-like syntax, however the implementation
language of the system services is not specified.

Scaleability

Different conformance classes, various scheduling mechanisms and the configuration features
make the OSEK operating system feasible for a broad spectrum of applications and hardware.

The OSEK operating system is designed to require only a minimum of hardware resources
(RAM, ROM, CPU time) and therefore runs even on 8 bit microcontrollers.

Error checking

The OSEK operating system offers two levels of error checking, extended status for
development phase and standard status for production phase.

OSEK OS 2.1 release candidate 1 © by OSEK 8

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

The extended status allows for enhanced plausibility checks on calling operating system
services. Due to the additional error checking it requires more execution time and memory
space than the standard version. However, many errors can be found in a test phase. After all
errors have been eliminated, the system can be recompiled with the standard version.

Portability of application software

One of the goals of OSEK is to support the portability and re-usability of application software.
Therefore the interface between the application software and the operation system is defined
by standardised system services with well-defined functionality. Use of standardised system
services reduces the effort to maintain and to port application software and development cost.

Portability means the ability to transfer an application software module from one ECU to
another ECU without bigger changes inside the application.

The application software lies on the operating system and in parallel on a application-specific
Input/Output System interface which is not standardised in the OSEK specification. The
application software module can have several interfaces. There are interfaces to the operating
system for real time control and resource management, but also interfaces to other software
modules to represent a complete functionality in a system and at least to the hardware, if the
application has to work directly with microcontroller modules.

For better portability of application software, the OSEK defines a language for a standardised
configuration information. This language "OIL" (OSEK Implementation Language) supports a
portable description of all OSEK specific objects such as "tasks" and "alarms" etc.

module 1 module 2 module 3 module n

application <‘:> <$>
software

R

OSEK operation system

Input/Output System

J)

pController

Figure 1-1 Software interfaces inside ECU'

During the process to port application software from one ECU to another ECU it is necessary
to consider characteristics of the software development process, the development
environment, and the hardware architecture of the ECU, for example:

" OSEK OS allows direct interfacing between application and the hardware.

OSEK OS 2.1 release candidate 1 © by OSEK 9

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

o Software development guidelines

. File management system

o Data allocation and stack usage of the compiler
. Memory architecture of the ECU

o Timing behaviour of the ECU

. Different microcontroller specific interfaces e. g. ports, A/D converter, serial
communication and watchdog timer

° Placement of the API calls

This means that the OSEK specifications are not enough to describe an OSEK implementation
completely. The implementation has to supply specific documentation.

Support of Portability

The certification process ensures the conformance of different implementations to the
specification. Chapter 13 of this specification collects implementation specific details which
have to be regarded to increase portability of an application between various OSEK
implementations. Herein only the operating system interface to the application is considered.

Special support for automotive requirements

Specific requirements for an OSEK operating system arise in the application context of
software development for automotive control units. Requirements such as reliability, real-time
capability, and cost sensitivity are addressed by the following features:

. The OSEK operating system is configured and scaled statically. The number of tasks,
resources, and services required is statically specified by the user.

o The specification of the OSEK operating system supports implementations capable of
running on ROM, i.e. the code could be executed from Read-Only-Memory.

. The OSEK operating system supports portability of application tasks.

o The specification of the OSEK operating system provides a predictable and documented
behaviour to enable operating system implementations, which meet automotive real-
time requirements.

. The specification of the OSEK operating system allows the implementation of
predictable performance parameters.

1.2 Purpose of this document

The following description is to be regarded as a generic description which is mandatory for
any implementation of the OSEK operating system. This concerns the general description of
strategy and functionality, the interface of the calls, the meaning and declaration of the
parameters and the possible error codes.

The specification leaves a certain amount of flexibility. On the one hand, the description is
generic enough for future upgrades, on the other hand, there is some explicitly specified
implementation-specific scope in the description.

Any implementation defines all implementation specific issues. The conformance classes
supported by the implementation must be indicated precisely, and the issues identified as
implementation-specific must be documented.

It is assumed that the description of the OSEK operating system is to be updated in the future,
and will be adapted to extended requirements. Therefore, each implementation must specify

10 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

which officially authorised version of the OSEK description has been used as a reference
description. Officially authorised versions of the OSEK operating system description are
named x.y. This document represents ”Version 2.1 release candidate 1.

Because this description is mandatory, definitions have only been made where the general
system strategy is concerned. In all other respects, it is up to the system implementation to
determine the optimal adaptation to a specific hardware type.

1.3 Structure of this document

In the following text, the specification chapters are described briefly:

Chapter 2, Summary

This chapter provides a brief introduction to the OSEK operating system concept.
Chapter 3, Architecture of the OSEK operating system

This chapter gives a survey about the design principles and the architecture of the OSEK
operating system.

Chapter 4, Task management

This chapter explains the OSEK task management with the different task types and scheduling
mechanisms.

Chapter 5, Interrupt processing

This chapter provides information about the OSEK interrupt strategy and the different types of
interrupt service routines.

Chapter 6, Event mechanism

This chapter explains the event mechanism and the different behaviour depending on the
scheduling.

Chapter 7, Resource management

This chapter describes the OSEK resource management and discusses the benefits and
implementation of the OSEK priority ceiling protocol.

Chapter 8, Alarms

This chapter describes the two-stage concept to support time-based events (e.g. hardware-
timer) as well as non-time-based events (e.g. angle measurement).

Chapter 9, Messages

The message handling for intra processor communication will be added to the OS
specification. Full message handling is described in the OSEK COM specification.

The exact subset to be implemented is yet to be defined.
Chapter 10, Error handling, tracing and debugging

Description of the mechanisms to achieve centralised error-handling. This chapter also
describes the services to initialise and shutdown the system.

Chapter 11, Description of system services

This chapter describes the conventions used for description.

OSEK OS 2.1 release candidate 1 © by OSEK 11

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Chapter 12, Specification of operating system services

This chapter describes all operating system services made available to the user. Structure of
the description is identical for any service; it contains all the information the service user
requires.

Chapter 13, Implementation and application specific topics,

This chapter provides a list of all operating system specific topics, including services, data
types, and constants.

Chapter 14, Changes from specification 1.0 to 2.1

This chapter provides a survey of major changes in the operating system specification from
version 1.0 to version 2.1.

Chapter 15, Index
List of all operating system services and figures.
Chapter 16, History

List of all official releases.

12 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

2 Summary

The OSEK operating system provides a pool of different services and processing mechanisms.

The OSEK operating system is built according to the user's configuration instructions at
system generation time.

Four conformance classes are available to satisfy different requirements concerning
functionality and capability of the OSEK operating system. Thus, the user can adapt the
operating system to the control task and the target hardware. The operating system cannot be
modified later at execution time.

Applications which have been written for a certain conformance class have to be portable to
OSEK implementations of the same class. This is ensured by a definition of the services, their
scope of capabilities, and the behaviour of each conformance class. Only if all the services of
a conformance class are offered with the determined scope of capabilities, the operating
system implementation conforms to OSEK.

The service groups are structured in terms of functionalities.

Task management
° Activation and termination of tasks

. Management of task states, task switching
Synchronisation

The operating system supports two means of synchronisation effective on tasks:

. Resource management
Access control for inseparable operations to jointly used (logic) resources or devices, or
for control of a program flow.

° Event control

Event management for task synchronisation.
Interrupt management
o Services for interrupt processing

Alarms
° Relative and absolute alarms

Intra processor message handling

o Services for exchange of data

Error treatment

. Mechanisms supporting the user in case of various errors

OSEK OS 2.1 release candidate 1 © by OSEK 13

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

3 Architecture of the OSEK operating system

3.1 Processing levels

The OSEK operating system serves as a basis for application programs which are independent
of each other, and provides their environment on a processor. The OSEK operating system
enables a controlled real-time execution of several processes which appear to run in parallel.

The OSEK operating system provides a defined set of interfaces for the user. These interfaces
are used by entities which are competing for the CPU. There are two types of entities:

. Interrupt service routines managed by the operating system
o Tasks (basic tasks and extended tasks)

The hardware resources of a control unit can be managed by operating system services. These
operating system services are called by a unique interface, either by the application program or
internally within the operating system.

OSEK defines three processing levels:
e Interrupt level

e Logical level for scheduler
e Task level
Within the task level tasks are scheduled (non, full or mixed pre-emptive) according to their

user assigned priority. The run time context is occupied at the beginning of execution time and
is released again once the task is finished.

interrupt level
d
N

pl'iOI’ity with OS-services
high
A
logical level for scheduling activities . B
task level waiting: yes / no _
2 N
1 T~
™
tasks \A
preemption: non / full \/\
low
runtime
OSEK operating system context

Figure 3-1 Processing levels of the OSEK operating system

The following priority rules have been established:
. Interrupts have precedence over tasks
o The interrupt processing level consists of one or more interrupt priority levels

. Interrupt service routines have a statically assigned interrupt priority level

14 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

. Assignment of interrupt service routines to interrupt priority levels is dependent on
implementation and hardware architecture

o For task priorities and resource ceiling-priorities bigger numbers refer to higher
priorities.

. The task’s priority is statically assigned by the user (the meaning of task priorities is
described in chapter 4.5)

Processing levels are defined for the handling of tasks and interrupt routines as a range of

consecutive values.

Processing levels Processed instance
k..m Interrupt
] Scheduler
0..1 Task

Figure 3-2 Processing levels of the OSEK operating system
The following rule applies for the processing level :

O<=i<j<k<=m

The operating system provides services and ensures compliance with the priority rules
mentioned above.

3.2 Conformance classes

Various requirements of the application software for the system, and various capabilities of a
specific system (e.g. processor, memory) demand different features of the operating system. In
the following description, these operating system features are described as "conformance
classes" (CC).

Conformance classes exist to support the following objectives:

e To provide convenient groups of operating system features for easier understanding and
discussion of the OSEK operating system.

e To allow partial implementations along pre-defined lines. These partial implementations
may be certified as OSEK compliant.

e To create an upgrade path from classes of lesser functionality to classes of higher
functionality with no changes to the application using OSEK related features.

The complete conformance class must be implemented to be certified. However, system
generation needs only to link those system services that are required for a specific application.
Conformance classes cannot be changed during execution.

Conformance classes are determined by the following attributes:
e Multiple requesting of task activation, as described in chapter 4.3
e Task types, as described in chapter 4.2

e Number of tasks per priority

All other OSEK features are mandatory if not explicitly stated otherwise.

OSEK OS 2.1 release candidate 1 © by OSEK 15

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

BT only BT and ET
1 task/priority R
no multiple activations BCC1 L7 ECC1
4 v
> 1 task/priority N
multiple activations BCC2 v ECC2

for basic tasks only

Figure 3-3 Restricted upward compatibility for conformance classes

The following conformance classes are defined:

. BCCI (only basic tasks, limited to one activation request per task and one task per
priority, while all tasks have different priorities)

. BCC2 (like BCCI1, plus more than one task per priority possible and multiple requesting
of task activation allowed)

o ECCI (like BCC1, plus extended tasks)

. ECC2 (like ECCI1, plus more than one task per priority possible and multiple requesting
of task activation allowed for basic tasks)

The portability of applications can only be assumed if the minimum requirements are not
exceeded. The minimum requirements for Conformance Classes are shown in the Figure 3-4.

BCC1 BCC2 ECCl1 ECC2
Multiple requesting of no yes BT”: no BT: yes
task activation ET: no ET: no
Number of tasks 8 16
which are not in the (any combination of BT/ET)
suspended state
More than one task no yes no yes
per priority (both BT/ET) | (both BT/ET)
Number of — 8
events per task
Number of task 8
priorities
Resources RES_SCHEDULER 8 (including RES_ SCHEDULER)
Alarm 1
Application Mode 1

Figure 3-4 The minimum requirements for Conformance Classes

2 BT = Basic Task, ET = Extended Task

16 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

4 Task management

4.1 Task concept

Complex control software can conveniently be subdivided in parts executed according to their
real-time requirements. These parts can be implemented by the means of tasks. A task
provides the framework for the execution of functions. The operating system provides
concurrent and asynchronous execution of tasks. The scheduler organises the sequence of task
execution.

The OSEK operating system provides a task switching mechanism (scheduler), including an
idle mechanism. (see chapter 4.4, Task switching mechanism).Two different task concepts are
provided by the OSEK operating system:

° basic tasks
° extended tasks

Basic Tasks
Basic tasks only release the processor, if
o they terminate,

. the OSEK operating system switches to a higher-priority task, or

o interrupt occurs which cause the processor to switch to an interrupt service routine
(ISR).
Extended Tasks

Extended tasks are distinguished from basic tasks by being allowed to use the operating
system call WaitEvent, which may result in a waiting state (see chapter 6, Event mechanism,
and chapter 12.5.3.4, WaitEvent). The waiting state allows the processor to be released and to
be reassigned to a lower-priority task without the need to terminate the running extended task.

In view of the operating system, management of extended tasks is, in principle, more complex
than management of basic tasks and requires more system resources.

4.2 Task state model

The following text describes the task states and the transitions between the states for both task
types.

A task must be able to change between several states, as the processor can only execute one
instruction of a task at any time, while several tasks may be competing for the processor at the
same time. The OSEK operating system is responsible for saving and restoring task context in
conjunction with task state transitions whenever necessary.

4.2.1 Extended tasks

Extended tasks have four task states:

running In the running state, the CPU is assigned to the task, so that its instructions
can be executed. Only one task can be in this state at any point in time,
while all the other states can be adopted simultaneously by several tasks.

OSEK OS 2.1 release candidate 1 © by OSEK 17

1

!

Specification 2.1 release candidate 1

OSEK/VDX ‘ Operating System

ready

waiting

suspended

All functional prerequisites for a transition into the running state exist, and
the task only waits for allocation of the processor. The scheduler decides
which ready task is executed next.

A task cannot continue execution because it has to wait for at least one event
(see chapter 6, Event mechanism).

In the suspended state the task is passive and can be activated.

terminate

suspended

preempt

release activate

Figure 4-1 Extended task state model

Transition |Former New Description
state state

activate suspended | ready A new task is set into the ready state by a system
service. The OSEK operating system ensures that the
execution of the task will start with the first
instruction.

start ready running A ready task selected by the scheduler is executed.

wait running waiting The transition into the waiting state is caused by a
system service. To be able to continue operation, the
waiting task requires an event.

release waiting ready At least one event has occurred which a task has
waited for.

preempt running ready The scheduler decides to start another task. The run-
ning task is put into the ready state.

terminate | running suspended | The running task causes its transition into the

suspended state by a system service.

Figure 4-2 States and status transitions for extended tasks

Termination of a task is only possible if the task terminates itself ("self-termination"). This
restriction reduces complexity of an operating system. There is no provision for a direct
transition from the suspended state into the waiting state. This transition is redundant and
would add to the complexity of the scheduler.

18

© by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

4.2.2 Basic tasks

The state model of basic tasks is nearly identical to the extended tasks state model. The only
exception is that basic tasks do not have a waiting state.
running In the running state, the CPU is assigned to the task, so that its instructions
can be executed. Only one task can be in this state at any point in time,
while all the other states can be adopted simultaneously by several tasks.

ready All functional prerequisites for a transition into the running state exist, and
the task only waits for allocation of the processor. The scheduler decides
which ready task is executed next.

suspended In the suspended state the task is passive and can be activated.

terminate

preempt suspended

activate

Figure 4-3 Basic task state model

Transition |Former New Description
state state
activate suspended |ready’ A new task is set into the ready state by a system

service. The OSEK operating system ensures that the
execution of the task will start with the first

instruction.
start ready running A ready task selected by the scheduler is executed.
preempt running ready The scheduler decides to start another task. The

running task is put into the ready state.

terminate | running suspended | The running task causes its transition into the
suspended state by a system service.

Figure 4-4 States and status transitions for basic tasks

4.2.3 Comparison of the task types

Basic tasks have no waiting state, and thus only comprise synchronisation points at the
beginning and the end of the task. Parts of application with internal synchronisation points,

3 Task activation will not immediately change the state of the task in case of multiple activation requests. If the
task is not suspended, the activation will only be recorded and performed later.

OSEK OS 2.1 release candidate 1 © by OSEK 19

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

have to be implemented by more than one basic tasks. An advantage of basic tasks is their
moderate requirement regarding run time context (RAM).

