B U OSEK/VDX Operating System

Specification 2.1r1

OSEK/VDX

Operating System

Version 2.1 revision 1

13. November 2000

This document is an official release and replaces all previoudy distributed documents. The OSEK group retains the right to
make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without permissonin
writing from the OSEK/VDX steering committee.

OSEK 0S2.1r1 © by OSEK Document: OS21r1.doc

B U OSEK/VDX Operating System

Specification 2.1r1

Preface

OSEK/VDX isajoint project of the automotive industry. It ams at an industry standard for an
open-ended architecture for distributed control unitsin vehicles.

For detailed information about OSEK project goals and partners, please refer to the “OSEK
Binding Specification”.
This document describes the concept of a real-time operating system, capable of multitasking,

which can be used for motor vehicles. It is not a product description which relates to a specific
implementation.

This document also specifies the OSEK operating system - Application Program Interface.

General conventions, explanations of terms and abbreviations have been compiled in the
additional inter-project "OSEK Overall Glossary".

Regarding implementation and system generation aspects please refer to the "OSEK
I mplementation Language” (OIL) specification.

OSEK OS2.1r1 © by OSEK 2

B U OSEK/VDX Operating System

Specification 2.1r1

Table of Contents

R 1 014 0o [F o1 o o FE PP OTRR 7
11 System PhilOSOPNY.......oveiiiiiiiee et e e e e e e e e nnnees 7
1.2 Purpose of thiSAOCUMENTccoiiiiiiei i 9
1.3 Structure of thiSAOCUMENL.............oiiiiiieie e e 10

2 SUIMIMIBIY .eteeeieeeeeeiiitteteeeee s e e s sestsaeeeaaeeeaassssbeeeeeaaeeeaassseeeeeeeaeeeaaaassbbeeeeaaeeeasansssbaneeaaeeennnnns 12

3 Architecture of the OSEK 0operating SySteM........c.veiieiiiieie e 13
3.1 ProCesSiNG IEVEISoooeeee e 13
3.2 CoNfOrMANCE CIASSEScoouiiietie ettt st e saree e 14
3.3 Reationship between OSEK OS and OSEKLtIMe OS...........cccciveeeiiiiiie e, 16

I S Q10 0 8[| RSP 17
N = S Qo0 0= o | AR 17
4.2 Task SAE MOAE!cooiiiieiiie e 17

4.2.1 EXENUE LASKSeiiiiiie e 17
A.2.2 BASICTASKS ..ueiiiieie ettt bbbt s nneeas 18
4.2.3 Comparison of the task tYPES........cccoiiiiii i 19
B o 1V] 0 = = S PSR 20
4.4 Task SWitching MEChaNISM............ooiiiiiie e 20
I = S Qo] 0] 11 Y PR 20
4.6 SCheduliNg POLICYvviee it e e e e e e snre s 21
4.6.1 Non pre-emptive SChedulingcooiiiriiiiiiie e 21
4.6.2 Full pre-emptive sSCheduling..........ooooiiiiie e 22
4.6.3 Mixed pre-emptive SChedulingccveeiiiiiiii e 23
4.6.4 Selecting the scheduling POLICYcccooviiiii i 24
A7 TerminNation Of TASKS.cuiiiiie i 24
VA AN oo [Tor= (o) 0 I 0700 (=T PR 24
481 Start Up PEfOIMANCE.......cviiee ettt e e e 25
4.8.2 Support of exclusive appliCaIONS...........ccueeiiiiiie e 25
4.8.3 Supported by al conformance Classes..........cccveveiiiiie et 25
I NEEITUPL PrOCESSING... . vveeeeiiiteee e ettt e e ettt e e e e sttt e e e et e e e e sate e e e asssaeeeeassseeeeeassaeaeeannsneaeaans 26
EVENT MECNANISIM.....eeii ettt e st e e st e e sbe e sbe e e sbeeeans 29
RESOUICE MANAGEIMENTeieiiiiiie ettt s e e e s e s s r e e e e e s s s bbra e e e e e e e e e ennsnreeees 31
7.1 Behaviour during access to OCCUPIEA FESOUICES...........uveveeeirrreeeeiiieeeeessieeeeessneeaeans 31
7.2 ReStrICtioNS WheN USING FESOUICES.......ceeeiirireeeeiiieeeesesseeeessssaeeessnsseeesssssseeeessnssseees 31
7.3 SChEAUIEr @S ATESOUICEceiiuiiieiiiiee ittt ettt et e ettt et e e sia e e sab e e e sabe e e sneeeens 32
7.4 General problems with synchronisation mechanisms............coccceeviiieeeecccieee e 32
7.4.1 Explanation of priority INVErSION.........cccoiiiiieeiiiie e e esieee e e esnreee e 32
T.4.2 DEAIOCKScoiiiiieiiiie ettt ettt esnne e e nne e 33
7.5 OSEK Priority Ceailing ProtOCOlccccuiiiiiiiiiie e 33
7.6 OSEK Priority Ceiling Protocol with extensions for interrupt levels.............ccoee.... 34

8 ALGIIMNIS . e e e e h b e e a bt e e e be e e nbeeesnee s 37
8.1 COUNMLEIS......eeeeee ettt ettt e e et e e e e et e e e e e e e e e e neb e e e e e nne e e e e e annneeeeaannnneeeaannnneas 37
8.2 AlarM MANAgEMENT......ci ittt e e e e e e e earae e 37

S T AV =SS [P EUEPR S ROPPPRPRPR 39

OSEK 0S2.1r1 © by OSEK 3

=1 OSEK /VDX

Operating System
Specification 2.1r1

10 Error handling, tracing and debugging
10.1 HOOK FOULINES........eeeiireeaiiie e
10.2 Error handlingcooeoviiiieeiiiiiee e
10.3 System Start-Up......cccvveeeeeeeeeiiiiiiieeeeee e e
10.4 System ShutdoWN...........c.eeveeiiiieeecciiiee e
10.5 Debugging......cccceeeiiiieeiiiiiiee e

11 Description of system services
11.1 Definition of system objects..........ccccveveeiiieenens
11.2 CONVENLIONSoooiiiieiiiie ettt
11.2.1 Typeof cals......ccoovveiiiiiiiiiiiiecceiiene,
11.2.2 Legitimacy of cals........cccceeeevivireiiiiienes
11.2.3 Error charaCteristiCSccvvevveeniiieeiieeenne

12 Specification of operating system services
12.1 Common datatyPesS.........ueveeevvreeeeiiiieeeeiiieeeeeans
12.2 Task management.........cccceeevviveeeeeiieeeecciieee e
12.2.1 DaatyPeS...cccvieiiiiiiiiiiiiiiee e
12.2.2 Constructional elements...........ccccceecvveeenn.
12221 Dedar€Task......cccooeviveiiieiieenieenieeseenieens

12.2.3 SySteM SEIVICESuvvveiiiiieeeeeciiee e
12231 ACHVAETASKcceieeeiecie e

12232 TerminateTasK......ccccccveveerieenieneeseesennn

12.2.3.3 ChainTasKcccccceveeveeiieiieneeseesee e

12234 Schedule.......coooveveeiieieiieeeee e

12.2.35 GeTaskIDcccevvveeereieereeeeeves

12.2.3.6 GetTaskState.....ccocovvveveeieeriesee e

1224 CONSANMS...cevveieeeiiiiiiiieeeeee e
12.2.5 Naming convention............ccccccuveeeeiiineneenns
12.3 Interrupt handling.........cccoeveeviiieee e,
12.3.1 DaatyPesS....ccceeeiiiiiiiiiiiiiiee e eciiiveeeeeeens
12.3.2 SySteM SEIVICESuvvveiiiiiieeecciieee e
12.3.2.1 ENEISR....ciiiiiieee e

12322 LeavelSR ...

12.3.2.3 Enablelnterrupt........cccooveveeieeneenieeienn,

12.3.2.4 Disablelnterrupt......cccceeevieenieenieenieennen,

12.3.2.5 GetlnterruptDesCriptorccevevereereeenn

12.3.2.6 EnableAllInterrupts.......cccccevivevieennenennn

12.3.2.7 DisableAllINterrupts......cccccevveviveneenennn

12.3.2.8 ResumeOSINterrupts......ccovcveeeveeenieeenenen.

12.3.2.9 SuspendOSINterruptS.......ccevvereereerennn

12.3.3 CONSANS....cvvvveeiiiiiiiiiiieeee e
12.3.4 Naming convention..........c.cccccveeeeeiiineneenns
12.4 Resource management..........cccvvveveeeeeeeeessvvnnnnens
1241 DaatyPeS...cccuveeiiiiiiiriiiiiiee e esseiiveeeeaeens
12.4.2 Congtructional elements..........ccccceecvveeeens
12.4.2.1 DeclareResource.......ccccccevverveieesineneeenn