An advantage of extended tasks is that they can handle a coherent job in a single task, no
matter which synchronisation requests are active. Whenever current information for further
processing is missing, the extended task switches over into the waiting state. It exits this state
whenever corresponding events signal the receipt or the update of the desired data or events.
Extended tasks also comprise more synchronisation points than basic tasks.

4.3 Activating a task

Task activations are performed using the operating system services ActivateTask or
ChainTask. After activation the task is ready to execute from the first statement.

The OSEK operating system does not support C-like parameter passing when starting a task.
Those parameters should be passed by message communication (see “Messages”) or by global
variables.

Multiple requesting of task activation

Depending on the conformance class a basic task can be activated once or multiple times.
"Multiple requesting of task activation" means that the OSEK operating system receives and
records parallel activations of a basic task already activated.

The number of multiple requests in parallel is defined in a basic task specific attribute during
system generation. If the maximum number of multiple requests has not been reached, the
request is queued. The requests of basic task activations are queued per priority in activation
order.

4.4 Task switching mechanism

Unlike conventional sequential programming, the principle of multitasking allows the
operating system to execute various tasks concurrently. Therefore the scheduling policy has
clearly to be defined (see chapter 4.6, Scheduling policy).

The entity deciding which task has to be started and the triggering of all necessary OSEK
operating system internal activities is called scheduler. The scheduler is activated whenever a
task switch is possible according to the implemented scheduling policy. The scheduler can be
considered as a resource which can be occupied and released by tasks. Thus, a task can reserve
the scheduler to avoid a task switch until it is released. For further details, please refer to
chapter 7.3, Scheduler as a resource.

4.5 Task priority

The scheduler decides on the basis of the task priority (precedence) which is the next of the
ready tasks to be transferred into the running state.

The value 0 is defined as the lowest priority of a task. Accordingly bigger numbers define
higher priorities.

To enhance efficiency, a dynamic priority management is not supported. Accordingly the
priority of a task is defined statically, i.e. it cannot be changed by the user at the time of
execution. However, in particular cases the operating system can treat a task with a defined
higher priority. In this context, please refer to chapter 7.5, OSEK Priority Ceiling Protocol.

Tasks of identical priority are supported in the conformance classes BCC2 and ECC2, see
chapter 3.2, Conformance classes.

20 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Tasks on the same priority level are started depending on their order of activation according to
the FIFO mechanism, whereby extended tasks in the waiting state do not block the start of
subsequent tasks of identical priority.

A pre-empted task is considered to be the first task in the ready list of its current priority.

A task being released from the waiting state is treated like the newest task in the ready queue
of its priority.

Figure 4-5 shows an example implementation of the scheduler using FIFO queues for each
priority level. Several tasks of different priorities are in the ready state; i.e. three tasks of
priority 3, one of priority 2 and one of priority 1, plus two tasks of priority 0. The task which
has waited the longest time, depending on its order of requesting, is shown at the bottom of
each FIFO. The processor has just processed and terminated a task. The scheduler selects the
next task to be processed (priority 3, first FIFO location). Before priority 2 tasks can be
processed, all tasks of higher priority must have left the running and ready state, i.e. started
and then removed from the queue either due to termination or due to transition into waiting
state.

next task
to be processed
n| o 3 2 1 0
FIFO N =
queue]
XX [] [] e [| task
priority high A > low

scheduler

processor .

actually processed and
terminated task

Figure 4-5 Scheduler: order of events

The following fundamental steps are necessary to determine the next task to be processed:
o The scheduler searches for all tasks in the ready/running state.

. From the set of tasks in the ready/running state, the scheduler determines the set of
tasks with the highest priority.

o Within the set of tasks in the ready/running state and of highest priority, the scheduler
finds the oldest task.

4.6 Scheduling policy

4.6.1 Non pre-emptive scheduling

The scheduling policy is described as non pre-emptive, if task switching is only performed via
one of a selection of explicitly defined system services (explicit points of rescheduling).

OSEK OS 2.1 release candidate 1 © by OSEK 21

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Non pre-emptive scheduling imposes particular constraints on the possible timing require-
ments of tasks. Specifically the non pre-emptable section of a running task with lower priority
delays the start of a task with higher priority up to the next point of rescheduling.

In Figure 4-6, task T2 with the lower priority delays task T1 with higher priority up to the next
point of rescheduling (in this case termination of task T2).

activation of latency time for task T1
task T1 % /
\' -
Task T1 ’suspended ready running ‘
Task T2 ‘ running suspended ‘
termination of task T2

Figure 4-6 Non pre-emptive scheduling

Points of rescheduling

In the case of a non pre-emptive task, rescheduling will take place exactly in the following
cases:

o Successful termination of a task (system service TerminateTask, see chapter 12.2.3.2).

. Successful termination of a task with explicit activation of a successor task (system
service ChainTask, see chapter 12.2.3.3).

o Explicit call of scheduler (system service Schedule, see chapter 12.2.3.4).

. A transition into the waiting state takes place (system service WaitEvent, see chapter
12.5.3.4)".

Implementations of non pre-emptive systems may prescribe that operating system services
which cause rescheduling may only be called at the highest task program level (not in task
subfunctions). Consequently, a task switch at these points of scheduling only requires saving
minimum task context (no stack, only few registers e.g. program counter and/or processor
status).

4.6.2 Full pre-emptive scheduling

Full pre-emptive scheduling means that a task which is presently running may be rescheduled
at any instruction by the occurrence of trigger conditions pre-set by the operating system. Full
pre-emptive scheduling will put the running task into the ready state, as soon as a higher-
priority task has got ready. The task context is saved so that the pre-empted task can be
continued at the location where it was pre-empted.

With full pre-emptive scheduling the latency time is independent of the run time of lower
priority tasks. Certain restrictions are related to the increased (RAM-) memory space required
for saving the context, and the enhanced complexity of features necessary for synchronisation
between tasks. As each task can theoretically be rescheduled at any location, access to data
which are used jointly with other tasks must be synchronised.

* The call of WaitEvent does not lead to a waiting state if one of the events passed in the event mask to
WaitEvent is already set. In this case WaitEvent does not lead to a rescheduling.

22 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

In Figure 4-7, task T2 with the lower priority does not delay the scheduling of task T1 with
higher priority.

activation termination
of task T1 % 6\‘ of task T1
®
Task T1 ‘suspended | running suspended ‘
Task T2 [running ready running |

Figure 4-7 Full pre-emptive scheduling

In the case of a full pre-emptive system, the user must constantly expect pre-emption of the
running task. If a task fragment must not be pre-empted, this can be achieved by blocking the
scheduler temporarily via the system service GetResource.

Summarised, rescheduling is performed in all of the following cases:

. Successful termination of a task (system service TerminateTask, see chapter 12.2.3.2).

o Successful termination of a task with explicit activating of a successor task (system
service ChainTask, see chapter 12.2.3.3).

. Activating a task at task level (e.g. system service ActivateTask, see chapter 12.2.3.1,
message notification mechanism, alarm expiration, if task activation is defined, see
chapter 8.2).

o Explicit wait call, if a transition into the waiting state takes place (extended tasks only,
system service WaitEvent, see chapter 12.5.3.4).

. Setting an event to a waiting task at task level (e.g. system service SetEvent, see chapter
12.5.3.1, message notification mechanism, alarm expiration, if event setting defined, see
chapter 8.2).

. Release of resource at task level (system service ReleaseResource, see chapter 11.3.3.2)

. Return from interrupt level to task level
During interrupt service routines no rescheduling is performed (see figure 3-1).

To enable portable applications to be written in spite of the different scheduling policies, the
user can enforce a rescheduling via the system service Schedule at locations where he assumes
a correct assignment of the CPU.

4.6.3 Mixed pre-emptive scheduling

If full pre-emptive and non pre-emptive tasks are mixed on the same system, the resulting
policy is called "mixed pre-emptive" scheduling. In this case scheduling policy depends on
pre-emption properties of running task. If the running task is non pre-emptive, then non pre-
emptive scheduling is performed. If the running task is pre-emptive, then pre-emptive
scheduling is performed.

The definition of a non pre-emptive task makes sense in a full pre-emptive operating system,
o if the execution time of the task is in the same magnitude of the time of a task switch,
. if RAM is to be used economically to provide space for saving the task context, or

o if the task must not be pre-empted.

OSEK OS 2.1 release candidate 1 © by OSEK 23

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Many applications comprise only few parallel tasks with a long execution time, for which a
full pre-emptive operating system would be convenient, and many short tasks with a defined
execution time where non pre-emptive scheduling would be more efficient. For this configura-
tion, the mixed pre-emptive scheduling policy was developed as a compromise (see also the
design hint in chapter 13.2.4).

4.6.4 Selecting the scheduling policy

The software developer or the system integrator determines the task execution sequence by
configuring the task priorities and assigning the pre-emptibility as a task attribute.

We would like to point out expressly that the pre-emptibility of the system depends neither on
the conformance class, nor on the task type. Above all, a full pre-emptive system may there-
fore contain basic tasks, and a non pre-emptive system extended tasks.

If an operating system service is running, pre-emption and context switch might be delayed
until the completion of the service.

4.7 Termination of tasks
In the OSEK operating system, a task can only terminate itself ("self-termination").

The OSEK operating system provides the service ChainTask to ensure that a dedicated task
activation is performed just after the termination of the running task. Chaining itself puts the
task into the last element of the priority queue.

Each task has to terminate itself at the end of it’s code. Ending the task without a call to
TerminateTask or ChainTask is strictly forbidden!

4.8 Application modes

Application modes are designed to allow an OSEK operating system to come up under
different modes of operation. The minimum number of supported application modes is one. It
is intended only for modes of operation that are totally mutually exclusive. An example of two
exclusive modes of operation would be end-of-line programming and normal operation. Once
the operating system has been started, it is not allowed to change the application mode.

The characteristics of application modes are:
o start up performance

o support of exclusive applications

o supported by all conformance classes

Scope of application modes

Many ECUs may execute completely independent applications as e.g. factory test, Flash pro-
gramming or normal operation. The application mode is a means to structure the software
running in the ECU according to those different conditions. Typically each application mode
consists of an own set of tasks, ISRs and timing conditions, although there is no limitation to
having a task or ISR running in different modes. Sharing a task/ISR between different modes
is recommended if the same functionality is needed again, because checking the current
application mode inside the task/ISR at runtime is very inefficient.

Having system generation and optimisation in mind, application modes are helpful to reduce
the number of OS objects taken into consideration.

24 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Switching between application modes at runtime is not a strong request from applications. It
could be helpful e.g. if end-of-fabrication-test is designed as a separate mode. One reason why
mode switching at runtime is not allowed is that normally timing constrains have to be met
throughout the operation as for example the still-alive-protocol between main and supervisor
processors.

4.8.1 Start up performance

The start up performance is a safety critical issue for ECUs in automotive applications since
reset conditions may occur during normal operation. As a result the code used to determine
the application mode should be very quick. It is recommended that only pin states, or similarly
easy to assess conditions be used to determine the mode. The mode will be determined before
the kernel is started and the resulting code is non-portable. It is clear that a lengthy or
complicated starting procedure should be avoided.

4.8.2 Support of exclusive applications

Application modes allow independent development of totally separate systems.

For systems that are completely exclusive, this feature will allow a very clean mechanism for
independent system development.

4.8.3 Supported by all conformance classes

Because the overhead of mode detection 1s minimal, there 1s no reason to restrict the feature of
application modes to a subset of conformance classes. It is required for all classes. At start up,
the user code using no system services (see Figure 10-2), will determine the mode and pass it
as a parameter to the API-service StartOS. This will allow the operating system to load the
correct contexts, and other OS information to allow the execution of the correct applications.

There is no impact on the shutdown functionality.

OSEK OS 2.1 release candidate 1 © by OSEK 25

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

5 Interrupt processing

The functions for processing an interrupt (Interrupt Service Routine: ISR) are subdivided into
three ISR categories:

ISR category 1 The ISR does not use an operating system service. After the ISR is finished,
processing continues exactly at the instruction where the interrupt has
occurred, i.e. the interrupt has no influence on task management. ISRs of
this category have the least overhead.

ISR category 2 The OSEK operating system provides an ISR-frame to prepare a run-time
environment for a dedicated user routine. During system generation the user
routine is assigned to the interrupt. From the applications' point of view, this
category is the most comfortable one.

Within an interrupt service routine of category 2, usage of OSEK operating
system services is restricted according to Figure 5-2.

ISR category 3 Such ISRs can be used like category 1 ISRs. However, if the user needs to
call system services, he has first to call EnterISR. After EnterISR, the ISR
acts like an ISR of category 2. If EnterISR was called, a LeavelSR call is
needed to return from the ISR. This category is the most flexible one.

The services EnterISR and LeavelSR are provided as a part of the APL
Between EnterISR and LeavelSR restrictions on OSEK operating system
services are equal to category 2. Concerning the use of stack, registers and
local variables outside and between EnterISR and LeavelSR implementation
specific restrictions might apply. LeaveISR must be the last statement
executed in the ISR.

The implementation of ISR categories 1 and 2 is mandatory, whereas ISR category 3 is
optional.

Category 1 Category 2 Category 3

ISR(isr_name)

{ {

code without

code without any code with APl calls any API calls
APl calls
} EnterISR();
code with API
} calls
LeavelSR();

Figure 5-1 ISR categories of the OSEK operating system

Inside the ISR no rescheduling will take place. Rescheduling takes place on termination of the
ISR category 2 or 3 if a pre-emptive task has been interrupted and if no other interrupt is
active.

The implementation ensures that tasks are executed according to the OSEK scheduling points
(see chapter 4.6.2 Full pre-emptive scheduling). To achieve this the implementation may
prescribe restrictions concerning interrupt priority levels for ISRs of all categories and/or
perform checks at configuration time (see chapter 13.2.3.2, Nested interrupts of different
categories).

26 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

The maximum number of interrupt priorities depends on the controller used as well as on the
implementation. The scheduling of interrupts is hardware dependent and not specified in
OSEK. Interrupts are scheduled by hardware while tasks are scheduled by the scheduler.
Regarding the interrupt priority levels there may be restrictions as described in 13.2.3.2.
Interrupts can interrupt tasks (non and full pre-emptive tasks). If a task is activated from an
interrupt routine the task is scheduled after the end of all active interrupt routines.

In interrupt service routines the following services of the OSEK operating system can be used:

Service called by Task called by ISR category 2 and 3
ActivateTask allowed allowed
TerminateTask allowed -
ChainTask allowed -
Schedule allowed -
GetTaskID allowed allowed
GetTaskState allowed allowed
EnterISR - allowed”
LeaveISR - allowed’
Enablelnterrupt allowed allowed
Disablelnterrupt allowed allowed
GetInterruptDescriptor allowed allowed
DisableAllInterrupts allowed allowed
EnableAllInterrupts allowed allowed
SuspendOSInterrupts allowed allowed
ResumeOSInterrupts allowed allowed
GetResource allowed allowed
ReleaseResource allowed allowed
SetEvent allowed allowed
ClearEvent allowed -
GetEvent allowed allowed
WaitEvent allowed -
GetAlarmBase allowed allowed
GetAlarm allowed allowed
SetRelAlarm allowed allowed
SetAbsAlarm allowed allowed
CancelAlarm allowed allowed
GetActiveApplicationMode allowed allowed
StartOS -- --
ShutdownOS allowed allowed

Figure 5-2 API services allowed to be called by tasks and ISRs

> This service is allowed in ISR category 3 only.

OSEK OS 2.1 release candidate 1 © by OSEK 27

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Source related Disable/Enable interrupt API
Operating system services have been provided to enable and disable selected interrupt sources.

An interrupt source which has been disabled will stay disabled until it is re-enabled by the
application.

Hint: Due to normal scheduling algorithms, interrupts or higher priority tasks may delay the
time until an interrupt source is enabled. To keep the delay short, interrupts and tasks can be
blocked out using resource management.

Fast Disable/Enable API-functions

OSEK offers fast functions to disable all interrupts (see chapter 12.3.2.6, EnableAllInterrupts
and 12.3.2.7, DisableAlllnterrupts), and to disable all interrupts of category 2 and 3 (see
chapter 12.3.2.8, ResumeOSInterrupts and 12.3.2.9, SuspendOSInterrupts). Typical usage is
to protect short critical sections. Operating system service calls are not allowed between
disable and enable pairs. Exception: SuspendOSInterrupts and ResumeOSInterrupts are
allowed to be nested.

28 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

6 Event mechanism

The event mechanism
o is a means of synchronisation
. is only provided for extended tasks

o initiates state transitions of tasks to and from the waiting state.

Events are objects managed by the operating system. They are not independent objects, but
assigned to extended tasks. Each extended task has a definite number of events. This task is
called the owner of these events. An individual event is identified by its owner and its name
(or mask). When activating an extended task, these events are cleared by the operating system.
Events can be used to communicate binary information to the extended task to which they are
assigned. The meaning of events is defined by the application, e.g. signalling of an expiring
timer, the availability of a resource, the reception of a message, etc.

Various options are available to manipulate events, depending on whether the dedicated task
is the owner of the event or another task which does not necessarily have to be an extended
task. All tasks can set any events of any extended task. Only the owner is able to clear its
events and to wait for the reception (= setting) of its events.

Events are the criteria for the transition of extended tasks from the waiting state into the ready
state. The operating system provides services for setting, clearing and interrogation of events,
and for waiting for events to occur.

Any task or ISR can set an event for an extended task, and thus inform the extended task
about any status change via this event.

The receiver of an event is an extended task in any case. Consequently, it is not possible for an
interrupt service routine or a basic task to wait for an event. An event can only be cleared by
the task which is the owner of the event. Extended tasks may only clear events they own,
whereas basic tasks must not use the operating system service for clearing events.

An extended task in the waiting state is released to the ready state if at least one event for
which the task is waiting has occurred. If a running extended task tries to wait for an event
and this event has already occurred, the task remains in the running state.

OSEK OS 2.1 release candidate 1 © by OSEK 29

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Figure 6-1 explains synchronisation of extended tasks by setting events in case of full pre-
emptive scheduling, where extended task T1 has the higher priority.

s cheduler

A |
\
/

t
event of | se | < \
extended task T1 £€4r cear
/ 2 j /
7

extended task T1 ‘waiting k L ﬁ running Tclear event | wait for ever{{] waiting ‘

extended task T2‘ running set event 7 ready 31 running ‘

Figure 6-1 Full pre-emptive synchronisation of extended tasks

Figure 6-1 illustrates the procedures which are effected by setting an event: Task T1 waits for
an event. Task T2 sets this event for T1. The scheduler is activated. Subsequently, T1 is
transferred from the waiting state into the ready state. Due to the higher priority of T1 this
results in a task switch, T2 being pre-empted by T1. T1 resets the event. Thereafter T1 waits
for this event again and the scheduler continues execution of T2.

If non pre-emptive scheduling is supposed, rescheduling does not take place immediately after
the event has been set (see Figure 6-2, where extended task T1 is of higher priority)

scheduler ﬂ

t of set
event o
extended task T1-4%" // >C|ear) /
/
extended task T1 ‘ waiting \ y read;f 54] running wait for eventlr waiting ‘
]
extended task TZ‘ running set event rescheduling] ready *running‘

Figure 6-2 Non pre-emptive synchronisation of extended tasks

30 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

7 Resource management

The resource management is used to co-ordinate concurrent accesses of several tasks with
different priorities to shared resources, e.g. management entities (scheduler), program
sequences, memory or hardware areas.

The resource management is mandatory for all conformance classes.

The resource management can optionally be extended to co-ordinate concurrent accesses of
tasks and interrupt routines.

Resource management ensures that

o two tasks cannot occupy the same resource at the same time.

. priority inversion can not occur.

o deadlocks do not occur by use of these resources.

o access to resources never results in a waiting state.

If the resource management is extended to the interrupt level it assures in addition that
. two tasks or interrupt routines cannot occupy the same resource at the same time.

The functionality of resource management is only required in the following cases:
o full pre-emptive tasks

. non pre-emptive tasks, if resources are also to remain occupied beyond a scheduling
point

o non pre-emptive tasks, if the user intends to have the application code executed under
other scheduling policies, too

. resource sharing between tasks and interrupt service routines

o resource sharing between interrupt service routines

If the user requires protection against interruptions not only caused by tasks, but also caused
by interrupts, he can also use the operating system services to set and reset interrupt masks.
Resetting interrupt masks does not cause rescheduling. (See chapter 5, Interrupt processing,
and chapter 12.3, Interrupt handling).

7.1 Behaviour during access to occupied resources

OSEK OS prescribes the OSEK priority ceiling protocol (see chapter 7.5) Consequently, no
situation occurs in which a task or an interrupt tries to access an occupied resource.

If the resource concept is used for task- and interrupt-coordination the OSEK operating system
ensures also that an interrupt service routine is only processed if all resources which might be
occupied by that interrupt service routine during its execution have been released.

Additionally, OSEK strictly forbids nested access to the same resource!

7.2 Restrictions when using resources

Neither TerminateTask, ChainTask nor WaitEvent must be called while a resource is
occupied. Interrupt service routine must not be completed with a resource occupied.

In case of multiple resource occupation within one task, the user has to request and release
resources following the LIFO principle (stack).

OSEK OS 2.1 release candidate 1 © by OSEK 31

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

7.3 Scheduler as a resource

If a task has to protect itself against pre-emptions by other tasks, it can lock the scheduler. The
scheduler is treated like a resource which is accessible to all tasks. Therefore a resource with a
predefined name RES SCHEDULER is generated.

Interrupts are received and processed independent of the state of the resource scheduler.
However, it prevents the rescheduling of tasks.

7.4 General problems with synchronisation mechanisms

7.4.1 Explanation of priority inversion

A typical problem of common synchronisation mechanisms - e.g. the use of semaphores - is
the problem relating to priority inversion.

This means that a lower-priority task delays the execution of higher-priority task. One solution
to avoid priority inversion is to use the OSEK Priority Ceiling Protocol (see chapter 7.5).

Figure 7-1 illustrates sequencing of the common access of two tasks to a semaphore (in a full
pre-emptive system, task T1 has the highest priority)

Task T4 which has a low priority, occupies the semaphore S1. T1 pre-empts T4 and requests
the same semaphore. As the semaphore S1 is already occupied, T1 enters the waiting state.
Now the low-priority T4 is interrupted and pre-empted by tasks with a priority between those
of T1 and T4. T1 can only be executed after all lower-priority tasks have been terminated, and
the semaphore S1 has been released again. Although T2 and T3 do not use semaphore S1,
they delay T1 with their runtime.

a& ‘access to semaphore S1 denied
@

I
task T1 |Suspended| lirunning waiting running
task T2 |suspended| ready running suspended
task T3 |suspended| ready running suspended
runnin read) runnin read
task T4 9; y g ly
semaphore S1 occupied semaphore S1 released

Figure 7-1 Priority inversion on occupying semaphores

32 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

7.4.2 Deadlocks

Another typical problem of common synchronisation mechanisms, such as the use of sema-
phores, is the problem of deadlocks. In this case deadlock means the impossibility of task
execution due to infinite waiting for mutually locked resources.

The following scenario results in a deadlock (see Figure 7-2):

Task T1 occupies the semaphore S1 and subsequently cannot continue running, e.g. because it
is waiting for an event. Thus, the lower-priority task T2 is transferred into the running state. It
occupies the semaphore S2. If T1 gets ready again and tries to occupy semaphore S2, it enters
the waiting state again. If now T2 tries to occupy semaphore S1, this results in a deadlock.

access to e.g wait event access to semaphore S 2
semaphore S1 farevent happened denied
o
- .t. ‘v - .t.
taSk T1 running waiting running waiting ‘
Deadlock!
task T2 ready | running ready running waiting ‘
access to access to
semaphore S2 semaphore S1 denied

Figure 7-2 Deadlock situation using semaphores

7.5 OSEK Priority Ceiling Protocol

To avoid the problems of priority inversion and deadlocks the OSEK operating system
requires following behaviour:

e At the system generation, to each resource its own ceiling priority will be assigned.
The ceiling priority will be set at least to the highest priority of all tasks that access a
resource. The ceiling priority must be lower than the lowest priority of all tasks that do not
access the resource, and which have priorities higher than the highest priority of all tasks
that access the resource.

e [fa task requires a resource, and its current priority is lower than the ceiling priority of the
resource, the priority of the task will be raised to the ceiling priority of the resource.

e [f the task releases the resource, the priority of this task will be reset to the priority before
requiring that resource.

Priority ceiling results in a possible time delay for tasks with priorities equal or below the
resource priority. This delay is limited by the maximum time the resource is occupied by any
lower priority task.

Tasks which might occupy the same resource as the running task do not enter the running
state, due to their lower or equal priority than the running task. If a resource occupied by a
task is released, other task which might occupy the resource can enter the running state. For
pre-emptive tasks this is a point of rescheduling.

OSEK OS 2.1 release candidate 1 © by OSEK 33

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

task TO| suspended | ynping suspended

relegse resource ;elease resource

ceili ng runnin d) rzjnnin lé
priority If g ready | |\ inning
I
task T1 suspe:%ded ready :I'I)rming running suspended
\ i \

task T2 suspenbé{l / ready\ running suspended

X 7)
task T3 suspended) (ready\ running

7 X \
task T4 |[running \ \ ready running|

\requeSt resource \requeSt resource

Figure 7-3 Resource assignment with priority ceiling between pre-emptive tasks.

The example shown in Figure 7-3 illustrates the mechanism of the priority ceiling. Task TO
has the highest, and task T4 the lowest priority. Both access the same resource. The system
shows clearly that no priority inversion is entailed. The high-priority task T1 waits for a
shorter time than the maximum duration of resource occupation by T4.

7.6 OSEK Priority Ceiling Protocol with extensions for interrupt
levels

The extension of resource management to interrupt level is optional.

To determine the ceiling priority of resources which are used in interrupts, virtual priorities
higher than all tasks priorities are assigned to interrupts. The calculated ceiling priority means
for a resource which is only occupied by tasks a different handling than for a resource
occupied by tasks and interrupt routines. The manipulation of software priorities and of
hardware interrupt levels is up to the implementation.

e At the system generation, to each resource its own ceiling priority will be assigned.
The ceiling priority will be set at least to the highest priority of all tasks and interrupt
routines that access a resource. The ceiling priority must be lower than the lowest priority
of all tasks or interrupt routines that do not access the resource, and which have at the
same time higher priorities than the highest priority of all tasks or interrupt routines that
access the resource.

e [f a task or interrupt routine requires a resource, and its current priority is lower than the
ceiling priority of the resource, the priority of the task or interrupt will be raised to the
ceiling priority of the resource.

e [f the task or interrupt routine releases the resource, the priority of this task or interrupt
will be reset to the priority before requiring that resource.

Tasks or interrupt routines which might occupy the same resource as the running task or
interrupt routine has occupied do not run , due to their lower or equal priority than the running
task or interrupt routine. If a resource occupied by a task is released, another task or interrupt
routines which might occupy the resource could run. For pre-emptive tasks this is a point of
rescheduling.

34 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

interrupt occurs

isrINT2 execution

release resource

ceiling runnin ready
priority /1 & \\
isr INT1 / A pending A(ecution
interrupt occurs
task T3 suspendes\ read)/ running| suspended
]
]
task T2 suspended/ reaa'y runningI suspended
// \
: P :
task T1 [running ready running|

\request resource

Figure 7-4 Resource assignment with priority ceiling between pre-emptive tasks and
interrupt services routines.

The example shown in figure 7-4 describes the following scenario:

The pre-emptive task T1 is running and requests a resource shared with the interrupt service
routine INT1. The task T1 activates the higher prior tasks T2 and T3. Because of OSEK
Priority Ceiling Protocol the task T1 is still running. Interrupt INT1 occurs. Because of OSEK
Priority Ceiling Protocol the task T1 is still running, the interrupt INT1 is pending. Interrupt
INT2 occurs. The interrupt service routine INT2 interrupts the task T1 and it is executed.
After INT2 is done the task T1 is continued. The task T1 releases the resource. The interrupt
service routine INT1 is executed, the task T1 is ready. After INT1 is done the Task3 is
running. After termination of task T3 the task T2 is running. After termination of task T2 the
task T1 is continued.

The example below shown in figure 7-5 describes the following scenario:

The pre-emptive task T1 is running. The interrupt INT1 occurs. The interrupt service routine
INT1 is executed and the task T1 becomes ready. The INT1 requests a resource shared with
the interrupt service routine INT2. The higher prior interrupt INT2 occurs. Because of OSEK
Priority Ceiling Protocol the INT1 is still executed, the INT2 is pending. The interrupt INT3
occurs. Because of higher priority than the INT1, the INT3 interrupts this interrupt service
routine and is executed. The INT3 activates the task T2. After the INT3 is done the INT1 is
continued. After the INTI releases the requested resource the INT2 is executed because of
higher priority than the INT1. After the INT2 is done the INT1 is continued. After the INTI is
done the task T2 is running because of higher priority than the task T1, the task T1 is ready.
After the task T2 is terminated the task T1 is continued.

OSEK OS 2.1 release candidate 1 © by OSEK 35

OSEK/VDX ‘

Operating System

Specification 2.1 release candidate 1

interrupt occurs

. Y
isrINT3 execution
release resource
ceiling .
priority f execution |interrupted
interrupt occurs)

isrINT2 \\ pending execution

y |
isrINT1 /‘ execution: hN interrupted
task T2 suspended ready running | suspended
task T1 [running ready running

Figure 7-5 Resource assignment with priority ceiling between interrupt services

routines

36

© by OSEK

OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

8 Alarms

The OSEK operating system provides services for processing recurring events. Such events
may be for example timers which provide an interrupt at regular intervals, or encoders at axles
which generate an interrupt in case of a constant change of a (camshaft or crankshaft) angle,
or other regular application specific triggers.

The OSEK operating system provides a two-stage concept to process such events. The
recurring events (sources) are registered by implementation specific counters. Based on
counters, the OSEK operating system software offers alarm mechanisms to the application
software.

8.1 Counters

A counter is represented by a counter value, measured in “’ticks”, and some counter specific
constants.

The OSEK operating system does not provide a standardised API to manipulate counters
directly.

The OSEK operating system takes care of the necessary actions of managing alarms when a
counter is advanced and how the counter is advanced.

The OSEK operating system offers at least one counter which is derived from a (hardware or
software) timer. The user can assume the existence of this counter.

8.2 Alarm management

The OSEK operating system provides services to activate tasks or set events when an alarm
expires. An alarm will expire when a predefined counter value is reached. This counter value
can be defined relative to the actual counter value (relative alarm)or as an absolute value
(absolute alarm). Alarms can be defined to be either single alarms or cyclic alarms. Alarms
may be for example the receipt of a number of timer interrupts, a specific angular position, or
receiving a message. In addition the OS provides services to cancel alarms and to get the
current state of an alarm.

More than one alarm can be attached to a counter.

An alarm is statically assigned at system generation time to:
o one counter
o one task

Depending on configuration this task will be activated, or an event will be set for this task
when the alarm expires. Task activation and event setting when an alarm expires have the
same properties as normal task activation and event setting.

OSEK OS 2.1 release candidate 1 © by OSEK 37

Specification 2.1 release candidate 1

-1 OSEK/VDX ‘ Operating System

source for counter

implementation counter
OS internal

=)

Figure 8-1 Layered model of alarm management
Counters and alarms are defined statically. The assignment of alarms to counters, as well as
the action to be performed when an alarm expires, are defined statically, too.

Dynamic parameters are the counter value when an alarm has to expire, and the period for
cyclic alarms.

38 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

9 Messages

The message handling for intra processor communication will be added to the OS
specification. Full message handling is described in the OSEK COM specification.

The exact subset to be implemented is yet to be defined.

OSEK OS 2.1 release candidate 1 © by OSEK

39

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

10 Error handling, tracing and debugging

10.1 Hook routines

The OSEK operating system provides system specific hook routines to allow user-defined
actions within the OS internal processing. The first parameter is fixed for all implementations
of OSEK operating systems, additional parameters are optional and implementation
dependent.

Those hook routines are

. called by the operating system, in a special context depending on the implementation of
the operating system

o higher prior than all tasks

. not interrupted by category 2 and 3 interrupt routines

o using an implementation dependent calling interface.