12.4.3 SySteM SEIVICESuvvveeiiiiieeeeiiieeeeeciieee e
12431 GERESOUICE.ccuvieeieeiiee e

12.4.3.2 ReleaseRESOUICE........cccveieerieeieenie e

1244 CONSANMS...cevvveieiiieiiiiiieieee e
12.5 Event CONtrol........cooeeeiiiiieee e

1251 DaatyPesS....cccoveiiiiiiiiiiiiiiiie e eeeeiiveeeeeeens

OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

12.5.2 Constructional ElementsS..........ccooiiiiiie i 61
12521 DECIArEEVENL......ocuiiiiiiiieiee et nnes 61

12.5.3 SYSLOM SEIVICES ...eiiiiiiiiie ettt e e sttt e e sttt e e e sttt e e e st e e e e st e e e e e sana e e e e e sanaeeeeennnes 61
12.5.3. 1 SEEVENL.....ccviiieiveieicieteieeeeete ettt sttt 61

12.5.3.2 ClEAIEVENL ..ottt e b e e be e e s areeeaeeesnaeesnreeanns 62

12.5.3.3 GEEVENTcii i e e e e ar e e e naees 62

12.5.3.4 WEITEVENcovieieviicete ettt st 63

A G A = 0 0P RRR 63
12.6.1 DalAtYPES....ccciiciiiieiiiie e ettt e e e e e e r e e e e e e raaaaaeaans 63
12.6.2 Constructional ElemeEntS..........coooiiiiiie i 64
N R D 1= o = T =Y = o TR 64

12.6.3 SYSLEM SEIVICES ...eiiiiiiiiie e ettt e e e sttt e e e st e e e e sttt e e e e st e e e e sasb e e e e s ssaeeeeasasaeeeeennnes 64
12.6.3.1 GELATGIMBESE.ceiueiiiieieitiiet sttt e e et e st e st e st et e sbeesbeesteesse e seeseeseeseennes 64

12.6.3.2 GELAIBIM ...oiii ettt e et e e et e s bt e e s st e e st e e sbeeeabeeesbeeesateeanreeanneeereeanns 64

12.6.3.3 SEREAIGIM....ccei e e et e e e sare e aareeans 65

12.6.3.4 SEADSAIGIM....ccuiiiiie ettt s et e st e st e e e sabe e sabe e sbe e ereeeareeeaaeeens 66

R R I O g o= Y - o 1P 67

12.6.4 CONSLANTSciiiiiiiiiteiiee et e e s e e e e e e e s bbb e e e e e e e e e snssanaeeeeeeeeeanans 67
12.7 Operating System eXeCution CONLIOlociiiuiieeiiiiiie e 67
i R D T = 11 0= TP EEUT O PPPPRRRR 67
12.7.2 SYSLOM SEIVICES ..eeiiiiiiiieie e ettt e e ettt e e e e sttt e e e sttt e e e e st e e e e e sasb e e e e e ssaeeeeasasaneeeennnes 68
12.7.2.1 GetActiveAPPliCatioNMOE..........ccveiieieiieciie e 68

S - (1 SR 68

12.7.2.3 SHULAOWNOSoooiiii ettt e s e e e be e st e s ebee e sbeeesaeeesareesnreesseeeneeenns 68

12.7.3 CONSLANTS ...ciiiiiiiiiteiie et e e e e e e e e e s s bbb e e e e e e e e s s ssanaeeeeeeeeeanans 69
12.8 HOOK FOULINESeeeiiiiiiiee i eiiiie ettt e st e e e e e st e e s e e e e s s nb e e e e s enseeeesenaneeeaann 69
12.8.1 EFTOrHOOK ...ccciiiiieeeiiitiie ettt ettt e e e e e e e e e e e b e e e e e s nnnreeaeenns 69
12.8.2 PreTaskHOOKooiiiiiiiii et 69
12.8.3 POSITASKHOOKcccoiiiiieiiiiiiie ettt e e e e e e e e e e e e e 70
12.8.4 SEArtUPHOOKoveieiciiiee et e e e e enrae e e eans 70
12.8.5 ShULAOWNHOOKccuvviieiiiiiiie ettt e e e e e e e 70
13 Implementation and application SPECIfIC LOPICS......covvuriieeiiiiiie e 71
13.1 Implementation NINES.cccuereiiiiiie e e e e e e e e srre e e e e eanes 71
13.1.1 ASpects of Implementation...........ccuvveeiiiiiiee e 71
13.1.2 Parameters of implementalion...........ccccueieeiiiiiee e 71
T R = g Tox {0 g - | SRS 71

13.1.2.2 HarOWare FESOUICESueiueeieeisieesieesstesstesstesssessaessaesssesssesssesssesnsesssesnsesnsesssesssesnsesnns 72

13.1.2.3 PEfOIMMEANCE......ciiiiiiiiiiiiie sttt e s esseessaesneesseesseesneenneennes 72

13.1.2.4 Configuration of run time CONLEXL........ccueiierierieiiee e 72

13.2 Application deSigN NINES..........oooiiiiiiie e 73
13.2.1 ReSOUrCe MaNagEIMENT.......cceiiiiiiiee e e e sriirirr e e e e s e e e e e s s s ssrbbareeeeeeeeennnns 73
13.2.1.1 Occupation iN LIFO OFQErcccviuiiiiiiiiie sttt 73

13.2.1.2 Call level Of API-SEIVICESuiiiiiiiiiicie ettt 73

13.2.1.3 Resources still occupied at task termination...........ccvvevverieieeiesnsese e 74

13.2.2 Placement of APl CallS..........uuviiiiiiie e 74
13.2.3 INtErrUPt SEIVICE FOULINES........eeieiiiiieee e ettt et e et e e e e e e e snra e e 74
13.2.3.1 Local variablesin ISRS Of CAEQOrY 3......ccouviiuiiiiiiiiiiiie e sie e e ees 74

13.2.3.2 Nested interrupts of different Categories........ccovvvviiiieiieiienieseeree e 75

13.2.3.3 Direct manipulation of INterrupt IEVEISoiveiieiieicecec e 76

13.2.4 Priority and pre-empPtioN...........oociiie e 76
13.2.5 Parameter to passto ShutdownOS ... 76
13.2.6 Error Randlingoooicuiiieiiiie et 76
13.2.7 ErrorS and WalrniNGSueeeeiiureeeeiirieeeesisreeesssssseeesssssseeessnsseeesssnssssssssnsssesessnnes 77

OSEK OS2.1r1 © by OSEK 5

B U OSEK/VDX Operating System

Specification 2.1r1

13.3 Implementation SPECITIC LOO0IS........ccuvuiieiiiiie e 78

14 Changes from specification 1.0 10 2,151ooeiiiiiiiei e 79

14.1 Changes from specification 1.0 t0 2.0rL........cccoiiieeiiiiiiie e 79

14.1.1 Conceptual ChangES.........cooiiiiiii i 79

14.1.1.1 ConfOrmanCe ClaSSES........coiuiiiiiei ettt e et e e e re e e s abe e s be e ereeeeree s 79

TA.1.0.2 IMESSATES. . .eeeeeeeeuteeauteeeteeertteesuee e et e e aabe e e bt e e see e aae e e aabeeeabeeebeeeaae e e eaeeesabeeebeeeanneennree s 79

14.1.1.3 Multiple requesting of task aCtiVation.............ccecvrieiienieniese e 79

7 AN o = o I 20 (=~ OSSR 79

I 0t ST o 1 (= (= SRR 79

14.1.1.6 HOOK FOULINES.......ueieitieecieecctee ettt e ettt e et e et eeaee e s ate e e te e s ete e e saeeesabeeenbeeeaseeesnneesnneas 80

14.1.1.7 OS EXECULION CONLIOLvieiiieeieieciee e st et et sate e ste e e be e e saee e saeeesnseesnreeenreean 80

g N O = o= o) S 80

14.1.2.1 Scheduling of NON pre-emptive taskS........coveiieiieiieerece e 80

14.1.2.2 Servicesavailable on WhiCh [EVEooooiiieeeieee e 80

14.1.2.3 INENTUPL PrOCESSING ..veeveeveeiteesieesieesteesteesteesteesteesteesteeteesteebeeteesteenteenteeseenseensesnes 80