. part of the operating system

o implemented by the user with user defined functionality

. standardised in interface per OSEK OS implementation, but not standardised in
functionality (environment and behaviour of the hook routine itself), therefore usually
hook routines are not portable

o are only allowed to use a subset of API functions
. optional (the implementation should omit calls to hook routines which do not exist)

In the OSEK operating system hook routines may be used for:

o system start-up (see chapter 10.3, System start-up).
The corresponding hook routine (StartupHook) is called after the operating system start-
up and before the scheduler is running.

. system shutdown (see chapter 10.4, System shutdown).
The corresponding hook routine (ShutdownHook) is called when a system shutdown is
requested by the application or by the operating system in case of a severe error.

o tracing or application dependent debugging purposes as well as user defined extensions
of the context switch (see chapter 10.5, Debugging).

. error handling.

Each implementation of OSEK has to describe the interfaces and conventions for the hook
routines.

If the application calls a not allowed API service in hook routines the behaviour is not
defined. If an error is raised, the implementation should return an implementation specific
error code.

40 © by OSEK OSEK OS 2.1 release candidate 1

OSEK/VDX ‘

Operating System

Specification 2.1 release candidate 1

Service

Error
Hook

PreTask
Hook

PostTask
Hook

Startup
Hook

Shutdown
Hook

ActivateTask

allowed

TerminateTask

ChainTask

Schedule

GetTaskID

allowed6

allowed

allowed

GetTaskState

allowed

allowed

allowed

EnterISR

LeavelSR

Enablelnterrupt

Disablelnterrupt

GetInterruptDescriptor

DisableAllInterrupts

EnableAllInterrupts

SuspendOSInterrupts

ResumeOSInterrupts

GetResource

ReleaseResource

SetEvent

ClearEvent

GetEvent

allowed

allowed

allowed

WaitEvent

GetAlarmBase

allowed

allowed

allowed

GetAlarm

allowed

allowed

allowed

SetRelAlarm

SetAbsAlarm

CancelAlarm

GetActiveApplicationMode

allowed

allowed

allowed

allowed

allowed

StartOS

ShutdownOS

allowed

allowed

Figure 10-1

Most operating system services are not allowed for hook routines. This restriction is necessary

to reduce system complexity.

10.2 Error handling

API services for hook routines

An error service is provided to handle temporarily and permanently occurring errors within
the OSEK operating system. Its basic framework is predefined and has to be completed by the
user. This gives the user a choice of efficient centralised or decentralised error handling.

61t may happen that currently no task is running. In this case the service returns the task ID INVALID TASK (see
chapter 12.2.3.5 GetTaskID).

OSEK OS 2.1 release candidate 1 © by OSEK 41

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Two different kinds of errors are distinguished:

. Application errors
The operating system could not execute the requested service correctly, but assumes the
correctness of its internal data.
In this case, centralised error treatment is called. Additionally the operating system
returns the error by the status information for decentralised error treatment. It is up to
the user to decide what to do depending on which error has occured.

. Fatal errors
The operating system can no longer assume correctness of its internal data.
In this case the operating system calls the centralised system shutdown.

All those error services are assigned with a parameter that specifies the error.

The return value of the OSEK API-services has precedence over the output parameters. If an
API service returns an error, the values of the output parameters are undefined.

The corresponding hook routine (ErrorHook) is called if a system service returns a StatusType
value not equal to E_ OK. The hook routine ErrorHook is not called if a system service is
called from the ErrorHook itself (i.e., a recursive call of error hook never occurs). Any
possibly occuring error by calling system services from the ErrorHook can only be detected
by evaluating the return value.

ErrorHook also is called if an error is detected during task activation or event setting, for
example upon alarm expiration or message arrival.

If a task is activated in the version with standard status, only "E_OK" is returned. Moreover,
in a version with extended status, the additional return values "Task is invalid" or "Too many
task activations", etc. can be returned. These extended return values must no longer occur in
the target application at the time of execution, i.e. the corresponding errors are not intercepted
in the run time version of the operating system.

10.3 System start-up

Initialisation after a processor reset is up to the implementation, but OSEK OS offers support
for a standardised way of initialisation.

Interfaces for initialisation of hardware, operating system and application have to be clearly
defined by the implementation.

OSEK OS does not force the application to define special tasks which have to be started after
the operating system initialisation, but it allows the user to specify autostart-tasks during
system generation.

After a reset of the CPU, hardware-specific application software is executed (no operating
system context). The non-portable section ends with the detection of the application mode.
For safety reasons this detection should not rely on system history.

The portable section of the application starts with the call to a function which starts up the
operating system, i.e. StartOS with the application mode as a parameter. After the operating
system is initialised (scheduler is not running), it calls the hook routine StartupHook, where
the user can place the initialisation code for all his operating system dependent initialisation.
In order to structure the initialisation code in StartupHook according to the started application
mode, the service GetActiveApplicationMode is provided. After the return from that hook
routine the operating systems enables the interrupts according to the

42 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

INITIAL INTERRUPT DESCRIPTOR’, and starts the scheduler. After that the system is
running and executes user tasks.

(Re-)Start

N

hardware-specific | call to o 22§:ezu§2m OS executes | OS kernel ﬂ::tsﬁsi:r
initialization code | Startos | 2PSfaiNg Sy StartupHook | is running .
initialization code running

® @ ® w6

During StartupHook
all user interrupts are disabled

Figure 10-2 System start-up

(1) After a reset, the user is free to execute (non-portable) hardware specific code. Interrupts
of category 2 and 3 are not allowed to run until the phase 5. The non-portable section ends
by detection of the application mode.

(2) Call StartOS with the application mode as a parameter. This call starts the operating
system.

(3) The operating system performs internal start-up functions and

(4) calls the hook routine StartupHook, where the user may place initialisation procedures.
During this hook routine, all user interrupts are disabled.

(5) The operating system enables user interrupts according to the
INITIAL INTERRUPT DESCRIPTOR, and starts the scheduling activity. The
INITIAL INTERRUPT DESCRIPTOR is statically assigned by the user.

10.4 System shutdown
The OSEK OS specification defines a service to shut down the operating system, ShutdownOS
This service can be requested by the application or by the operating system due to a fatal error.

When ShutdownOS is called the operating system will call the hook routine ShutdownHook
and shut down afterwards.

The user is free to define any system behaviour in ShutdownHook e.g. not to return from the
routine. (See chapter 12.7.2.3, ShutdownOS).

7 The value of the INIT. TAL INTERRUPT DESCRIPTOR is defined by the user or by the implementation.

OSEK OS 2.1 release candidate 1 © by OSEK 43

D-ﬂ O SEK/VDX Operating System
Specification 2.1 release candidate 1

!

10.5 Debugging

Two hook routines (PreTaskHook and PostTaskHook) are called on task context switches.

These two hook routines may be used for debugging or time measurement (including context
switch time). Therefore PostTaskHook is called after leaving the context of the old task,

PreTaskHook is called before entering the context of a new task.

PostTask | OS internal PreTask
<Hook activities Hook j

task T1 |running) suspended
7
task T2 ready \; running

Figure 10-3 PreTaskHook and PostTaskHook

When ShutdownOS is called while a task is running ShutdownOS may or may not call
PostTaskHook. If PostTaskHook is called it is undefined if it is called before or after

ShutdownHook.

44 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

11 Description of system services

11.1 Definition of system objects

Within the OSEK operating system all system objects have to be determined statically by the
user. The definition of the operating system objects is provided by the operating system
supplier. The actual creation of the objects (unique names and specific characteristics) is done
during the system generation phase. The declarations done in the application source are
external references to those operating system objects. There are no system services available
to dynamically create system objects. Declarations provide information that a system object is
to be used which has been created at another location. The names are used as identifications
within the system services.

Usually the scope of those names is like an external variable in C-language.

The creation of system objects within the source should be considered as an exception, due to
loss of portability.

Internal representation of system objects is implementation specific. There are various
alternatives for implementation of system objects. For example, a TaskType could be
implemented either as a pointer to the data structure of the task or as an index to the
corresponding list element. Application programmers cannot assume a specific representation.

The creation of system objects may require additional tools. They enable the user to add or to

modify values which have been specified in definitions. Consequently, the system generation
and the tools used to this effect are also implementation-specific.

11.2 Conventions

11.2.1 Type of calls

The system service interface is ISO/ANSI-C. Its implementation is normally a function call,
but may also be solved differently, as required by the implementation - for example by macros
of the C pre-processor. A specific type of implementation cannot be assumed.

11.2.2 Legitimacy of calls

System services are called from tasks, interrupt service routines, and hook routines.
Depending on the system service, there may be restrictions regarding the availability. Further
restrictions are imposed by the conformance classes.

11.2.3 Error characteristics

To keep the system efficient and fast, the OSEK operating system does not test all errors. If
the application uses operating system services incorrectly, undefined system behaviour may
result.

Most system services return a status to the user. The return status is E_ OK if it was possible to
execute the system service without any restrictions. If the system recognises an exceptional
condition which restricts execution of the system service, a different status is returned.

A status other than E OK may be information which is not considered to be an error
("warning"). An example is the return status of the system service CancelAlarm, which
informs that the alarm to be cancelled has already expired. A user program is thus informed

OSEK OS 2.1 release candidate 1 © by OSEK 45

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

that e.g. a task activation has taken place which was not wanted. The detection of mild errors
(warnings) is part of the system services.

If it is possible to exclude errors before run time, the run time version may omit checking of
these errors. If the only possible return status is E_ OK, the implementation is free not to return
a status.

All return values of a system service are listed under the individual descriptions. The return
status distinguishes between the “standard” and “extended” status. The “standard” version
fulfils the requirements of a debugged application system as described before. The "extended"
version is considered to support testing of not yet fully debugged applications. It comprises
extended error checking compared to the standard version.

The sequence of error checking within the operating system is not specified. Whenever
multiple errors occur, it is implementation dependent which status is returned to the
application.

In case of application errors, the OSEK operating system will call the hook routine ErrorHook
if defined. The purpose of ErrorHook is to treat status information centralised.

In case of fatal errors, the system service does not return to the application, but activates
ShutdownOS. An example is a non-detected incorrect parameter of a system service which
generates an inconsistency in the system. The parameter passed to ShutdownOS is an
implementation dependent system error code. System error codes occupy a range of numbers
of their own and do not conflict with the states of the operating system services.

The functionality of ShutdownOS is implementation-specific. Possible implementations are to
stop the application or to issue an assertion. The application itself can access ShutdownOS to
shut down the operating system in a controlled fashion.

Calling of ShutdownOS is also recommended when processing non-assignable errors, for
example "illegal instruction code". This is not required because this must be supported by the
hardware, which cannot be taken for granted.

46 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

12 Specification of operating system services

Structure of the description

Operating system services are arranged in logical groups. A coherent description is provided
for all services of the task management, the interrupt management, etc.

The description of each logical group starts with data type definitions. A description of the
group-specific constructional elements and system services follows. The last items are a
description of constants, and of any additional conventions.

Constructional elements

The description of constructional elements contains the following fields:

Syntax: Interface in C-like syntax.

Parameter (In): List of all input parameters.

Description: Explanation of the constructional element.

Particularities: Explanation of restrictions relating to the utilisation.
Conformance: Specifies the conformance classes where the constructional

element is provided.
Service description

A service description contains the following fields:

Syntax: Interface in C-like syntax.

Parameter (In): List of all input parameters.

Parameter (Out): List of all output parameters.

Description: Explanation of the functionality of the operating system service.

Particularities: Explanation of restrictions relating to the utilisation of the op-
erating system service.

Status: List of possible return values.

Standard: e List of return values provided in the operating system's stan-
dard version. Special case: Service does not return.

Extended: e List of additional return values in the operating system's ex-
tended version.

Conformance: Specifies the conformance classes where the operating system
service is provided.

The specification of operating system services uses the following naming conventions for data
types:
... Type: describes the values of individual data (including pointers).

...RefType: describes a pointer to the ... Type (for call by reference).

12.1 Common datatypes

StatusType

This data type is used for all status information the API services offer. Naming convention: all
errors for API services start with E . Those reserved for the operating system will begin with
E OS .

OSEK OS 2.1 release candidate 1 © by OSEK 47

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

The normal return value is E_ OK which is associated with the value 0.
The following error values are defined:

All errors of API services:

e E OS ACCESS =1,
e E OS CALLEVEL =2,
e EOSID =3,
e E OS LIMIT =4,
e E 0S NOFUNC =5,
e E OS RESOURCE =6,
e E OS STATE =17,
e E OS VALUE =3

If the only possible return status is E_ OK, the implementation is free not to return a status,
this is not separately stated in the description of the individual services.

Internal errors of the operating system:

These errors are implementation specific and not part of the portable section. The error names
reside in the same name-space as the errors for API services mentioned above, i.e. the range of
numbers must not overlap.

To show the difference in use, the names internal errors must start with E OS _SYS
Examples:

o E OS SYS STACK

o E OS SYS PARITY

o ... and other implementation-specific errors, which have to be described in the vendor-
specific document.

The names and range of numbers of the internal errors of the OSEK operating system do not
overlap the names and range of numbers of other OSEK services (i.e. communication and
network management) or the range of numbers of the API error values.

12.2 Task management

12.2.1 Data types

TaskType
This data type identifies a task.

TaskRefType
This data type points to a variable of TaskType.

TaskStateType
This data type identifies the state of a task.

TaskStateRefType
This data type points to a variable of the data type TaskStateType.

48 © by OSEK OSEK OS 2.1 release candidate 1

1

!

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

12.2.2 Constructional elements

12.2.2.1 DeclareTask

Syntax:
Parameter (In):

Description:

Particularities:
Conformance:

DeclareTask (Taskldentifier)

Task identifier (C-identifier)
DeclareTask serves as an external declaration of a task. The

function and use of this service are similar to that of the exter-
nal declaration of variables.

BCC1, BCC2, ECC1, ECC2

12.2.3 System services

12.2.3.1 ActivateTask

Syntax:

Parameter (In):
TaskID

Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

StatusType ActivateTask (TaskType <TaskID>)

Task reference
none

The task <TaskID> is transferred from the suspended state into
the ready state®. The operating system ensures that the task
code is being executed from the first statement.

The service may be called from interrupt level, from task level
and the hook routine StartupHook (see Figure 10-1).

Rescheduling after the call to ActivateTask depends on the
place it is called from (ISR, non-preemptive task, preemptive
task).

If E_OS_LIMIT is returned the activation is ignored.

When an extended task is transferred from suspended state
into ready state all its events are cleared.

No error, E_OK

Task <TasklID> is invalid, E_OS_ID
Too many task activations of <TasklD>, E_OS_LIMIT
BCC1, BCC2, ECC1, ECC2

12.2.3.2 TerminateTask

Syntax:
Parameter (In):
Parameter (Out):
Description:

StatusType TerminateTask (void)
none
none

This service causes the termination of the calling task. The
calling task is transferred from the running state into the
suspended state®.

¥ ActivateTask will not immediately change the state of the task in case of multiple activation requests. If the task
is not suspended, the activation will only be recorded and performed later.

OSEK OS 2.1 release candidate 1 © by OSEK 49

Specification 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

Particularities: The resources occupied by the task must have been released
before the call to TerminateTask. If the resource is still
occupied in standard status the behaviour is undefined.

If the call was successful, Terminate Task does not return to the
call level and the status can not be evaluated.

If the version with extended status is used, the service returns
in case of error, and provides a status which can be evaluated
in the application.
If the service TerminateTask is called successfully, it enforces a
rescheduling.
Ending a task function without call to TerminateTask or
ChainTask is strictly forbidden and may leave the system in an
undefined state.

Status:

Standard: No return to call level

Extended: e Task still occupies resources, E. OS RESOURCE
e Call atinterrupt level, E_OS_CALLEVEL

Conformance: BCC1, BCC2, ECC1, ECC2
12.2.3.3 ChainTask
Syntax: StatusType ChainTask (TaskType <TaskID>)
Parameter (In):
TaskID Reference to the sequential succeeding task to be activated.
Parameter (Out): none
Description: This service causes the termination of the calling task. After

termination of the calling task a succeeding task <TaskID> is
activated. Using this service, it ensures that the succeeding
task starts to run at the earliest after the calling task has been
terminated.

Particularities: If the succeeding task is identical with the current task, this
does not result in multiple requests. The task is not transfered
to the suspended state.

The resources occupied by the calling task must have been
released before ChainTask is called. If the resource is still
occupied in standard status the behaviour is undefined.

If called successfully, ChainTask does not return to the call
level and the status can not be evaluated.

If the version with extended status is used, the service returns
in case of error to the calling task, and provides a status which
can then be evaluated in the application.

If the service ChainTask is called successfully, this enforces a
rescheduling.

? In case of tasks with multiple activation requests, terminating the current instance of the task automatically puts
the next instance of the same task into the ready state.

50 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

Status:
Standard:
Extended:

Conformance:

12.2.3.4 Schedule
Syntax:

Parameter (In):
Parameter (Out):
Description:

Particularities:

Status:
Standard: e
Extended: e
Conformance:

12.2.3.5 GetTaskID

Syntax:
Parameter (In):

Parameter (Out):
TaskID

Description:

Particularities:

Status:
Standard: .

Ending a task function without call to TerminateTask or
ChainTask is strictly forbidden and may leave the system in an
undefined state.

If E_OS_LIMIT is returned the activation is ignored.

When an extended task is transferred from suspended state
into ready state all its events are cleared.

No return to call level

Task <TasklID> is invalid, E_OS_ID

Too many task activations of <TasklD>, E_OS_LIMIT
Calling task still occupies resources, E_OS_RESOURCE
Call at interrupt level, E_OS _CALLEVEL

BCC1, BCC2, ECC1, ECC2

StatusType Schedule (void)
none
none

If a higher-priority task is ready, the current task is put into the
ready state, its context is saved and the higher-priority task is
executed. Otherwise the calling task is continued.

In non pre-emptive tasks Schedule enables a processor
assignment to other tasks in application-specific locations.

This service has no influence on full pre-emptive tasks.

No error, E_OK
Call at interrupt level, E_OS _CALLEVEL
BCC1, BCC2, ECC1, ECC2

StatusType GetTaskID (TaskRefType <TaskID>)
none

Reference to the task which is currently running

GetTasklID returns the information about the TaskID of the task
which is currently running.

Allowed on task level, ISR level and in several hook routines
(see Figure 10-1).

This service is intended to be used by library functions and
hook routines.

If <TaskID> can’t be evaluated (no task currently running), the
service returns INVALID_TASK as TaskType.

No error, E_OK

OSEK OS 2.1 release candidate 1 © by OSEK 51

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Extended: e No error, E_OK
Conformance: BCC1, BCC2, ECC1, ECC2

12.2.3.6 GetTaskState

Syntax: StatusType GetTaskState (TaskType <TasklID>,
TaskStateRefType <State>)

Parameter (In):

TaskID Task reference
Parameter (Out):
State Reference to the state of the task <TaskID>
Description: Returns the state of a task (running, ready, waiting, suspended)
at the time of calling GetTaskState.
Particularities: The service may be called from interrupt service routines, task

level, and some hook routines (see Figure 10-1).

Within a full pre-emptive system, calling this operating system
service only provides a meaningful result if the task runs in an
interrupt disabling state at the time of calling.

When a call is made from a task in a full pre-emptive system,
the result may already be incorrect at the time of evaluation.

When the service is called for a task, which is multiply
activated, the state is set to running if any instance of the task
is running.
Status:
Standard: e No error, E_OK

Extended: e Task <TaskID> is invalid, E_OS_ID

Conformance: BCC1, BCC2, ECC1, ECC2

12.2.4 Constants

RUNNING e Constant of data type TaskStateType for task state running.
WAITING e Constant of data type TaskStateType for task state waiting.
READY e Constant of data type TaskStateType for task state ready.
SUSPENDED e Constant of data type TaskStateType for task state suspended.

INVALID TASK e Constant of data type TaskType for a not defined task.

12.2.5 Naming convention

The operation system must be able to assign the entry address of the task function to the name
of the corresponding task for identification. With the entry address the operating system is
able to call the task.

Within the application, a task is defined according to the following pattern:
TASK (TaskName)

{
}

With the macro Task the user may use the same name for "task identification" and "name of
task function".

52 © by OSEK OSEK OS 2.1 release candidate 1

!

Specification 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

The task identification will be generated from the TaskName during system generation time. '

12.3 Interrupt handling

12.3.1 Data types
IntDescriptorType

Data type for logical interrupt masks.

IntDescriptorRefType

Reference to the logical interrupt mask, this data type usually is implemented as "pointer to

IntDescriptorType".

12.3.2 System services

12.3.2.1 EnterISR
Syntax:

Parameter (In):
Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

void EnterISR (void)

none

none

EnterlISR establishes the conditions needed to request OS
services in an interrupt service routine category 3 (see

particularities). Inside EnterISR the following functions are
executed if needed:

Registration of the switching to the interrupt level inside the
operating system.

Switch of the current context (e.g. to the ISR stack).

EnterISR establishes in ISRs category 3 the possibility to use

operating system services. It is necessary to place EnterISR
before the first call of an operating system service.

The detailed implementation of EnterlSR depends on the target
system. It is explicitly allowed to use system specific variations.

The call to this service is only allowed in ISRs category 3, but
the specification does not force an error status. For example
some microcontrollers can not perform the test "called outside
from ISR". But a system analysis tool may check whether the
call is performed within task level.

This service is a counterpart of LeavelSR service (see
Chapter 5).

none
none
BCC1, BCC2, ECC1, ECC2

10 The pre-processor could for example generate the name of the task function by using the pre-processor symbol
sequence ## to add a string ,,Func* to the task name:

#define TASK(TaskName) StatusType Func ## TaskName (void)
With this macro, TASK (MyTask) has the entry function FuncMyTask

OSEK OS 2.1 release candidate 1 © by OSEK 53

1

!

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

12.3.2.2 LeavelSR

Syntax:
Parameter (In):
Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

void LeavelSR (void)
none
none

LeavelSR is the counterpart of EnterlSR and resets the
conditions to request operating system services in an ISR
category 3. LeavelSR may only be called after EnterISR has
been called.

This function does not imply the return from ISR although it has
to be the last statement executed in the ISR.

The call to this service is only allowed in ISRs category 3.

The detailed implementation of LeavelSR depends on the
target system. It is explicitly allowed to use system specific
variations.

none
none
BCC1, BCC2, ECC1, ECC2

12.3.2.3 Enablelnterrupt

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:

Particularities:

StatusType Enablelnterrupt (IntDescriptorType <Descriptor>)

Hardware dependent parameter for selections of interrupt
sources to enable. In <Descriptor>, a "1" means "enable".

none

This service allows enabling of several interrupt sources
simultaneously.

The service may be called from an ISR and from the task level,
but not from hook routines.

To save the current state of interrupt sources the application
must use GetlinterruptDescriptor before.

The implementation has to adapt this service to the target
hardware.

If not all requested interrupt sources are disabled, this service is
nevertheless executed for the disabled interrupt sources and
returns E_OS_NOFUNC in Extended Status.

Status:
Standard: e No error, E_ OK
Extended: e Atleast one of the interrupt sources was not disabled,
E_OS_NOFUNC
Conformance: BCC1, BCC2, ECC1, ECC2
54 © by OSEK OSEK OS 2.1 release candidate 1

!

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

12.3.2.4 Disablelnterrupt

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:

Particularities:

Status:
Standard: e
Extended: e
Conformance

StatusType Disablelnterrupt (IntDescriptorType <Descriptor>)

Hardware dependent parameter for selections of interrupt
sources to disable. In <Descriptor>, a "1" means "disable".

none

This service allows disabling of several interrupt sources
simultaneously.

The service may be called from an ISR and from the task level,
but not from hook routines.

To save the current state of interrupt sources the application
must use GetlinterruptDescriptor before.

The implementation has to adapt this service to the target
hardware.

If not all requested interrupt sources are enabled, this service is
nevertheless executed for the enabled interrupt sources and
returns E_OS_NOFUNC in Extended Status.

No error, E_OK
At least one interrupt source was not enabled, E_OS_NOFUNC
BCC1, BCC2, ECC1, ECC2

12.3.2.5 GetlnterruptDescriptor

Syntax:

Parameter (In):

Parameter (Out):
Descriptor

Description:
Particularities:

Status:
Standard: e
Extended: e
Conformance:

StatusType GetlnterruptDescriptor (IntDescriptorRefType
<Descriptor>)

none

Reference to current status of interrupt sources. In
<Descriptor> all interrupt sources, which are enabled, are
marked by "1", “0” otherwise.

Query of interrupt status

The service may be called from an ISR, task level, and some
hook routines (see Figure 10-1).

The implementation has to adapt this service to the target
hardware.

No error, E_OK
none
BCC1, BCC2, ECC1, ECC2

12.3.2.6 EnableAllinterrupts

Syntax:

Parameter (In):
Descriptor

void EnableAlllnterrupts (void)

none

OSEK OS 2.1 release candidate 1 © by OSEK 55

!

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

Parameter (Out):
Description:
Particularities:

Status:
Standard: e
Extended: e
Conformance:

none
This service restores the state saved by DisableAlllnterrupts.

The service may be called from an ISR and from the task level,
but not from hook routines.

This service is a counterpart of DisableAllinterrupts service, and
its aim is the completion of the critical section of code. No API
service calls are allowed within this critical section.

The implementation should adapt this service to the target
hardware providing a minimum overhead. Usually this service
enables recognition of interrupts by the central processing unit.

none
none
BCC1, BCC2, ECC1, ECC2

12.3.2.7 DisableAllinterrupts

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:

Particularities:

Status:
Standard: e
Extended: e
Conformance:

void DisableAlllnterrupts (void)

none
none

This service allows disabling of all interrupts supported by the
hardware. The state before is saved for the EnableAllinterrupts
call.

The service may be called from an ISR and from the task level,
but not from hook routines.

This service is intended to start a critical section of the code.
This section must be finished by calling the EnableAlllnterrupts
service. No API service calls are allowed within this critical
section.

The implementation should adapt this service to the target
hardware providing a minimum overhead. Usually this service
disables recognition of interrupts by the central processing unit.

Note that this service does not support nesting. If nesting is
needed for critical sections e.g. for libraries
SuspendOSinterrupts and ResumeOSinterrupts should be
used.

none
none
BCC1, BCC2, ECC1, ECC2

12.3.2.8 ResumeOSinterrupts

Syntax: void ResumeOSinterrupts (void)
Parameter (In):
Descriptor none
56 © by OSEK OSEK OS 2.1 release candidate 1

1

!

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

none

This service restores the recognition status of interrupts saved
by the SuspendOSinterrupts service.

The service may be called from an ISR and from the task level,
but not from hook routines.

This service is the counterpart of SuspendOSinterrupts service,
and its aim is the completion of the critical section of code. No
API service calls beside SupendOSinterrupts/
ResumeOSinterrupts are allowed within this critical section.

The implementation should adapt this service to the target
hardware providing a minimum overhead.

In case of nesting pairs of the calls SuspendOSinterrupts and
ResumeOSinterrupts the interrupt recognition status saved by
the first call of SuspendOSinterrupts is restored by the last call
of the ResumeOSiInterrupts service.

none
none
BCC1, BCC2, ECC1, ECC2

12.3.2.9 SuspendOSinterrupts

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

void SuspendOSinterrupts (void)

none
none

This service saves the recognition status of interrupts of
categories 2 and 3 and disables the recognition of these
interrupts.

The service may be called from an ISR and from the task level,
but not from hook routines.

This service is intended to protect a critical section of code.
This section must be finished by «callng the
ResumeOSinterrupts service. No API service calls beside
SupendOSinterrupts/ResumeOSinterrupts are allowed within
this critical section.

The implementation should adapt this service to the target
hardware providing a minimum overhead.

It is intended only to disable interrupts of category 2 and 3.
However if this is not possible in an efficient way more
interrupts may be disabled.

none
none
BCC1, BCC2, ECC1, ECC2

OSEK OS 2.1 release candidate 1 © by OSEK 57

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

12.3.3 Constants
INITIAL INTERRUPT DESCRIPTOR
e Constant of data type IntDescriptorType (see chapter 10.3, System
start-up).

12.3.4 Naming convention

Within the application, an interrupt service routine of category 2 is defined according to the
following pattern:

ISR (FuncName)

}

The keyword 1sR is evaluated by the system generation to clearly distinguish between func-
tions and interrupt service routines in the source code.

For category 1 and 3 interrupt service routines no naming conventions are prescribed, their
definition is implementation specific.

12.4 Resource management

12.4.1 Data types
ResourceType

Data type for a resource.
12.4.2 Constructional elements

12.4.2.1 DeclareResource
Syntax: DeclareResource (Resourceldentifier)

Parameter (In):
- Resource identifier (C-identifier)

Description: DeclareResource serves as an external declaration of a re-
source. The function and use of this service are similar to that
of the external declaration of variables.

Particularities: -
Conformance: BCC1, BCC2, ECC1, ECC2

12.4.3 System services

12.4.3.1 GetResource

Syntax: StatusType GetResource (ResourceType <ResID>)
Parameter (In):
ResID Reference to resource
Parameter (Out): none
Description: This call serves to enter critical sections in the code that are

assigned to the resource referenced by <ReslID>. A critical
section must always be left using ReleaseResource.

Particularities: The OSEK priority ceiling protocol for resource management is
described in chapter 7.5.

58 © by OSEK OSEK OS 2.1 release candidate 1

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

Status:
Standard:
Extended:

Conformance:

Nested resource occupation is only allowed if the inner critical
sections are completely executed within the surrounding critical
section (strictly stacked, see chapter 7.2, Restrictions when
using resources). Nested occupation of one and the same
resource is also forbidden!

Corresponding calls to GetResource and ReleaseResource
should appear within the same function on the same function
level.

Services which put the running task into the state suspended or
waiting must not be wused in critical sections (i.e.
TerminateTask, ChainTask and WaitEvent).

Generally speaking, critical sections should be short.

The service may be called from an ISR and from task level (see
Figure 10-1).

No error, E_OK
Resource <ResID> is invalid, E_OS_ID

Attempt to get resource which is already occupied by any task
or ISR, or the assigned priority of the calling task or interrupt
routine is higher than the calculated ceiling priority,
E_OS_ACCESS

BCC1, BCC2, ECC1, ECC2

12.4.3.2 ReleaseResource

Syntax:

Parameter (In):
ResID

Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

StatusType ReleaseResource (ResourceType <ReslID>)

Reference to resource
none

ReleaseResource is the counterpart of GetResource and
serves to leave critical sections in the code that are assigned to
the resource referenced by <ResID>.

For information on nesting conditions, see particularities of
GetResource.

The service may be called from an ISR and from task level (see
Figure 10-1).

No error, E_OK
Resource <ResID> is invalid, E_OS_ID

Attempt to release a resource which is not occupied by any task
or ISR, or another resource has to be released before
E_OS_NOFUNC

Attempt to release a resource which has a lower ceiling priority
than the assigned priority of the calling task or interrupt routine
E_OS_ACCESS

BCC1, BCC2, ECC1, ECC2

OSEK OS 2.1 release candidate 1 © by OSEK 59

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

12.4.4 Constants

RES SCHEDULER e Constant of data type ResourceType (see chapter 7, Resource
management).

12.5 Event control

12.5.1 Data types
EventMaskType

Data type of the event mask.
EventMaskRefType

Reference to an event mask.
12.5.2 Constructional elements

12.5.2.1 DeclareEvent
Syntax: DeclareEvent (Eventldentifier)

Parameter (In):
Event identifier (C-identifier)

Description: DeclareEvent serves as an external declaration of an event.
The function and use of this service are similar to that of the
external declaration of variables.

Particularities: -
Conformance: ECC1, ECC2

12.5.3 System services

12.5.3.1 SetEvent

Syntax: StatusType SetEvent (TaskType <TaskID>
EventMaskType <Mask>)

Parameter (In):

TaskID Reference to the task for which one or several events are to be
set.
Mask Mask of the events to be set
Parameter (Out): none
Description: The service may be called from an interrupt service routine and

from the task level, but not from hook routines.