14.1.2.4 Priority COIIMNG .coveeieieeeeeee ettt esne e neesree e 80

14.1.25 TYPESANd CONSLANES.....c.eeiiiiiieiiesiee e sieeste et ste e ste e ste e ste et teetesrtessaeentesneesneesneesnes 80

14.1.2.6 NAMiNG CONVENLIONS ...ccuviiiiiiieieeie e eee e sieesteestee e sreesteesteesbeesbeesbeesteesreeneeereenes 80

14.1.3 Changes of the documentation..............occvvriiiiiiiie e 81

14.1.3.1 DOCUMENE SETUCIUIE.ceeiiiieeeiciiee e e sttt e s sttee et e e e st e e e st e e e e saaa e e e enreeeesnnaeeeennneeeennns 8l

I N 1= TV o 0= = SRR 81

14.1.3.3 REMOVED ChaPLErS......coeiiiieitieieesiie ettt esneesree e 81

14.2 Changes from specification 2.0r1to 2.1 and 2.1rL........ccoooviiiieeiiiiiie e 81
14.2.1 Behaviour of ChainTask/TerminateTask with allocated resourcesis

01070 (= 115 o O PRPSUUPPRSPPPRI 81

14.2.2 GetTaskiD isalowed iNISRS........ccviii i 8l

14.2.3 Interrupt handling has been clarified and extended.cccoeeeeiiiiiee e, 82

14.2.4 Error checking of GetResource/ReleaseResource have been modified. 82

14.2.5 Added constant OSTICKSPERBASE.........coooiiiiiiiicieee e 82

14.2.6 ShutdownOS is allowed in | SRs and certain hook routines............ccccceeevveeen. 82

14.2.7 Behaviour of ShutdownOS after ShutdownHook returnsis

implementation defiNed.cooiiiiii e 82

14.2.8 Added constant OSDEFAULTAPPMODE.ccccoooiiiiiiieee e 82

14.2.9 ErrorHook isnever called reCUurSIVEY.ccooiiieeiiiiiie e 82

14.2.10 Local Messages added to SPeCifiCation............ccovveeiiiiieeciciieee e 82

14.2.11 Startup/shutdown when OSEK and OSEKtime coexist (2.1r1)ccccceeuveeee. 82

I 10 L= GRS 83

15,1 LiSt Of fIQUIES... ..t e et e e e e e e e snaneaeaas 84

I 1 (o] YRR 85

© by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

1 Introduction

The specification of the OSEK operating system is to represent a uniform environment which
supports efficient utilisation of resources for automotive control unit application software. The
OSEK operating system is a single processor operating system meant for distributed embedded
control units.

1.1 System philosophy

Automotive applications are characterised by stringent real-time requirements. Therefore the
OSEK operating system offers the necessary functionality to support event driven control
systems.

The specified operating system services congtitute a basis to enable the integration of software
modules made by various manufacturers. To be able to react to the specific features of the
individual control units as determined by their performance and the requirements of a minimum
consumption of resources, the prime focus was not to achieve 100% compatibility between the
application modules, but their direct portability.

As the operating system is intended for use in any type of control units, it must support time-
critical applications on a wide range of hardware. A high degree of modularity and ability for
flexible configuration are prerequisites to make the operating system suitable for low-end
microprocessors and complex control units alike. These requirements have been supported by
definition of "conformance classes' (see chapter 3.2, Conformance classes) and a certain
capability for application specific adaptations.

For time-critical applications dynamic generation of system objects was left out. Instead,
generation of system objects was assigned to the system generation phase. Error inquiries
within the operating system are obviated to a large extent, so as not to affect the speed of the
overall system unnecessarily. On the other hand, a system version with extended error inquiries
has been defined. It is intended for the test phase and for less time-critical applications. Even at
that stage defined uniform system appearance is ensured.

Standardised interfaces

The interface between the application software and the operating system is defined by system
services. The interface is identical for al implementations of the operating system on various
processor families.

System services are specified in an ISO/ANSI-C-like syntax, however the implementation
language of the system services is not specified.

Scalability

Different conformance classes, various scheduling mechanisms and the configuration features
make the OSEK operating system feasible for a broad spectrum of applications and hardware.

The OSEK operating system is designed to require only a minimum of hardware resources
(RAM, ROM, CPU time) and therefore runs even on 8 bit microcontrollers.

Error checking

The OSEK operating system offers two levels of error checking, extended status for
development phase and standard status for production phase.

OSEK OS2.1r1 © by OSEK 7

B U OSEK/VDX Operating System

Specification 2.1r1

The extended status allows for enhanced plausibility checks on calling operating system
services. Due to the additional error checking it requires more execution time and memory
space than the standard version. However, many errors can be found in a test phase. After all
errors have been eliminated, the system can be recompiled with the standard version.

Portability of application software

One of the goals of OSEK isto support the portability and re-usability of application software.
Therefore the interface between the application software and the operation system is defined
by standardised system services with well-defined functionality. Use of standardised system
services reduces the effort to maintain and to port application software and development cost.

Portability means the ability to transfer an application software module from one ECU to
another ECU without bigger changes inside the application.

The application software lies on the operating system and in parallel on a application-specific
Input/Output System interface which is not standardised in the OSEK specification. The
application software module can have several interfaces. There are interfaces to the operating
system for real time control and resource management, but also interfaces to other software
modules to represent a complete functionality in a system and at least to the hardware, if the
application has to work directly with microcontroller modules.

For better portability of application software, the OSEK defines a language for a standardised
configuration information. This language "OIL" (OSEK Implementation Language) supports a
portable description of all OSEK specific objects such as "tasks" and "alarms” etc.

module 1 module 2 module 3 module n

e D D@E <:>E|
7T 0

OSEK operation system

Input/Output System

3 3

uController

Figure1-1 Software interfaces inside ECU*

During the process to port application software from one ECU to another ECU it is necessary
to consider characteristics of the software development process, the development environment,
and the hardware architecture of the ECU, for example:

! OSEK OS alows direct interfaci ng between application and the hardware.

8 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

. Software development guidelines

. File management system

. Data dlocation and stack usage of the compiler
. Memory architecture of the ECU

. Timing behaviour of the ECU

. Different microcontroller specific interfaces e.g. ports, A/D converter, serial
communication and watchdog timer

. Placement of the API cals

This means that the OSEK specifications are not enough to describe an OSEK implementation
completely. The implementation has to supply specific documentation.

Support of Portability

The certification process ensures the conformance of different implementations to the
gpecification. Chapter 13 of this specification collects implementation specific details which
have to be regarded to increase portability of an application between various OSEK
implementations. Herein only the operating system interface to the application is considered.

Special support for automotive requirements

Specific requirements for an OSEK operating system arise in the application context of
software development for automotive control units. Requirements such as reliability, real-time
capability, and cost sengitivity are addressed by the following features:

. The OSEK operating system is configured and scaled statically. The number of tasks,
resources, and services required is statically specified by the user.

. The specification of the OSEK operating system supports implementations capable of
running on ROM, i.e. the code could be executed from Read-Only-Memory.

. The OSEK operating system supports portability of application tasks.

. The specification of the OSEK operating system provides a predictable and documented
behaviour to enable operating system implementations, which meet automotive real-time
requirements.

. The specification of the OSEK operating system allows the implementation of
predictable performance parameters.

1.2 Purpose of this document

The following description is to be regarded as a generic description which is mandatory for any
implementation of the OSEK operating system. This concerns the general description of
strategy and functionality, the interface of the calls, the meaning and declaration of the
parameters and the possible error codes.

The gspecification leaves a certain amount of flexibility. On the one hand, the description is
generic enough for future upgrades, on the other hand, there is some explicitly specified
implementation-specific scope in the description.

Any implementation defines al implementation specific issues. The conformance classes
supported by the implementation must be indicated precisely, and the issues identified as
implementation-specific must be documented.

It is assumed that the description of the OSEK operating system is to be updated in the future,
and will be adapted to extended requirements. Therefore, each implementation must specify

OSEK OS2.1r1 © by OSEK 9

B U OSEK/VDX Operating System

Specification 2.1r1

which officially authorised version of the OSEK description has been used as a reference
description. Officidly authorised versions of the OSEK operating system description are
named X.y. This document represents”Version 2.1r1".