The events of task <TaskID> are set according to the event
mask <Mask>. Calling SetEvent causes the task <TasklID> to
be transferred to the ready state, if it was waiting for at least
one of the events specified in <Mask>.

Particularities: Any events not set in the event mask remain unchanged.
Status:
Standard: e No error, E_OK

Extended: e Task <TasklD> is invalid, E_OS_ID
e Referenced task is no extended task, E. OS_ACCESS

60 © by OSEK OSEK OS 2.1 release candidate 1

!

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

Conformance:

Events can not be set as the referenced task is in the
suspended state, E_OS_STATE

ECC1, ECC2

12.5.3.2 ClearEvent

Syntax:

Parameter (In)
Mask

Parameter (Out)
Description:

Particularities:

Status:
Standard: e
Extended: e
[]
Conformance:

12.5.3.3 GetEvent
Syntax:

Parameter (In):
TaskID

Parameter (Out):
Event

Description:

Particularities:

Status:
Standard: .
Extended: e
[]
[]
Conformance:

12.5.3.4 WaitEvent

Syntax:

StatusType ClearEvent (EventMaskType <Mask>)

Mask of the events to be cleared
none

The events of the extended task calling ClearEvent are cleared
according to the event mask <Mask>.

The system service ClearEvent is restricted to extended tasks
which own the event.

No error, E_OK

Call not from extended task, E_OS_ACCESS
Call at interrupt level, E_OS _CALLEVEL
ECC1, ECC2

StatusType GetEvent (TaskType <TaskID>
EventMaskRefType <Event>)

Task whose event mask is to be returned.

Reference to the memory of the return data.

This service returns the current state of all event bits of the task
<TasklID>, not the events that task is waiting for.

The service may be called from interrupt service routines, task
level and some hook routines (see Figure 10-1).

The current status of the event mask of task <TaskID> is
copied to <Event>.

The referenced task must be an extended task.

No error, E_OK
Task <TasklID> is invalid, E_OS_ID

Referenced task <TaskID> is not an extended task,
E_OS _ACCESS

Referenced task <TaskID> is in the suspended state,
E_OS_STATE

ECC1, ECC2

StatusType WaitEvent (EventMaskType <Mask>)

OSEK OS 2.1 release candidate 1 © by OSEK 61

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

Parameter (In):

Mask Mask of the events waited for.
Parameter (Out): none
Description: The state of the calling task is set to waiting, unless at least one
of the events specified in <Mask> has already been set.
Particularities: This call enforces the rescheduling, if the wait condition occurs.
This service may be called from the extended task owning the
event.
Status:
Standard: e No error, E_OK

Extended: e Calling task is not an extended task, E_OS_ACCESS

¢ Calling task occupies resources, E_OS_RESOURCE
e Call atinterrupt level, E_OS_CALLEVEL

Conformance: ECC1, ECC2

12.6 Alarms

12.6.1 Data types

TickType

This data type represents count values in ticks.

TickRefType

This data type points to the data type TickType.
AlarmBaseType

This data type represents a structure for storage of counter characteristics. The individual
elements of the structure are:

maxallowedvalue e Maximum possible allowed count value in ticks

ticksperbase e Number of ticks required to reach a counter-specific (significant)
unit.

mincycle e Smallest allowed value for the cycle-parameter of
SetRelAlarm/SetAbsAlarm) (only for systems with extended
status).

All elements of the structure are of data type TickType.
AlarmBaseRefType

This data type points to the data type AlarmBaseType.
AlarmType

This data type represents an alarm object.
12.6.2 Constructional elements

12.6.2.1 DeclareAlarm
Syntax: DeclareAlarm (Alarmldentifier)

62 © by OSEK OSEK OS 2.1 release candidate 1

1

!

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

Parameter (In):
Description:

Particularities:

Alarm identifier (C-identifier)

DeclareAlarm serves as external declaration of an alarm
element.

Conformance: BCC1, BCC2, ECC1, ECC2

12.6.3 System services

12.6.3.1 GetAlarmBase

Syntax:

Parameter (In):
AlarmID

Parameter (Out):
Info

Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

12.6.3.2 GetAlarm

Syntax:

Parameter (In):
AlarmID

Parameter (Out):
Tick
Description:

Particularities:

Standard:

Extended:
Conformance:

StatusType GetAlarmBase (AlarmType <AlarmID>,
AlarmBaseRefType <Info>)

Reference to alarm

Reference to structure with constants of the alarm base.

The system service GetAlarmBase reads the alarm base
characteristics. The return value <Info> is a structure in which
the information of data type AlarmBaseType is stored.

Allowed on task level, ISR, and in several hook routines (see
Figure 10-1).

No error, E_OK
Alarm <AlarmID> is invalid, E_OS_ID
BCC1, BCC2, ECC1, ECC2

StatusType GetAlarm (AlarmType <Alarm|D>
TickRefType <Tick>)

Reference to an alarm

Relative value in ticks before the alarm <AlarmID> expires.

The system service GetAlarm returns the relative value in ticks
before the alarm <AlarmID> expires.

It is up to the application to decide whether for example a
CancelAlarm may still be useful.

If <AlarmID> is not in use, <Tick> is not defined.

Allowed on task level, ISR, and in several hook routines (see
Figure 10-1). Status:

No error, E_OK

Alarm <AlarmID> is not used, E_OS_NOFUNC
Alarm <AlarmID> is invalid, E_OS _ID

BCC1, BCC2, ECC1, ECC2

OSEK OS 2.1 release candidate 1 © by OSEK 63

1

!

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

12.6.3.3 SetRelAlarm

Syntax:

Parameter (In):
AlarmID
increment
cycle

Parameter (Out):
Description:

Particularities:

Status:
Standard:

Extended:

Conformance:

StatusType SetRelAlarm (AlarmType <AlarmID>,
TickType <increment>,
TickType <cycle>)

Reference to the alarm element

Relative value in ticks

Cycle value in case of cyclic alarm. In case of single alarms,
cycle has to be zero.

none

The system service occupies the alarm <AlarmID> element.
After <increment> ticks have elapsed, the task assigned to the
alarm <AlarmID> is activated or the assigned event (only for
extended tasks) is set.

The behaviour of <increment> equal to 0 is up to the
implementation.

If the relative value <increment> is very small, the alarm may
expire, and the task may become ready before the system
service returns to the user.

If <cycle> is unequal zero, the alarm element is logged on
again immediately after expiry with the relative value <cycle>.

The alarm <AlarmID> must not already be in use.

To change values of alarms already in use the alarm has to be
cancelled first.

If the alarm is already in use, this call will be ignored and the
error E_OS_STATE is returned.

Allowed on task level and in ISR, but not in hook routines.

No error, E_OK
Alarm <AlarmID> is already in use, E_OS_STATE
Alarm <AlarmID> is invalid, E_OS _ID

Value of <increment> outside of the admissible limits (lower
than zero or greater than maxallowedvalue), E_OS VALUE

Value of <cycle> unequal to 0 and outside of the admissible
counter limits (less than mincycle or greater than
maxallowedvalue), E_OS_VALUE

BCC1, BCC2, ECC1, ECC2; Events only ECC1, ECC2

12.6.3.4 SetAbsAlarm

Syntax:

Parameter (In):
AlarmID
start

StatusType SetAbsAlarm (AlarmType <AlarmID>,
TickType <start>,
TickType <cycle>)

Reference to the alarm element
Absolute value in ticks

64

© by OSEK OSEK OS 2.1 release candidate 1

!

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

cycle

Parameter (Out):
Description:

Particularities:

Status:
Standard: e
[]
Extended: e
[]
[]
Conformance:

Cycle value in case of cyclic alarm. In case of single alarms,
cycle has to be = zero.

none

The system service occupies the alarm <AlarmID> element.
When <start> ticks are reached, the task assigned to the alarm
<AlarmID> is activated or the assigned event (only for extended
tasks) is set.

If the absolute value <start> is very close to the current counter
value, the alarm may expire, and the task may become ready
before the system service returns to the user.

If the absolute value <start> already was reached before the
system call, the alarm will only expire when the absolute value
<start> will be reached again, i.e. after the next overrun of the
counter.

If <cycle> is unequal zero, the alarm element is logged on
again immediately after expiry with the relative value <cycle>.

The alarm <AlarmID> must not already be in use.

To change values of alarms already in use the alarm has to be
cancelled first.

If the alarm is already in use, this call will be ignored and the
error E_OS _STATE is returned.

Allowed on task level and in ISR, but not in hook routines.

No error, E_OK
Alarm <AlarmID> is already in use, E_OS_STATE
Alarm <AlarmID> is invalid, E_OS_ID

Value of <start> outside of the admissible counter limit (less
than zero or greater than maxallowedvalue), E_OS_VALUE

Value of <cycle> unequal to 0 and outside of the admissible
counter limits (less than mincycle or greater than
maxallowedvalue), E_ OS VALUE

BCC1, BCC2, ECC1, ECC2; Events only ECC1, ECC2

12.6.3.5 CancelAlarm

Syntax:

Parameter (In):
AlarmID

Parameter (Out):
Description:
Particularities:

Standard: .

Extended: e
Conformance:

StatusType CancelAlarm (AlarmType <AlarmID>)

Reference to an alarm
none
The system service cancels the alarm <AlarmID>.

Allowed on task level and in ISR, but not in hook routines.
Status:

No error, E_OK

Alarm <AlarmID> not in use, E_OS_NOFUNC
Alarm <AlarmID> is invalid, E_OS_ID

BCC1, BCC2, ECC1, ECC2

OSEK OS 2.1 release candidate 1 © by OSEK 65

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

12.6.4 Constants

To facilitate programming of systems which comprise only one counter (system counter), the
return values of the call Get4larmBase are defined as constants.

The system counter is always a time counter.
OSMAXALLOWEDVALUE e Maximum possible allowed value of the system counter in ticks.

OSTICKSPERBASE e Number of ticks required to reach specific unit of the system
counter.OSMINCYCLE
e Minimum allowed number of ticks for a cyclic alarm.
Additionally the following constant is supplied:

OSTICKDURATION e Duration of a tick of the system counter in nanoseconds.

12.7 Operating system execution control

12.7.1 Data types
AppModeType

This data type represents the application mode.
12.7.2 System services

12.7.2.1 GetActiveApplicationMode

Syntax AppModeType GetActiveApplicationMode (void)

Description: This service returns the current application mode. It may be
used to write mode dependent code.

Particularities: See chapter 4.8 for a general description of application modes.
Allowed for task, ISR and all hook routines.

Conformance: BCC1, BCC2, ECC1, ECC2

12.7.2.2 StartOS

Syntax void StartOS (AppModeType <Mode>)

Parameter (In):

Mode application mode

Parameter (Out): none

Description: The user can call this system service to start the operating
system in a specific mode, see chapter 4.8, Application modes.

Particularities: Only allowed outside of the operating system, therefore

implementation specific restrictions may apply. See also
chapter 10.3, System start-up. This call does not need to

return.
Conformance: BCC1, BCC2, ECC1, ECC2
12.7.2.3 ShutdownOS
Syntax void ShutdownOS (StatusType <Error>)
Parameter (In):
Error error occurred

66 © by OSEK OSEK OS 2.1 release candidate 1

!

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

Parameter (Out):
Description:

Particularities:

Conformance:

12.7.3 Constants

none

The user can call this system service to abort the overall
system (e.g. emergency off). The operating system also calls
this function internally, if it has reached an undefined internal
state and is no longer ready to run.

If a ShutdownHook is configured the hook routine
ShutdownHook is always called (with <Error> as argument)
before shutting down the operating system.

If ShutdownHook returns, further behaviour of ShutdownOS is
implementation specific.

After this service the operating system is shut down.

Allowed at task level, ISR level, in ErrorHook and StartupHook,
and also called internally by the operating system.

If the operating system calls ShutdownOS it never uses E_OK
as the passed parameter value.

BCC1, BCC2, ECC1, ECC2

OSDEFAULTAPPMODE e Default application mode, always a valid parameter to StartOS.

12.8 Hook routines

The specification allows for implementation specific additional parameters in hook routines.
In the following description only mandatory parameters are listed.

12.8.1 ErrorHook
Syntax

Parameter (In):
Error

Parameter (Out):
Description:

Particularities:
Conformance:

void ErrorHook (StatusType <Error>)

error occurred
none
This hook routine is called by the operating system at the end

of a system service which returns StatusType not equal E_OK.
It is called before returning to the task level.

This hook routine is called when an alarm expires and an error
is detected during task activation or event setting.

The ErrorHook is not called, if a system service called from
ErrorHook does not return E_OK as status value. Any error by
calling of system services from the ErrorHook can only be
detected by evaluating the status value.

See chapter 10.1 for general description of hook routines.
BCC1, BCC2, ECC1, ECC2

OSEK OS 2.1 release candidate 1 © by OSEK 67

1

!

O SEK/VDX Operating System

Specification 2.1 release candidate 1

12.8.2 PreTaskHook

Syntax
Parameter (In):
Parameter (Out):
Description:

Particularities:
Conformance:

void PreTaskHook (void)
none
none

This hook routine is called by the the operating system before
executing a new task, but after the transition of the task to the
running state (to allow evaluation of the TaskID by GetTaskID).
See chapter 10.1 for general description of hook routines.

BCC1, BCC2, ECC1, ECC2

12.8.3 PostTaskHook

Syntax
Parameter (In):
Parameter (Out):
Description:

Particularities:
Conformance:

12.8.4 StartupHook

Syntax
Parameter (In):
Parameter (Out):
Description:

Particularities:
Conformance:

void PostTaskHook (void)
none
none

This hook routine is called by the operating system after
executing the current task, but before leaving the task's running
state (to allow evaluation of the TaskID by GetTaskID).

See chapter 10.1 for general description of hook routines.
BCC1, BCC2, ECC1, ECC2

void StartupHook (void)
none
none

This hook routine is called by the operating system at the end
of the operating system initialisation and before the scheduler is
running. At this time the application can start tasks, initialise
device drivers etc.

See chapter 10.1 for general description of hook routines.
BCC1, BCC2, ECC1, ECC2

12.8.5 ShutdownHook

Syntax

Parameter (In):
Error

Parameter (Out):
Description:

Particularities:

Conformance:

void ShutdownHook (StatusType <Error>)

error occurred
none

This hook routine is called by the operating system when the
OS service ShutdownOS has been called. This routine is called
during the operating system shut down.

ShutdownHook is a hook routine for user defined shutdown
functionality, see chapter 10.4.

BCC1, BCC2, ECC1, ECC2

68

© by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

13 Implementation and application specific topics

This chapter is not normative nor mandatory. It provides information for implementers and
application programmers.

13.1 Implementation hints.

OSEK specifies an operating system interface and its functionality. Implementation aspects
are not prescribed. There is no restriction on the implementation of the operating system as
long as the implementation corresponds to any of the defined conformance classes.

13.1.1 Aspects of implementation

The range of automotive applications varies greatly such that no performance characteristics
of the operating system implementation can be specified, i.e. as to the execution time and
memory space required.

As aresult,
o the OSEK operating system can be implemented with various degrees of efficiency.

. The linker needs only to link those objects and services of the operating system which
are actually used.

o the operating system used in a product (e.g. in a control unit's EPROM) cannot be de-
scribed as OSEK operating system, but as an operating system which conforms to an
OSEK operating system conformance class.

. the tool environment of the operating system configuration and initialisation is not part
of the operating system specification and therefore implementation-specific.

o commercial systems which provide the user with all OSEK operating system specific
services and their functionalities via an OSEK adaptation layer, are also OSEK
operating system compliant. They are compliant irrespective of their actual suitability
for control units as regards the memory space they require and their processing speed.

The conformance class selected for an application software is determined by the needs on
functionality and flexibility.

The real-time behaviour of the application software used with a specific hardware is also
defined by the quality of implementation.

13.1.2 Parameters of implementation

The operating system vendor provides a list of parameters specifying the implementation.
Detailed information is required concerning the functionality, performance and memory
demand. Furthermore the basic conditions to reproduce the measurement of those parameters
have to be mentioned, e.g. functionality, target CPU, clock speed, bus configuration, wait
states etc.

13.1.2.1 Functionality

e Maximum number of tasks
e Maximum number of not suspended tasks

e Maximum number of priorities

OSEK OS 2.1 release candidate 1 © by OSEK 69

D-ﬂ OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

e Number of tasks per priority (for BCC2 and ECC2)

e Upper limit for number of task activations (must be "1" for BCC1 and extended tasks)
e Maximum number of events per task

e Limits for the number of alarm objects (per system / per task)

e Limits for the number of nested resources (per system / per task)

e Lowest priority level used internally by the OS

13.1.2.2 Hardware resources

e RAM and ROM requirement for each of the operating system components
e Size for each linkable module

e Application dependent RAM and ROM requirements for operating system data (e.g. bytes
RAM per task, RAM required per alarm, ...)

e Execution context of the operating system (e.g. size of OS internal tables)
e Timer units reserved for the OS

e Interrupts, traps and other hardware resources occupied by the operating system

13.1.2.3 Performance

e Total execution time for each service''

e OS start-up time (beginning of StartOS until execution of first task in standard mode)
without invoking hook routines

e Interrupt latency'? for ISRs of category 1, 2 and 3
e Task switching times for all types of switching'?

e Base load of system without applications running

All performance figures shall be stated as minimum and maximum (worst case) values.

13.1.2.4 Configuration of run time context

A run time context is assigned to each task. This refers to all memory resources of the task
which are occupied at the beginning of the execution time, and which are released again once
the task is terminated. Typically the run time context consists of some registers, a task control
block and a certain amount of stack to operate.

Depending on the design of tasks (e.g. type and pre-emptibility) and depending on the
scheduling mechanism (non-, mixed- or full pre-emptive) the run time context may have

' The time of execution may depend on the current state of the system, e.g. there are different execution times of
"SetEvent" depending on the state of the task (waiting or ready). Therefore comparable results have to be
extracted from a common benchmark procedure.

12 Time between interrupt request and execution of the first instruction of user code inside the ISR. A
comparison of interrupt latencies of ISRs from category 1 to ISRs from category 2 or 3 specifies the operating
system overhead.

13 Should be measured from the last user instruction of the preceding task to the first user instruction of the
following task so that all overhead is covered. Task switching types are different for: normal termination of a
task, termination forced by ChainTask(), preemptive task switch, task activation when OS idle task is running,
alarm triggered task activation and task activations from ISRs of types 2 and 3.

70 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

different sizes. Tasks which can never pre-empt each other may be executed in the same run
time context in order to achieve an efficient utilisation of the available RAM space.

The operating system vendor should provide information about the implemented handling of
the run time context (e.g. one context per task or one context per priority level). Considering
this information the user may optimise the design of his application regarding RAM
requirements versus run time efficiency.

13.2 Application design hints

The purpose of this chapter is to provide additional information about possible problems
which might arise when designing applications for the OSEK operating system. Not all of the
consequences for the system design can be mentioned in the specification itself. Other design
hints result from the experience of current ECU applications.

13.2.1 Resource management

Some aspects are mentioned in this chapter in order to guarantee a proper handling of all
resources.

13.2.1.1 Occupation in LIFO order

Each access to a resource should be encapsulated with calls to the services GetResource and
ReleaseResource. Resources have to be released in reversed order of their occupation. The
following code sequence is incorrect because function foo is not allowed to release resource
res 1.

TASK (incorrect)

{

GetResource(res 1);
/* some code accessing resource res 1 */

féé();

ReleaseResource(res 2);

}

void foo()

{

GetResource(res 2);
/* code accessing resource res 2 */

ReleaseResource(res 1);

Nested resource occupations is allowed. The occupation of resources has to be performed in
strict LIFO order (stack principle). If the code accessing the resource as shown above is pre-
empted by a task with higher priority (higher than the ceiling priority of the resource), another
resource might be requested in that task leading to a nested resource occupation which
conforms to the LIFO order.

13.2.1.2 Call level of APIl-services

The OSEK API-services GetResource and ReleaseResource should be called from the same
functional call level. If function foo is corrected concerning the LIFO order of resource
occupation like:

void foo(void)

{

ReleaseResource(res 1);

OSEK OS 2.1 release candidate 1 © by OSEK 71

Specification 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

GetResource(res 2);
/* some code accessing resource res 2 */

ﬁéieaseResource(res 2);
}
there still may be a problem because ReleaseResource(res_1) is called on a different level than
GetResource(res_1). Calling the API services from different call levels might cause problems
in some implementations.

13.2.1.3 Resources still occupied at task termination

The access to a resource should be encapsulated directly by the calls of GetResource and
ReleaseResource. Otherwise one might miss to release the resource and possibly terminate the

task.
GetResource(res 1);

switch (condition)
{
case CASE 1
do somethingl () ;
ReleaseResource(res 1);

break;
case CASE 2 : /* 11l WRONG: no release of */
/* resource here !!! */
do something2 () ;
break;
default:

do_something3 () ;
ReleaseResource(res 1);

If in standard status of the operating system a task terminates without releasing all of the
occupied resources the resulting behaviour is not defined by the specification. Depending on
the implementation of the operating system the resource may be locked forever since further
accesses are rejected by the operating system.

13.2.2 Placement of API calls

For the same reasons as above mentioned in chapter 13.2.1.2 the placement of API services
TerminateTask and ChainTask is crucial for the operating system. Both services are used to
terminate the running task. Calling these services from a subroutine level of the task, the
operating system is responsible for a correct treatment of the stack when terminating the task.
One solution could be to store the position of the stack pointer at the entry point of the
running task and restore that value after terminating the task.

13.2.3 Interrupt service routines

The user has to be aware of some possible error cases when using ISRs of category 1, 2 and 3
as described in chapter 5.

13.2.3.1 Local variables in ISRs of category 3

In ISRs of category 3 the user is allowed to write application code before the operating system
context is entered using the service EnterISR. If EnterISR switches to a different stack,
automatic variables defined in the preceding application code might be no longer accessible in
the operating system context.

72 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

The application code at the beginning of the ISR might not be portable between different
compilers when using local variables. This is because the convention for register usage is not
always the same for compilers from different manufacturers.

13.2.3.2 Nested interrupts of different categories

Since all interrupts are of higher priority than the task levels, the processing of interrupts has
to be terminated before the system returns to task level. If an ISR of category 2 interrupts an
ISR of category 1 the system will continue processing of ISR1 after ISR2 terminates. Having
tasks activated or events set from interrupt level in ISR2 the operating system is not invoked
after termination of ISR1 in order to perform a rescheduling.

Please note that, in this respect, an ISR3, before EnterISR is called, acts like an ISR category

1, afterwards like an ISR category 2.
/_ Interrupt

ISR of category 1 / ISR of category 2
{ é {

code without call to code with call to
an OS service an OS service
e.g.
ActivateTask();
SetEvent();
3 1
\—> No OS call
at the end
of ISR 1

Figure 13-1 Nested interrupts

Because ISRs of category 1 (or category 3 before EnterISR) do not run under control of the
operating system the OS has no possibility to perform a rescheduling when the ISR
terminates. Thus any activities corresponding to the calls of the operating system in the
interrupting ISR2 (or ISR3 after EnterISR) are unbounded delayed until the next rescheduling
point.

As a result of the problems discussed above, each system should set up rules to avoid these
problems. There may be specific implementations which can avoid these problems, or the
application might have specific properties such that these problems can not occur (e.g. in non
pre-emptive systems). The rules must therefore take into account both the specific
implementations and the applications.

However, for maximal application portability, an easy rule of thumb which always works is
the following:

e all interrupts of category 1 have to have a higher or equal hardware priority compared with
interrupts of category 2.

e all interrupts of category 3 have to share one hardware priority not higher than the lowest
category 1 interrupt priority, and not lower than the highest category 2 interrupt priority.

OSEK OS 2.1 release candidate 1 © by OSEK 73

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

13.2.3.3 Direct manipulation of interrupt levels

Direct manipulation of interrupt levels is not portable and restricted by the implementation.

13.2.4 Priority and pre-emption

Tasks are scheduled by the operating system according to their priority. A task is declared as
being pre-emptive / non pre-emptive (see chapter 4.6.3). The application has to treat these two
task attributes in a consistent manner to avoid conflicts in the run-time behaviour of the
system. Care has to be taken because non pre-emptive tasks of lower priority delay tasks of
higher priority.

Typically the pre-emption of a task is assigned when designing, whereas priority is configured
during system integration. Because many people are involved in larger software projects, the
development process has to be co-ordinated precisely. To achieve a well-defined run-time
behaviour of the system this co-ordination is crucial.

13.2.5 Parameter to pass to ShutdownOS

The parameter passed to ShutdownOS is also passed to the ShutdownHook. If the operating
system calls the ShutdownHook, the passed parameter is an implementation dependent error
value. If the user calls ShutdownOS he has to use one of the existing error numbers.

It is recommended to use the error number described in the implementation documentation. If
no specific error number for ShutdownOS is defined, it is possible to use E_OK and to
distinguish this way between operating system calls of ShutdownOS and application calls.

13.2.6 Error handling

Errors in the application software are typically caused by:

. Errors on handling the operating system, i.e. incorrect configuration / initialisation /
dimensioning of the operating system or violations of restrictions regarding the
operating system service.

o Error in software design, e.g. inappropriate choice of task priorities, unprotected critical
sections, incorrect scaling of time, inefficient conceptual design of task organisation

Test of implementation

Breakpoints, traces and time stamps can be integrated individually into the application
software.

Example: The user can set time stamps enabling him to trace the program execution at the
following locations before calling operating system services:

. When activating or terminating tasks.

o When setting or clearing events in the case of extended tasks.
. At explicit points of the schedule.

o At the beginning or the end of ISRs.

. When occupying and releasing resources or at critical locations.
Time monitoring

The operating system needs not include a time monitoring feature which ensures that each or
only, e.g. the lowest-priority task has been activated in any case after a defined maximum time
period.

74 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

The user can optionally use hook routines or establish a watchdog task that takes "one-shot
displays" of the operating system status.

Constructional elements

Constructional elements (e.g. DeclareTask) were introduced in OSEK OS as means to create
references to system objects used in the application. Like external declarations constructors
would be placed at the beginning of source files. With respect to the implementation they can
be implemented as macros.With the definition of OIL most implementations do not need them
any more. However they are still kept for compatibility.

13.2.7 Errors and warnings

Most of the error values of system services point to application errors. However, in some
special cases error values indicate warnings which might come up during normal operation.
These cases are:

e Enablelnterrupt, DisableInterrupt E OS NOFUNC (extended)
e GetAlarm E_ OS NOFUNC (standard)
e SetAbsAlarm, SetRelAlarm E OS STATE (standard)

o CancelAlarm E OS NOFUNC (standard)

Especially when implementing a central error handling by ErrorHook, this has to be taken into
account.

13.3 Implementation specific tools

When buying or writing portable code one has to be aware of the different implementation
tools on the market. This has an impact, on what kind of documentation has to go in parallel
with the code.

Version A Version B

include OSEK.x

Declarations

program
User-

program

Linker @

Compiler

@I@

Executable

[« 1+

Figure 13-2 Implementation specific tools

The example here shows two possible implementations of a tool chain:
. Version A, with all declarations related to task properties etc. within the code

OSEK OS 2.1 release candidate 1 © by OSEK 75

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

. Version B, using a separate generation tool for these task properties etc.

For definitions which should be supplied with portable code please consult the OIL
specification.

76 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

14 Changes from specification 1.0 to 2.1

14.1 Changes from specification 1.0 to 2.0r1
This chapter mentions all changes in the concept and the API of the OSEK operating system,
with explanation for the reason of change.

14.1.1 Conceptual changes

14.1.1.1 Conformance classes
This chapter refers to chapter 3.2 Conformance classes.

The OSEK OS specification version 2.0 now supports only four conformance classes instead
of five (as in version 1.0). Also the CCs are renamed, so for example ECC1 (version 1.0) has
other features than ECC1 (version2.0). The experience of working with version 1.0 has shown
that the four CCs of version 2.0 will better meet application requirements.

Changes in detail are:

e Multiple requesting of task activation for extended tasks is not supported. That is only
allowed for basic tasks.

e The number of multiple requesting of task activation is an attribute of the basic task and no
requirement of the conformance class.

e The conformance classes of version 2.0 are no longer strictly upward compatible.

14.1.1.2 Messages

Specification version 2.0 does not support communication via messages. All message services
are part of the communication specification and therefore described in the OSEK COM
specification.

14.1.1.3 Multiple requesting of task activation

This chapter refers to chapter 4.3, Activating a task.

In version 1.0 the order of activation in case of multiple request was not explicitly defined but
up to the implementation. In version 2.0 it is clearly defined that the activations are queued in
a FIFO structure according to the order of requesting.

14.1.1.4 Application modes
This chapter refers to chapter 4.8, Application modes.

For some applications it should be useful to have different application modes depending on
external conditions.

14.1.1.5 Counters

The API for counters has been removed (see chapter 8.1, Counters). In version 1.0 access to
counters was allowed for the application. This feature is strongly depending on the underlying
hardware. Therefore the API services for counters are cancelled in version 2.0. The API
services for alarms are still available.

OSEK OS 2.1 release candidate 1 © by OSEK 77

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

14.1.1.6 Hook routines
This chapter refers to chapter 10.1 Hook routines.
The naming of hook routines changed from OSxxxx to xxxxHook.

In version 2.0 two additional hook routines StartupHook (see chapter 12.8.4) and
ShutdownHook (see chapter 12.8.5) are introduced. This feature offers the possibility of user
defined start-up and shutdown.

14.1.1.7 OS execution control

In version 2.0 of the OSEK OS specification two new API services are introduced, StartOS
(see chapter 12.7.2.1) and ShutdownOS (see chapter 12.7.2.3). With this two services, the user
can start-up and shutdown the overall system.

14.1.2 Clarifications

14.1.2.1 Scheduling of non pre-emptive tasks

When a non pre-emptive task is pre-empted by calling the scheduler, the task context is saved.
If the task is assigned to the processor again, the task will continue at the point of pre-emption
and will not be restarted from the beginning.

14.1.2.2 Services available on which level

In version 2.0 two tables are specifying which service is available on interrupt level, on task
level and in which hook routine.

14.1.2.3 Interrupt processing

In version 2.0 the ISR category 3 is mandatory and not optional any more.

14.1.2.4 Priority ceiling
This chapter refers to chapter 7.5, OSEK Priority Ceiling Protocol.

In version 2.0, the ceiling priority of a resource is defined exactly as:

a) identical or higher to the highest task priority with access to this resource (e.g. TaskX)
and

b) lower than the priority off all other of higher priority than that task (TaskX).

14.1.2.5 Types and constants
In version 2.0 the type TaskType is specified. The following types are defined:

. TaskType: identifies a task
o TaskRefType: points to a variable of TaskType
. TaskStateType: identifies the state of a task

o TaskStateRefType: points to a variable of TaskStateType

14.1.2.6 Naming conventions

In version 2.0 the macro Task has got a new meaning (see chapter Fehler! Verweisquelle
konnte nicht gefunden werden.). This change was necessary because the old version of Task
had a drawback; the user was forced to define a name for the fask function he was not allowed
to use as task name

78 © by OSEK OSEK OS 2.1 release candidate 1

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

TASK TaskFuncName (void)
{ /* Task function for the Task "TaskName" */
/* The name "TaskFuncName" must NOT be used as a task name */

}

14.1.3 Changes of the documentation

14.1.3.1 Document structure

The specification documentation of version 1.0 consists of two documents, the "concept" and
the "API". In version 2.0 these two papers are integrated into this one, called OSEK OS
specification.

14.1.3.2 New chapters

Portability of application software (paragraph in chapter 1.1)

This new chapter regards aspects of portability of OSEK software.

Implementation and application specific topics (see chapter 13)

This new chapter gives hints for implementing an OSEK operating system.

14.1.3.3 Removed chapters
Chapter messages

The message concept is described in the OSEK COM specification. Therefore the message
parts are removed.

System generation

All questions of system generation are described in an extra paper called OIL specification
(OIL = OSEK Implementation Language). Several references to that paper are made
throughout this document.

14.2 Changes from specification 2.0r1 to 2.1

A lot of wording within the document has been changed for clarification and to improve
readability. The document structure was also changed for the same reason. These changes are
not explicitly mentioned in this section, but only changes in the concept and the API of the
OSEK operating system.