Because this description is mandatory, definitions have only been made where the general
system strategy is concerned. In al other respects, it is up to the system implementation to
determine the optimal adaptation to a specific hardware type.

1.3 Structure of this document

In the following text, the specification chapters are described briefly:

Chapter 2, Summary

This chapter provides a brief introduction to the OSEK operating system concept.
Chapter 3, Architecture of the OSEK operating system

This chapter gives a survey about the design principles and the architecture of the OSEK
operating system.

Chapter 4, Task management

This chapter explains the OSEK task management with the different task types and scheduling
mechanisms.

Chapter 5, Interrupt processing

This chapter provides information about the OSEK interrupt strategy and the different types of
interrupt service routines.

Chapter 6, Event mechanism

This chapter explains the event mechanism and the different behaviour depending on the
scheduling.

Chapter 7, Resource management

This chapter describes the OSEK resource management and discusses the benefits and
implementation of the OSEK priority ceiling protocol.

Chapter 8, Alarms

This chapter describes the two-stage concept to support time-based events (e.g. hardware-
timer) as well as non-time-based events (e.g. angle measurement).

Chapter 9, M essages

The message handling for intra processor communication will be added to the OS specification.
Full message handling is described in the OSEK COM specification.

The exact subset to be implemented is yet to be defined.
Chapter 10, Error handling, tracing and debugging

Description of the mechanisms to achieve centralised error-handling. This chapter also
describes the services to initialise and shutdown the system.

Chapter 11, Description of system services
This chapter describes the conventions used for description.

10 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

Chapter 12, Specification of operating system services

This chapter describes all operating system services made available to the user. Structure of the
description isidentical for any service; it contains al the information the service user requires.

Chapter 13, Implementation and application specific topics,

This chapter provides a list of all operating system specific topics, including services, data
types, and constants.

Chapter 14, Changes from specification 1.0to 2.1 and 2.1r1

This chapter provides a survey of maor changes in the operating system specification from
version 1.0 to version 2.1 and 2.1r1.

Chapter 15, Index

List of all operating system services and figures.
Chapter 16, History

List of all official releases.

OSEK OS2.1r1 © by OSEK 11

B U OSEK/VDX Operating System

Specification 2.1r1

2 Summary

The OSEK operating system provides a pool of different services and processing mechanisms.

The OSEK operating system is built according to the user's configuration instructions at
system generation time.

Four conformance classes are avalable to satisfy different requirements concerning
functionality and capability of the OSEK operating system. Thus, the user can adapt the
operating system to the control task and the target hardware. The operating system cannot be
modified later at execution time.

Applications which have been written for a certain conformance class have to be portable to
OSEK implementations of the same class. This is ensured by a definition of the services, their
scope of capahilities, and the behaviour of each conformance class. Only if all the services of a
conformance class are offered with the determined scope of capabilities, the operating system
implementation conforms to OSEK.

The service groups are structured in terms of functionality.

Task management
. Activation and termination of tasks
. Management of task states, task switching

Synchronisation

The operating system supports two means of synchronisation effective on tasks:

. Resource management
Access control for inseparable operations to jointly used (logic) resources or devices, or
for control of a program flow.

. Event control
Event management for task synchronisation.

Interrupt management

. Services for interrupt processing

Alarms

. Relative and absolute alarms

Intra processor message handling

. Services for exchange of data

Error treatment

. M echanisms supporting the user in case of various errors

12 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

3 Architecture of the OSEK operating system

3.1 Processing levels

The OSEK operating system serves as a basis for application programs which are independent
of each other, and provides their environment on a processor. The OSEK operating system
enables a controlled real-time execution of several processes which appear to run in parallel.

The OSEK operating system provides a defined set of interfaces for the user. These interfaces
are used by entities which are competing for the CPU. There are two types of entities.

. Interrupt service routines managed by the operating system
. Tasks (basic tasks and extended tasks)

The hardware resources of a control unit can be managed by operating system services. These
operating system services are called by a unique interface, either by the application program or
internally within the operating system.

OSEK defines three processing levels:
* Interrupt level

* Logical level for scheduler
 Taskleve
Within the task level tasks are scheduled (non, full or mixed pre-emptive) according to their

user assigned priority. The run time context is occupied at the beginning of execution time and
is released again once the task is finished.

interrupt level
N
priority with OS-services

high
A

logical level for scheduling activities 1

task level waiting: yes / no

tasks [~

low preemption: non / full \/\

runtime
OSEK operating system context

Figure3-1 Processing levels of the OSEK operating system

The following priority rules have been established:

. Interrupts have precedence over tasks

. The interrupt processing level consists of one or more interrupt priority levels
. Interrupt service routines have a statically assigned interrupt priority level

OSEK OS2.1r1 © by OSEK 13

B U OSEK/VDX Operating System

Specification 2.1r1

. Assignment of interrupt service routines to interrupt priority levels is dependent on
implementation and hardware architecture

. For task priorities and resource ceiling-priorities bigger numbers refer to higher
priorities.

. The task’ s priority is statically assigned by the user (the meaning of task prioritiesis
described in chapter 4.5)

Processing levels are defined for the handling of tasks and interrupt routines as a range of

consecutive values.

Processing levels Processed instance
K..m Interrupt
] Scheduler
0. Task

Figure3-2 Processing levels of the OSEK operating system (table)
The following rule applies for the processing level :

O<=i<j<k<=m

The operating system provides services and ensures compliance with the priority rules
mentioned above.

Please note that assignment of a priority to the scheduler is only a logical concept which can be
implemented without directly using priorities.

3.2 Conformance classes

Various requirements of the application software for the system, and various capabilities of a
specific system (e.g. processor, memory) demand different features of the operating system. In
the following description, these operating system features are described as "conformance
classes' (CC).

Conformance classes exist to support the following objectives:

» To provide convenient groups of operating system features for easier understanding and
discussion of the OSEK operating system.

» To dlow partial implementations along pre-defined lines. These partial implementations may
be certified as OSEK compliant.

» To create an upgrade path from classes of lesser functionality to classes of higher
functionality with no changes to the application using OSEK related features.

The complete conformance class must be implemented to be certified. However, system
generation needs only to link those system services that are required for a specific application.
Conformance classes cannot be changed during execution.

Conformance classes are determined by the following attributes:

» Multiple requesting of task activation, as described in chapter 4.3
» Task types, as described in chapter 4.2

* Number of tasks per priority

14 © by OSEK OSEK OS2.1r1

Operating System
Specification 2.1r1

=1 OSEK /VDX

All other OSEK features are mandatory if not explicitly stated otherwise.

BT only BT and ET

1 task/priority

no multiple activations BCC1 » ECC1

N
v v

> 1 task/priority

multiple activations BCC2 » ECC2
for basic tasksonly

Figure3-3 Restricted upward compatibility for conformance classes

The following conformance classes are defined:

. BCC1 (only basic tasks, limited to one activation request per task and one task per
priority, while all tasks have different priorities)

. BCC2 (like BCC1, plus more than one task per priority possible and multiple requesting
of task activation allowed)

. ECC1 (like BCC1, plus extended tasks)

. ECC2 (like ECCL, plus more than one task per priority possible and multiple requesting
of task activation allowed for basic tasks)

The portability of applications can only be assumed if the minimum requirements are not
exceeded. The minimum requirements for Conformance Classes are shown in the Figure 3-4.

BCC1 BCC2 ECC1 ECC2

Multiple requesting of no yes BT no BT: yes
task activation ET: no ET: no
Number of tasks 16
which arenot in the (any combination of BT/ET)
suspended state
Morethan onetask no yes no yes
per priority (bothBT/ET) | (both BT/ET)
Number of 8
events per task
Number of task
priorities
Resources RES SCHEDULER 8 (including RES_SCHEDULER)
Alarm 1
Application M ode 1

Figure3-4 The minimum requirements for Conformance Classes

2 BT = Basic Task, ET = Extended Task

OSEK OS2.1r1 © by OSEK 15

B U OSEK/VDX Operating System

Specification 2.1r1

3.3 Relationship between OSEK OS and OSEKtime OS

OSEKtime OS is an operating system especialy tailored to the needs of time triggered
architectures. It allows OSEK OS to coexist with OSEKtime OS. Conceptualy, OSEKtime
assignsitsidle time to be used by OSEK. OSEK OS interrupts and tasks have less importance
(lower priority) than similar entities in OSEKtime OS.

The OSEK interfaces, and the definition of system calls, do not change if OSEK coexists with
OSEKtime. There are minor exceptions with respect to system startup and shutdown due to
the fact that OSEKtime is responsible for the overall system whereas OSEK is only locally
responsible. These deviations are specifically mentioned within this specification.

On top of this, there is functionality defined within OSEKtime which imposes restrictions on
the implementation of OSEK OS if it is intended to coexist with OSEKtime OS. For more
information, please refer to the specification of the OSEKtime OS.

16 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

4 Task management

4.1 Task concept

Complex control software can conveniently be subdivided in parts executed according to their
real-time requirements. These parts can be implemented by the means of tasks. A task provides
the framework for the execution of functions. The operating system provides concurrent and
asynchronous execution of tasks. The scheduler organises the sequence of task execution.

The OSEK operating system provides a task switching mechanism (scheduler), including an
idle mechanism. (see chapter 4.4, Task switching mechanism).Two different task concepts are
provided by the OSEK operating system:

. basic tasks
. extended tasks
Basic Tasks

Basic tasks only release the processor, if
. they terminate,
. the OSEK operating system switches to a higher-priority task, or

. interrupt occurs which cause the processor to switch to an interrupt service routine
(ISR).
Extended Tasks

Extended tasks are distinguished from basic tasks by being alowed to use the operating system
call WaitEvent, which may result in a waiting state (see chapter 6, Event mechanism, and
chapter 12.5.3.4, WaitEvent). The waiting state allows the processor to be released and to be
reassigned to alower-priority task without the need to terminate the running extended task.

In view of the operating system, management of extended tasks is, in principle, more complex
than management of basic tasks and requires more system resources.

4.2 Task state model

The following text describes the task states and the transitions between the states for both task
types.

A task must be able to change between severa states, as the processor can only execute one
instruction of atask at any time, while several tasks may be competing for the processor at the
same time. The OSEK operating system is responsible for saving and restoring task context in
conjunction with task state transitions whenever necessary.

4.2.1 Extended tasks

Extended tasks have four task states:

running In the running state, the CPU is assigned to the task, so that itsinstructions
can be executed. Only one task can be in this state at any point in time, while
all the other states can be adopted simultaneously by several tasks.

ready All functional prerequisites for atransition into the running state exist, and
the task only waits for allocation of the processor. The scheduler decides
which ready task is executed next.

OSEK OS2.1r1 © by OSEK 17

B U OSEK/VDX Operating System

Specification 2.1r1

waiting A task cannot continue execution because it has to wait for at least one event
(see chapter 6, Event mechanism).

suspended In the suspended state the task is passive and can be activated.

terminate

preempt suspended

release

activate

Figure4-1 Extended task state model

Trangtion |Former New Description
state state
activate suspended | ready A new task is set into the ready state by a system

service. The OSEK operating system ensures that the
execution of the task will start with the first

instruction.
start ready running A ready task selected by the scheduler is executed.
wait running waiting The trangition into the waiting state is caused by a

system service. To be able to continue operation, the
waiting task requires an event.

release waiting ready At least one event has occurred which atask has
waited for.
preempt running ready The scheduler decides to start another task. The run-

ning task is put into the ready state.

terminate | running suspended | The running task causes its transition into the
suspended state by a system service.

Figure4-2 States and status transitions for extended tasks

Termination of a task is only possible if the task terminates itself ("self-termination”). This
restriction reduces complexity of an operating system. There is no provision for a direct
trangition from the suspended state into the waiting state. This transition is redundant and
would add to the complexity of the scheduler.

4.2.2 Basic tasks

The state model of basic tasks is nearly identical to the extended tasks state model. The only
exception isthat basic tasks do not have a waiting state.

18 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

running In the running state, the CPU is assigned to the task, so that itsinstructions
can be executed. Only one task can be in this state at any point in time, while
all the other states can be adopted simultaneously by several tasks.

ready All functional prerequisites for atransition into the running state exist, and
the task only waits for allocation of the processor. The scheduler decides
which ready task is executed next.

suspended In the suspended state the task is passive and can be activated.

terminate

preempt suspended

activate

Figure4-3 Basic task state model

Trangtion |Former New Description
state state

activate suspended | ready® A new task is set into the ready state by a system
service. The OSEK operating system ensures that the
execution of the task will start with the first

instruction.
start ready running A ready task selected by the scheduler is executed.
preempt running ready The scheduler decides to start another task. The

running task is put into the ready state.

terminate | running suspended | The running task causes its transition into the
suspended state by a system service.

Figure44 Statesand status transtions for basic tasks

4.2.3 Comparison of the task types

Basic tasks have no waiting state, and thus only comprise synchronisation points at the
beginning and the end of the task. Parts of application with internal synchronisation points,
have to be implemented by more than one basic tasks. An advantage of basic tasks is ther
moderate requirement regarding run time context (RAM).

An advantage of extended tasks is that they can handle a coherent job in a single task, no

matter which synchronisation requests are active. Whenever current information for further
processing is missing, the extended task switches over into the waiting state. It exits this state

% Task activation will not immediately change the state of the task in case of multiple activation reguests. If the
task is not suspended, the activation will only be recorded and performed later.

OSEK OS2.1r1 © by OSEK 19

B U OSEK/VDX Operating System

Specification 2.1r1

whenever corresponding events signal the receipt or the update of the desired data or events.
Extended tasks also comprise more synchronisation points than basic tasks.

4.3 Activating a task

Task activations are performed using the operating system services ActivateTask or
ChainTask. After activation the task is ready to execute from the first statement.

The OSEK operating system does not support C-like parameter passing when starting a task.
Those parameters should be passed by message communication (see “Messages’) or by global
variables.

Multiple requesting of task activation

Depending on the conformance class a basic task can be activated once or multiple times.
"Multiple requesting of task activation” means that the OSEK operating system receives and
records parallel activations of abasic task already activated.

The number of multiple requests in parallél is defined in a basic task specific attribute during
system generation. If the maximum number of multiple requests has not been reached, the
request is queued. The requests of basic task activations are queued per priority in activation
order.

4.4 Task switching mechanism

Unlike conventional sequentia programming, the principle of multitasking allows the operating
system to execute various tasks concurrently. Therefore the scheduling policy has clearly to be
defined (see chapter 4.6, Scheduling policy).

The entity deciding which task has to be started and the triggering of al necessary OSEK
operating system internal activities is called scheduler. The scheduler is activated whenever a
task switch is possible according to the implemented scheduling policy. The scheduler can be
considered as a resource which can be occupied and released by tasks. Thus, atask can reserve
the scheduler to avoid a task switch until it is released. For further details, please refer to
chapter 7.3, Scheduler as aresource.

4.5 Task priority

The scheduler decides on the basis of the task priority (precedence) which is the next of the
ready tasks to be transferred into the running state.

The value O is defined as the lowest priority of a task. Accordingly bigger numbers define
higher priorities.

To enhance efficiency, a dynamic priority management is not supported. Accordingly the
priority of a task is defined statically, i.e. it cannot be changed by the user at the time of

execution. However, in particular cases the operating system can treat a task with a defined
higher priority. Inthis context, please refer to chapter 7.5, OSEK Priority Ceiling Protocol.

Tasks of identical priority are supported in the conformance classes BCC2 and ECC2, see
chapter 3.2, Conformance classes.

Tasks on the same priority level are started depending on their order of activation, whereby
extended tasks in the waiting state do not block the start of subsequent tasks of identical
priority.

A pre-empted task is considered to be the first task in the ready list of its current priority.

20 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

A task being released from the waiting state is treated like the newest task in the ready queue
of its priority.

Figure 4-5 shows an example implementation of the scheduler using for each priority level.
Severd tasks of different priorities are in the ready state; i.e. three tasks of priority 3, one of
priority 2 and one of priority 1, plus two tasks of priority 0. The task which has waited the
longest time, depending on its order of requesting, is shown at the bottom of each queue. The
processor has just processed and terminated a task. The scheduler selects the next task to be
processed (priority 3, first queue). Before priority 2 tasks can be processed, all tasks of higher
priority must have left the running and ready state, i.e. started and then removed from the
gueue either due to termination or due to transition into waiting state.

next task
to be processed

n | " 3 2 1 0
FIFO N
queue 1
eoe HH [| I [| task
priority high A > low

scheduler

processor .

actually processed and
terminated task

Figure4-5 Scheduler: order of events

The following fundamental steps are necessary to determine the next task to be processed:

. The scheduler searches for al tasks in the ready/running state.