14.2.1 Behaviour of ChainTask/TerminateTask with allocated resources is
undefined.

In 2.0r1 the behaviour was not undefined but only the occupation of the resource was. As this
is a clear application error resulting in unsafe behaviour it was not considered useful to define
part of the behaviour in case of serious errors.

14.2.2 GetTasklID is allowed in ISRs.

As GetTaskState was allowed in ISRs and hook routines, and GetTaskID was already allowed
in hook routines, it seemed inconsistent and problematic not to allow it in ISRs.

OSEK OS 2.1 release candidate 1 © by OSEK 79

D-ﬂ OSEK/VDX ‘ Operating System

1 Specification 2.1 release candidate 1

14.2.3 Interrupt handling has been clarified and extended.
e Support for interrupts of category 3 is optional.

e Clarification that Enablelnterrupt/DisableInterrupt manipulates interrupt sources and that
the InterruptDescriptor is global.

e Added functions DisableAllInterrupts/EnableAllInterrupts.
¢ Added functions SuspendOS/ResumeOS.

e Optional extension of resources to interrupts (including the concept of interrupt priorities).

14.2.4 Error checking of GetResource/ReleaseResource have been modified.

The definition in 2.0r1 was incomplete and the extension of the resource concept to ISRs
required this change.

14.2.5 Added constant OSTICKSPERBASE.

There have been constants for two of the three values returned by GetAlarmBase for a single
system counter. The missing third one was added for completeness.

14.2.6 ShutdownOS is allowed in ISRs and certain hook routines.

ShutdownOS is meant to be called by the application in case of fatal errors. As such errors are
likely to be discovered in ISRs or hooks (e.g. ErrorHook) it was considered dangerous to
prevent the application from immediately shutting down the operating system.

14.2.7 Behaviour of ShutdownOS after ShutdownHook returns is
implementation defined.

Version 2.0r1 of the specification was inconsistent in this point.

14.2.8 Added constant OSDEFAULTAPPMODE.

This constant was added to increase portability of applications.

14.2.9 ErrorHook is never called recursively.

Recursive calling of ErrorHook possibly leads to unbounded recursion and was considered too
dangerous.

14.2.10 Local Messages added to specification.

A subset of message handling defined in OSEK Communication Specifications will be added.

80 © by OSEK OSEK OS 2.1 release candidate 1

ml| OSEK/VDX ‘

Operating System
Specification 2.1 release candidate 1

1

15 Index

ActivateTaskcccoeevvevieniiiiiieiieeeee, 49 IntDescriptorType......coecveevveeciieniieeieenee. 53
AlarmBaseRefType.......cccccvevveriieneenen. 63 ISR 58
AlarmBaseTypecccceeveeveerieeieeieeen. 62 LeavelSRcooviiiiiiiecieeceeee, 54
AlarmS ..ot 37 maxallowedvalue............coceevieniiennnen. 63
AlarmType ...cooveeiieiieieeeeeeeeee, 63 MINCYCIE .ot 63
APPMOdeTYPe ..ccvveeveeiieieeiieeeeeee 66 multiple requesting..........cccceeeveerveeneennen. 20
CancelAlarmcccccoeevvveennveeieeiiiiiinee, 66 OSMAXALLOWEDVALUE 66, 68
ChainTaskcccceeviiiiiiiiiieiieieee 50 OSMINCYCLEccooiiiieieiieieeeeeee. 66
ClearEvent.........cccovvveeviienieeiieiieeieees 61 OSTICKDURATION.......cccoeevieirerennee. 66
COUNTETS ..evvieiieenrieiieereeieeeereeeeeseneenens 37 PostTaskHOOKccccoeevieviieniieiiiienee. 68
DeclareAlarm.........cccoooceevvieciienienieene, 63 PreTaskHooK.......c.cooovveiiiniiiiiciiece, 68
DeclareEvent.........cccoevieviieiiienieeieeies 60 READY ..ot 52
DeclareResourceceeveeeiieniieeieennens 58 ReleaseResource.........cccvevvevciieirennneennen. 59
DeclareTaskccoeeeeevienieeiiieiieeieee 49 RES SCHEDULER.........cccccovieirernne. 60
DisableInterruptccceeevevveecieenieennnns 55 rescheduling..........ccoecveviiniieniennnne, 22,26
E OS ACCESS....ccoiiiiiieeeeeee, 48 ResourceType......oevevveeviieiniiiiiieeieene, 58
E OS CALLEVEL.....cccccevveiieiernne. 48 RUNNING.......cooieriiinieneeeeieeeene 52
E OS ID.ooiiiiieieeeeeeeeee e 48 Schedulecoovviiiieiieiieee e 51
E OS LIMIT ...ccoiiiiiiieiieieeieeeeee 48 SetAbsAlarmcceeveeciienieniieeiiee, 65
E OS NOFUNC......cccecvveieeininen. 48 SEtEVentccooevieviiienieeneeeee 60
E OS RESOURCE.......ccceocvvviiirennnn 48 SetRelAlarm........cccceevveeiieniienieciiee, 64
E OS STATE ..ccoioiiiiieieeeeeeee 48 ShutdownHooK..........cceeviieiieniiiiiennne 69
E OS SYS PARITY ..oooveiiieieieeee, 48 ShutdownOS.........coceviiiiiiiniieee, 67
E OS SYS STACK .cccoooveveieieieeen. 48 StartOS ..o 67
E OS VALUEcooiiiiiiieeeeee 48 StartupHOOKcvevviiiiieiieieieeee, 69
Enablelnterrupt..........ccceevuvennnne. 54,56, 57 StatusSTYPe .ooovveeeieieeieeeeeee e 47
EnterISR......cooiiiiieeeee 53 SUSPENDED.......cccoeviiiiiiinieeiieeeee, 52
ErrorHOOKc.ooeiiiiiiiiiieee 68 TASK weieteeiieeieeniee et eniteeteesieeereeneeesneeens 53
EventMaskRefTypecccceeevveviieniennnns 60 TaskRefType ..c.coevvveveieeiieieeieeeeeeee, 48
EventMaskTypecccocvevveeiieniienieeins 60 TaskStateRefTypeccocvveevvveieiieeiieee 48
GetActiveApplicationMode.................... 67 TaskStateTypeccvevvveevieciieeieecieeeeee, 48
GetAlarm.......ccoeeeeierieeiieiecieeeeee e 64 TaSKTYPC ..ccvveeeieeieeeeee e 48
GetAlarmBase.........ccoceevieeciienienieeie, 63 TerminateTask........cccceeevveevciienciieeiene, 50
GetEventoooviiviiiiii 61 TICkRefTYPC..oovvvieeiieeeieeeee e 62
GetlnterruptDescriptor...........ceceeeveenneens 55 ticksperbaseccveeeveieeciieeiiie e, 63
GetResource........oovveeveieeviieenieeeiieeee, 59 TICKTYPE oo 62
GetTaskID.......oooevieiieiiieieceeeeee 51 WaitEvent.........cccveveeeieecieeiieeieeeenee. 62
GetTaskState......ccoocveeeievieeiieieeieees 52 WAITING.......coiiiiieieceeeeeeee e, 52
INITIAL INTERRUPT DESCRIPTOR 58

IntDescriptorRefTypecccveveveeieennnnns 53

OSEK OS 2.1 release candidate 1

© by OSEK 81

1

!

OSEK/VDX ‘ Operating System

Specification 2.1 release candidate 1

15.1 List of figures

Figure 1-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 5-1
Figure 5-2
Figure 6-1
Figure 6-2
Figure 7-1
Figure 7-2
Figure 7-3
Figure 8-1
Figure 10-1
Figure 10-2
Figure 10-3
Figure 13-1
Figure 13-2

Software interfaces inside ECU........cccoooiiviiiiiiiiiniiiieeseeeeee e 9
Processing levels of the OSEK operating Systemccoecveeevvenieeieenieennnenne. 14
Processing levels of the OSEK operating Systemccoecveeeiveneeeieenieennnenne. 15
Restricted upward compatibility for conformance classesc..ccoceevvereennene. 16
The minimum requirements for Conformance Classesc..ccccevvveveeriennenne. 16
Extended task state modelcccooieiiiiiniiiinii e 18
States and status transitions for extended tasksccoeeeevienieiciiinienienen. 18
Basic task state mOdel..........coeevuiiiiiiiiiiiiii e 19
States and status transitions for basic tasksccccceeviiiiiiiiinieniiee, 19
Scheduler: order Of @VENtSccccoviiiiiiiiienieeeeeeeee e 21
Non pre-emptive SCheduling.........ccoooviiiiiiiiiiiicieee e 22
Full pre-emptive schedulingcccoooieeiiiiieniiiiiieeeeeee e 23
ISR categories of the OSEK operating SyStemc.ccceevierieenieeneencieenneenne 26
API services allowed to be called by tasks and ISRs...........ccccveriiiiieniennnnne 27
Full pre-emptive synchronisation of extended tasks........c..ccccevveriiiiininncnnene. 30
Non pre-emptive synchronisation of extended tasksc..cccceveveveiiiniencnnenn 30
Priority inversion on occupying S€Maphores............cccveerveerieeciienieeeeerieeneeenn 32
Deadlock situation using S€Maphores.c.cevverriieriieriieenie e eiee e 33
Resource assignment with priority ceiling between pre-emptive tasks. 34
Layered model of alarm management............c.cccceeveniiiinieninienieeeeneeee 38
API services for hooK roUtines...........covevuerieriiiiinieniiiienecseeee e 41
SYSTEM STATE-UP ©eeeeuviieeiiiieiiie ettt ettt et e et e s ee s e e 43
PreTaskHook and PostTaskHOOKccccoviiviiiiiiniiiiniinieeccceee 44
INESEEA INLETTUPLS ..evveeiieeiiieeiie ettt ettt ettt e et e sttt et e ebeesaeesebeenbeessseensaens 73
Implementation SPecific tOOLS.cciriiriiierieriiiieieeee e 75

82

© by OSEK OSEK OS 2.1 release candidate 1

!

ml| OSEK/VDX ‘

Operating System
Specification 2.1 release candidate 1

16 History

Version Date Remarks

1.0 11. Sept. 1995 Authors:
Thomas Wollstadt Adam Opel AG
Wolfgang Kremer BMW AG
Jochem Spohr Daimler-Benz AG
Stephan Steinhauer Daimler-Benz AG
Thomas Thurner Daimler-Benz AG
Karl Joachim Neumann University of Karlsruhe
Helmar Kuder Mercedes-Benz AG
Frangois Mosnier Renault SA
Dietrich Schifer-Siebert Robert Bosch GmbH
Jiirgen Schiemann Robert Bosch GmbH
Reiner John Siemens AG

2.0 02. June 1997 Authors:
Wolfgang Kremer BMW AG
Salvatore Parisi Centro Ricerche Fiat
Andree Zahir ETAS GmbH & Co KG

2.0 revision 1 15. October 1997
2.1 rel. candidate 1 18. Jan 2000

Stephan Steinhauer
Jochem Spohr
Jan Soderberg
Piero Mortara
Helmar Kuder
Bob France
Kenji Suganuma
Stefan Poledna
Gerhard Goser
Georg Weil
Alain Calvy
Karl Westerholz
Jirgen Meyer
Ansgar Maisch

Authors see version 2.0

Authors:

Klaus Gresser
Adam Jankowiak
Jochem Spohr
Andree Zahir
Markus Schwab
Erik Svenske
Maxim Tchervinsky
Ken Tindell
Gerhard Goser
Carsten Thierer
Winfried Janz
Volker Barthelmann

Daimler-Benz AG

ATM Computer GmbH
Delco

Magneti Marelli
Mercedes-Benz AG
Motorola SPS
Nippondenso co., Itd
Robert Bosch AG
Siemens Automotive SA
Siemens Automotive SA
Siemens Automotive SA
Siemens Semiconductors
Softing GmbH
University of Karlsruhe

BMW
DaimlerChrysler
DaimlerChrysler
ETAS

Infineon

Mecel

Motorola

NRTA

Siemens Automotive
University of Karlsruhe
Vector Informatik
3Soft

OSEK OS 2.1 release candidate 1

© by OSEK

83

	Introduction
	System philosophy
	Purpose of this document
	Structure of this document

	Summary
	Architecture of the OSEK operating system
	Processing levels
	Conformance classes

	Task management
	Task concept
	Task state model
	Extended tasks
	Basic tasks
	Comparison of the task types

	Activating a task
	Task switching mechanism
	Task priority
	Scheduling policy
	Non pre-emptive scheduling
	Full pre-emptive scheduling
	Mixed pre-emptive scheduling
	Selecting the scheduling policy

	Termination of tasks
	Application modes
	Start up performance
	Support of exclusive applications
	Supported by all conformance classes

	Interrupt processing
	Event mechanism
	Resource management
	Behaviour during access to occupied resources
	Restrictions when using resources
	Scheduler as a resource
	General problems with synchronisation mechanisms
	Explanation of priority inversion
	Deadlocks

	OSEK Priority Ceiling Protocol
	OSEK Priority Ceiling Protocol with extensions for interrupt levels

	Alarms
	Counters
	Alarm management

	Messages
	Error handling, tracing and debugging
	Hook routines
	Error handling
	System start-up
	System shutdown
	Debugging

	Description of system services
	Definition of system objects
	Conventions
	Type of calls
	Legitimacy of calls
	Error characteristics

	Specification of operating system services
	Common datatypes
	Task management
	Data types
	Constructional elements
	DeclareTask

	System services
	ActivateTask
	TerminateTask
	ChainTask
	Schedule
	GetTaskID
	GetTaskState

	Constants
	Naming convention

	Interrupt handling
	Data types
	System services
	EnterISR
	LeaveISR
	EnableInterrupt
	DisableInterrupt
	GetInterruptDescriptor
	EnableAllInterrupts
	DisableAllInterrupts
	ResumeOSInterrupts
	SuspendOSInterrupts

	Constants
	Naming convention

	Resource management
	Data types
	Constructional elements
	DeclareResource

	System services
	GetResource
	ReleaseResource

	Constants

	Event control
	Data types
	Constructional elements
	DeclareEvent

	System services
	SetEvent
	ClearEvent
	GetEvent
	WaitEvent

	Alarms
	Data types
	Constructional elements
	DeclareAlarm

	System services
	GetAlarmBase
	GetAlarm
	SetRelAlarm
	SetAbsAlarm
	CancelAlarm

	Constants

	Operating system execution control
	Data types
	System services
	GetActiveApplicationMode
	StartOS
	ShutdownOS

	Constants

	Hook routines
	ErrorHook
	PreTaskHook
	PostTaskHook
	StartupHook
	ShutdownHook

	Implementation and application specific topics
	Implementation hints.
	Aspects of implementation
	Parameters of implementation
	Functionality
	Hardware resources
	Performance
	Configuration of run time context

	Application design hints
	Resource management
	Occupation in LIFO order
	Call level of API-services
	Resources still occupied at task termination

	Placement of API calls
	Interrupt service routines
	Local variables in ISRs of category 3
	Nested interrupts of different categories
	Direct manipulation of interrupt levels

	Priority and pre-emption
	Parameter to pass to ShutdownOS
	Error handling
	Errors and warnings

	Implementation specific tools

	Changes from specification 1.0 to 2.1
	Changes from specification 1.0 to 2.0r1
	Conceptual changes
	Conformance classes
	Messages
	Multiple requesting of task activation
	Application modes
	Counters
	Hook routines
	OS execution control

	Clarifications
	Scheduling of non pre-emptive tasks
	Services available on which level
	Interrupt processing
	Priority ceiling
	Types and constants
	Naming conventions

	Changes of the documentation
	Document structure
	New chapters
	Removed chapters

	Changes from specification 2.0r1 to 2.1
	Behaviour of ChainTask/TerminateTask with allocated resources is undefined.
	GetTaskID is allowed in ISRs.
	Interrupt handling has been clarified and extended.
	Error checking of GetResource/ReleaseResource have been modified.
	Added constant OSTICKSPERBASE.
	ShutdownOS is allowed in ISRs and certain hook routines.
	Behaviour of ShutdownOS after ShutdownHook returns is implementation defined.
	Added constant OSDEFAULTAPPMODE.
	ErrorHook is never called recursively.
	Local Messages added to specification.

	Index
	List of figures

	History