. From the set of tasks in the ready/running state, the scheduler determines the set of tasks
with the highest priority.

. Within the set of tasks in the ready/running state and of highest priority, the scheduler
finds the oldest task.

4.6 Scheduling policy

4.6.1 Non pre-emptive scheduling

The scheduling policy is described as non pre-emptive, if task switching is only performed via
one of a selection of explicitly defined system services (explicit points of rescheduling).

Non pre-emptive scheduling imposes particular constraints on the possible timing requirements
of tasks. Specifically the non pre-emptable section of a running task with lower priority delays
the start of atask with higher priority up to the next point of rescheduling.

In Figure 46, task T2 with the lower priority delays task T1 with higher priority up to the
next point of rescheduling (in this case termination of task T2).

OSEK OS2.1r1 © by OSEK 21

B U OSEK/VDX Operating System

Specification 2.1r1

activation of latency time for task T1
task T1 %
v -
Task Tl’suspended ready running ‘
Task Tz‘running suspended ‘
termination of task T2

Figure4-6 Non pre-emptive scheduling

Points of rescheduling

In the case of a non pre-emptive task, rescheduling will take place exactly in the following
Cases:

. Successful termination of atask (system service TerminateTask, see chapter 12.2.3.2).

. Successful termination of atask with explicit activation of a successor task (system
service ChainTask, see chapter 12.2.3.3).

. Explicit call of scheduler (system service Schedule, see chapter 12.2.3.4).

. A trangition into the waiting state takes place (system service WaitEvent, see chapter
12.5.3.4)*,

Implementations of non pre-emptive systems may prescribe that operating system services
which cause rescheduling may only be called at the highest task program level (not in task
subfunctions). Consequently, a task switch at these points of scheduling only requires saving
minimum task context (no stack, only few registers e.g. program counter and/or processor
status).

4.6.2 Full pre-emptive scheduling

Full pre-emptive scheduling means that a task which is presently running may be rescheduled
at any instruction by the occurrence of trigger conditions pre-set by the operating system. Full
pre-emptive scheduling will put the running task into the ready state, as soon as a higher-
priority task has got ready. The task context is saved so that the pre-empted task can be
continued at the location where it was pre-empted.

With full pre-emptive scheduling the latency time is independent of the run time of lower
priority tasks. Certain restrictions are related to the increased (RAM-) memory space required
for saving the context, and the enhanced complexity of features necessary for synchronisation
between tasks. As each task can theoretically be rescheduled at any location, access to data
which are used jointly with other tasks must be synchronised.

In Figure 4—7, task T2 with the lower priority does not delay the scheduling of task T1 with
higher priority.

* The call of WaitEvent does not lead to a waiti ng state if one of the events passed in the event mask to
WaitEvent is already set. In this case WaitEvent does not |ead to a rescheduling.

22 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

activation termination
of task T1 % N of task T1
%
A\
Task T1 ‘suspended ‘ running suspended ‘
Tassz‘running ready running ‘

Figure4-7 Full pre-emptive scheduling

In the case of a full pre-emptive system, the user must constantly expect pre-emption of the
running task. If a task fragment must not be pre-empted, this can be achieved by blocking the
scheduler temporarily via the system service GetResour ce.

Summarised, rescheduling is performed in all of the following cases:
. Successful termination of atask (system service TerminateTask, see chapter 12.2.3.2).

. Successful termination of atask with explicit activating of a successor task (system
service ChainTask, see chapter 12.2.3.3).

. Activating atask at task level (e.g. system service ActivateTask, see chapter 12.2.3.1,
message notification mechanism, alarm expiration, if task activation is defined, see
chapter 8.2).

. Explicit wait call, if atrangtion into the waiting state takes place (extended tasks only,
system service WaitEvent, see chapter 12.5.3.4).

. Setting an event to awaiting task at task level (e.g. system service SetEvent, see chapter
12.5.3.1, message notification mechanism, alarm expiration, if event setting defined, see
chapter 8.2).

. Release of resource at task level (system service ReleaseResource, see chapter 11.3.3.2)
. Return from interrupt level to task level

During interrupt service routines no rescheduling is performed (see figure 3-1).

To enable portable applications to be written in spite of the different scheduling policies, the
user can enforce a rescheduling via the system service Schedule at locations where he assumes
acorrect assignment of the CPU.

4.6.3 Mixed pre-emptive scheduling

If full pre-emptive and non pre-emptive tasks are mixed on the same system, the resulting
policy is called "mixed pre-emptive" scheduling. In this case scheduling policy depends on pre-
emption properties of running task. If the running task is non pre-emptive, then non pre-
emptive scheduling is performed. If the running task is pre-emptive, then pre-emptive
scheduling is performed.

The definition of a non pre-emptive task makes sense in a full pre-emptive operating system,

. if the execution time of the task is in the same magnitude of the time of atask switch,

. if RAM isto be used economically to provide space for saving the task context, or

. if the task must not be pre-empted.

Many applications comprise only few parallel tasks with a long execution time, for which a full

pre-emptive operating system would be convenient, and many short tasks with a defined
execution time where non pre-emptive scheduling would be more efficient. For this configura-

OSEK OS2.1r1 © by OSEK 23

B U OSEK/VDX Operating System

Specification 2.1r1

tion, the mixed pre-emptive scheduling policy was developed as a compromise (see also the
design hint in chapter 13.2.4).

4.6.4 Selecting the scheduling policy

The software developer or the system integrator determines the task execution sequence by
configuring the task priorities and assigning the pre-emptibility as atask attribute.

We would like to point out expresdy that the pre-emptibility of the system depends neither on
the conformance class, nor on the task type. Above al, afull pre-emptive system may therefore
contain basic tasks, and a non pre-emptive system extended tasks.

If an operating system service is running, pre-emption and context switch might be delayed
until the completion of the service.

4.7 Termination of tasks
In the OSEK operating system, atask can only terminate itself ("self-termination’).

The OSEK operating system provides the service ChainTask to ensure that a dedicated task
activation is performed just after the termination of the running task. Chaining itself puts the
task into the last element of the priority queue.

Each task hasto terminate itself at the end of its code. Ending the task without a call to
TerminateTask or ChainTask is strictly forbidden!

4.8 Application modes

Application modes are designed to alow an OSEK operating system to come up under
different modes of operation. The minimum number of supported application modes is one. It
is intended only for modes of operation that are totally mutually exclusive. An example of two
exclusive modes of operation would be end-of-line programming and normal operation. Once
the operating system has been started, it is not allowed to change the application mode.

The characteristics of application modes are:
. start up performance

. support of exclusive applications

. supported by all conformance classes

Scope of application modes

Many ECUs may execute completely independent applications as e.g. factory test, Flash pro-
gramming or normal operation. The application mode is a means to structure the software
running in the ECU according to those different conditions. Typically each application mode
congists of an own set of tasks, ISRs and timing conditions, although there is no limitation to
having atask or ISR running in different modes. Sharing atask/I SR between different modesis
recommended if the same functionality is needed again, because checking the current
application mode inside the task/I SR at runtime is very inefficient.

Having system generation and optimisation in mind, application modes are helpful to reduce
the number of OS objects taken into consideration.

Switching between application modes at runtime is not a strong request from applications. It
could be helpful e.g. if end-of-fabrication-test is designed as a separate mode. One reason why
mode switching at runtime is not allowed is that normally timing constrains have to be met

24 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

throughout the operation as for example the still-alive-protocol between main and supervisor
processors.

4.8.1 Start up performance

The start up performance is a safety critical issue for ECUs in automotive applications since
reset conditions may occur during normal operation. As aresult the code used to determine the
application mode should be very quick. It is recommended that only pin states, or similarly
easy to assess conditions be used to determine the mode. The mode will be determined before
the kernel is started and the resulting code is non-portable. It is clear that a lengthy or
complicated starting procedure should be avoided.

4.8.2 Support of exclusive applications

Application modes allow independent development of totally separate systems.

For systems that are completely exclusive, this feature will alow a very clean mechanism for
independent system development.

4.8.3 Supported by all conformance classes

Because the overhead of mode detection is minimal, there is no reason to restrict the feature of
application modes to a subset of conformance classes. It is required for al classes. At start up,
the user code using no system services (see Figure 10-2), will determine the mode and pass it
as a parameter to the API-service SartOS’. This will allow the operating system to load the
correct contexts, and other OS information to allow the execution of the correct applications.

Thereis no impact on the shutdown functionality.

®Incaseof a system where OSEK and OSEKtime coexist, the application mode passed to OSEKtimeis used.

OSEK OS2.1r1 © by OSEK 25

Operating System
Specification 2.1r1

=1 OSEK /VDX

5 Interrupt processing

The functions for processing an interrupt (Interrupt Service Routine: ISR) are subdivided into
three | SR categories:

ISR category 1 The ISR does not use an operating system service. After the ISR is finished,
processing continues exactly at the instruction where the interrupt has
occurred, i.e. the interrupt has no influence on task management. | SRs of this
category have the least overhead.

ISR category 2 The OSEK operating system provides an |SR-frame to prepare a run-time
environment for a dedicated user routine. During system generation the user
routine is assigned to the interrupt. From the applications point of view, this
category isthe most comfortable one.

Within an interrupt service routine of category 2, usage of OSEK operating
system services is restricted according to Figure 5-2.

ISR category 3 Such ISRs can be used like category 1 ISRs. However, if the user needs to
call system services, he has first to cal EnterlSR. After EnterlSR, the ISR
acts like an ISR of category 2. If EnterlSR was called, a Leavel R cdl is
needed to return from the ISR. This category is the most flexible one.

The services Enterl SR and Leavel SR are provided as a part of the API.
Between EnterlSR and Leavel SR restrictions on OSEK operating system
services are equal to category 2. Concerning the use of stack, registers and
local variables outside and between Enterl SR and Leavel SR implementation
gpecific restrictions might apply. Leavel SR must be the last statement
executed in the |SR.

The implementation of ISR categories 1 and 2 is mandatory, whereas ISR category 3 is
optional.

Category 1 Category 2 Category 3

ISR(isr_name)

{ {

code without

code without any
APl calls

code with API calls

}

any API calls

EnterISR();
code with API

} calls
LeavelSR();

Figure5-1 ISR categories of the OSEK operating system

Inside the ISR no rescheduling will take place. Rescheduling takes place on termination of the
ISR category 2 or 3 if a pre-emptive task has been interrupted and if no other interrupt is
active.

The implementation ensures that tasks are executed according to the OSEK scheduling points
(see chapter 4.6.2 Full pre-emptive scheduling). To achieve this the implementation may
prescribe restrictions concerning interrupt priority levels for ISRs of al categories and/or
perform checks at configuration time (see chapter 13.2.3.2, Nested interrupts of different
categories).

26 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

The maximum number of interrupt priorities depends on the controller used as well as on the
implementation. The scheduling of interrupts is hardware dependent and not specified in
OSEK. Interrupts are scheduled by hardware while tasks are scheduled by the scheduler.
Regarding the interrupt priority levels there may be restrictions as described in 13.2.3.2.
Interrupts can interrupt tasks (non and full pre-emptive tasks). If a task is activated from an
interrupt routine the task is scheduled after the end of all active interrupt routines.

In interrupt service routines the following services of the OSEK operating system can be used:

Service called by Task called by ISR category 2 and 3
ActivateTask allowed allowed
TerminateTask allowed -
ChainTask allowed -
Schedule allowed -
GetTaskID allowed allowed
GetTaskState allowed allowed
EnterlSR - allowed®
Leavel SR -- allowed®
Enabl el nterrupt allowed allowed
Disablelnterrupt allowed allowed
GetlInterruptDescriptor allowed allowed
DisableAlllnterrupts allowed allowed
EnableAllInterrupts allowed allowed
SuspendOSinterrupts allowed allowed
ResumeOSInterrupts allowed allowed
GetResource allowed allowed
ReleaseResource allowed allowed
SetEvent allowed allowed
ClearEvent allowed -
GetEvent allowed allowed
WaitEvent allowed -
GetAlarmBase allowed allowed
GetAlarm allowed allowed
SetRelAlarm allowed allowed
SetAbsAlarm allowed allowed
CancelAlarm allowed allowed
GetActiveApplicationMode allowed allowed
StartOS - -
ShutdownOS allowed allowed

Figure5-2 APl services allowed to be called by tasks and ISRs

® Thisserviceisallowed in ISR category 3 only.

OSEK OS2.1r1 © by OSEK 27

B U OSEK/VDX Operating System

Specification 2.1r1

Sourcerelated Disable/Enable interrupt API
Operating system services have been provided to enable and disable selected interrupt sources.

An interrupt source which has been disabled will stay disabled until it is re-enabled by the
application.

Hint: Due to normal scheduling algorithms, interrupts or higher priority tasks may delay the
time until an interrupt source is enabled. To keep the delay short, interrupts and tasks can be
blocked out using resource management.

Fast Disable/Enable API-functions

OSEK offers fast functions to disable al interrupts (see chapter 12.3.2.6, EnableAlllnterrupts
and 12.3.2.7, DisableAllInterrupts), and to disable all interrupts of category 2 and 3 (see
chapter 12.3.2.8, ResumeOSInterrupts and 12.3.2.9, SuspendOSInterrupts). Typical usage is
to protect short critical sections. Operating system service calls are not allowed between
disable and enable pairs. Exception: SuspendOSnterrupts and ResumeOSInterrupts are
allowed to be nested.

28 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

6 Event mechanism

The event mechanism

. isameans of synchronisation
. isonly provided for extended tasks
. initiates state transitions of tasksto and from the waiting state.

Events are objects managed by the operating system. They are not independent objects, but
assigned to extended tasks. Each extended task has a definite number of events. This task is
called the owner of these events. An individual event is identified by its owner and its name (or
mask). When activating an extended task, these events are cleared by the operating system.
Events can be used to communicate binary information to the extended task to which they are
assigned. The meaning of events is defined by the application, e.g. signalling of an expiring
timer, the availability of aresource, the reception of a message, etc.

Various options are available to manipulate events, depending on whether the dedicated task is
the owner of the event or another task which does not necessarily have to be an extended task.
All tasks can set any events of any not suspended extended task. Only the owner is able to
clear its events and to wait for the reception (= setting) of its events.

Events are the criteria for the transition of extended tasks from the waiting state into the ready
state. The operating system provides services for setting, clearing and interrogation of events,
and for waiting for eventsto occur.

Any task or ISR can set an event for a not suspended extended task, and thus inform the
extended task about any status change via this event.

The receiver of an event is an extended task in any case. Consequently, it is not possible for an
interrupt service routine or a basic task to wait for an event. An event can only be cleared by
the task which is the owner of the event. Extended tasks may only clear events they own,
whereas basic tasks must not use the operating system service for clearing events.

An extended task in the waiting state is released to the ready state if at least one event for
which the task is waiting has occurred. If a running extended task tries to wait for an event
and this event has already occurred, the task remains in the running state.

OSEK OS2.1r1 © by OSEK 29

=1 OSEK /VDX

Operating System
Specification 2.1r1

Figure 6-1 explains synchronisation of extended tasks by setting events in case of full pre-
emptive scheduling, where extended task T1 has the higher priority.

s cheduler

event of
extended task T1

extended task T1 ‘waiting

extended task T2‘ running

N

2

clear

™S

set

/

.Y,

<

xS
N .
H runnin

A) 7
oot event Wwat for evert] waiting |

||
\

N
set event

ready 31 running ‘

Figure 6-1

Full pre-emptive synchronisation of extended tasks

Figure 6-1 illustrates the procedures which are effected by setting an event: Task T1 waits for
an event. Task T2 sets this event for T1. The scheduler is activated. Subsequently, T1 is
transferred from the waiting state into the ready state. Due to the higher priority of T1 this
results in a task switch, T2 being pre-empted by T1. T1 resets the event. Thereafter T1 waits
for this event again and the scheduler continues execution of T2.

If non pre-emptive scheduling is supposed, rescheduling does not take place immediately after
the event has been set (see Figure 62, where extended task T1 is of higher priority)

scheduler

event of
extended task T1

extended task T1 ‘ waiting

extended task TZ‘ running

-

clear

(

\

set

-
) |/

4
V readyf N‘ running wait for eventK waiting ‘

\
\

/

7
set event rescheduling‘

ready j*running‘

Figure 6-2

Non pre-emptive synchronisation of extended tasks

30

© by OSEK

OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

/ Resource management

The resource management is used to co-ordinate concurrent accesses of several tasks with
different priorities to shared resources, e.g. management entities (scheduler), program
sequences, memory or hardware aress.

The resource management is mandatory for al conformance classes.

The resource management can optionally be extended to co-ordinate concurrent accesses of
tasks and interrupt routines.

Resource management ensures that

. two tasks cannot occupy the same resource at the same time.

. priority inversion can not occur.

. deadlocks do not occur by use of these resources.

. access to resources never results in awaiting state.

If the resource management is extended to the interrupt level it assures in addition that
. two tasks or interrupt routines cannot occupy the same resource at the same time.

The functionality of resource management is only required in the following cases:
. full pre-emptive tasks

. non pre-emptive tasks, if resources are also to remain occupied beyond a scheduling
point

. non pre-emptive tasks, if the user intends to have the application code executed under
other scheduling policies, too

. resource sharing between tasks and interrupt service routines
. resource sharing between interrupt service routines

If the user requires protection against interruptions not only caused by tasks, but also caused
by interrupts, he can also use the operating system services to set and reset interrupt masks.
Resetting interrupt masks does not cause rescheduling. (See chapter 5, Interrupt processing,
and chapter 12.3, Interrupt handling).

7.1 Behaviour during access to occupied resources

OSEK OS prescribes the OSEK priority ceiling protocol (see chapter 7.5) Consequently, no
situation occurs in which atask or an interrupt tries to access an occupied resource.

If the resource concept is used for task- and interrupt-coordination the OSEK operating
system ensures also that an interrupt service routine is only processed if al resources which
might be occupied by that interrupt service routine during its execution have been released.

Additionally, OSEK strictly forbids nested access to the same resource!

7.2 Restrictions when using resources

Neither TerminateTask, ChainTask nor WaitEvent must be called while aresource is occupied.
Interrupt service routine must not be completed with a resource occupied.

In case of multiple resource occupation within one task, the user has to request and release
resources following the LIFO principle (stack).

OSEK OS2.1r1 © by OSEK 31

B U OSEK/VDX Operating System

Specification 2.1r1

7.3 Scheduler as aresource

If atask hasto protect itself against pre-emptions by other tasks, it can lock the scheduler. The
scheduler is treated like a resource which is accessible to al tasks. Therefore a resource with a
predefined name RES_SCHEDULER is generated.

Interrupts are received and processed independent of the state of the resource ‘scheduler’.
However, it prevents the rescheduling of tasks.

7.4 General problems with synchronisation mechanisms

7.4.1 Explanation of priority inversion

A typical problem of common synchronisation mechanisms - e.g. the use of semaphores - isthe
problem relating to priority inversion.

This means that a lower-priority task delays the execution of higher-priority task. One solution
to avoid priority inversion is to use the OSEK Priority Ceiling Protocol (see chapter 7.5).

Figure 7-1 illustrates sequencing of the common access of two tasks to a semaphore (in a full
pre-emptive system, task T1 has the highest priority)

Task T4 which has a low priority, occupies the semaphore S1. T1 pre-empts T4 and requests
the same semaphore. As the semaphore S1 is aready occupied, T1 enters the waiting state.
Now the low-priority T4 is interrupted and pre-empted by tasks with a priority between those
of T1 and T4. T1 can only be executed after all lower-priority tasks have been terminated, and
the semaphore S1 has been released again. Although T2 and T3 do not use semaphore S1, they
delay T1 with their runtime.

S ‘ access to semaphore S1 denied
&Q;

I
task T1 |suspended| frunning waiting running
task T2 |suspended| ready running suspended
task T3 |suspended| ready running suspended
runnin read runnin read
task T4 9; y g y
semaphore S1 occupied semaphore S1 released

Figure7-1 Priority inversion on occupying semaphores

32 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

7.4.2 Deadlocks

Another typical problem of common synchronisation mechanisms, such as the use of sema-
phores, is the problem of deadlocks. In this case deadlock means the impossibility of task
execution due to infinite waiting for mutually locked resources.

The following scenario results in a deadlock (see Figure 7-2):

Task T1 occupies the semaphore S1 and subsequently cannot continue running, e.g. because it
is waiting for an event. Thus, the lower-priority task T2 is transferred into the running state. It
occupies the semaphore S2. If T1 gets ready again and tries to occupy semaphore S2, it enters
the waiting state again. If now T2 tries to occupy semaphore S1, this results in a deadlock.

access to e.g wait event access to semaphore S 2
semaphore S1 ,farevent happened ,denied
S
\U
task T1 running waiting running waiting ‘
Deadlock!
task T2 ready ‘ running ready running waiting ‘
access to access to
semaphore S2 semaphore S1 denied

Figure7-2 Deadlock situation using semaphores

7.5 OSEK Priority Ceiling Protocol

To avoid the problems of priority inversion and deadlocks the OSEK operating system requires
following behaviour:

» At the system generation, to each resource its own celling priority will be staticaly
assigned.
The ceiling priority will be set at least to the highest priority of all tasks that access a
resource. The celling priority must be lower than the lowest priority of all tasks that do not
access the resource, and which have priorities higher than the highest priority of all tasks
that access the resource.

» If atask requires aresource, and its current priority is lower than the celling priority of the
resource, the priority of the task will be raised to the ceiling priority of the resource.

» If the task releases the resource, the priority of this task will be reset to the priority which
was dynamically assigned before requiring that resource.

Priority celling results in a possible time delay for tasks with priorities equal or below the
resource priority. This delay is limited by the maximum time the resource is occupied by any
lower priority task.

Tasks which might occupy the same resource as the running task do not enter the running
state, due to their lower or equal priority than the running task. If a resource occupied by a
task is released, other task which might occupy the resource can enter the running state. For
pre-emptive tasks thisis a point of rescheduling.

OSEK OS2.1r1 © by OSEK 33

B U OSEK/VDX Operating System

Specification 2.1r1

task TO| suspended | ynning suspended
relez;lse resource /release resource

ceiling . — %

A runnin runnin
priority /f 9] ready \ g

I
task T1 susper&ded ready Iru)wning running suspended
1\ | \
task T2 suspen(k{j / ready\ running| suspended
\ 7/ \
task T3 |[suspended (ready \ running
7 1\ 1
task T4 [running \ \ ready running
\request resource \request resource

Figure 7-3 Resource assignment with priority ceiling between pre-emptive tasks.

The example shown in Figure 7-3 illustrates the mechanism of the priority ceiling. Task TO has
the highest, and task T4 the lowest priority. Task T1 and task T4 want to access the same
resource. The system shows clearly that no unbounded priority inversion is entailed. The high-
priority task T1 waits for a shorter time than the maximum duration of resource occupation by
T4.

7.6 OSEK Priority Ceiling Protocol with extensions for interrupt
levels

The extension of resource management to interrupt level is optional.

To determine the ceiling priority of resources which are used in interrupts, virtual priorities
higher than all tasks priorities are assigned to interrupts. The calculated celling priority means
for aresource which is only occupied by tasks a different handling than for a resource occupied
by tasks and interrupt routines. The manipulation of software priorities and of hardware
interrupt levelsis up to the implementation.

» At the system generation, to each resource its own celling priority will be staticaly
assigned.
The ceiling priority will be set at least to the highest priority of al tasks and interrupt
routines that access a resource. The ceiling priority must be lower than the lowest priority
of al tasks or interrupt routines that do not access the resource, and which have at the
same time higher priorities than the highest priority of al tasks or interrupt routines that
access the resource.

» If atask or interrupt routine requires a resource, and its current priority is lower than the
ceiling priority of the resource, the priority of the task or interrupt will be raised to the
ceiling priority of the resource.

» If the task or interrupt routine releases the resource, the priority of this task or interrupt
will be reset to the priority which was dynamically assigned before requiring that resource.

Tasks or interrupt routines which might occupy the same resource as the running task or
interrupt routine has occupied do not run, due to their lower or equal priority than the running
task or interrupt routine. If a resource occupied by atask is released, another task or interrupt
routines which might occupy the resource could run. For pre-emptive tasks this is a point of
rescheduling.

34 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

interrupt occurs

R

isrINT2 execution
relegse resource

ceiling runnin int ted
priority f 9. | 'nterrup \\
isrINT1 / A pending e¥<ecution

interrupt occurs
task T3 suspende(x ready running suspended

|
[
task T2 suspended/ read\/ running suspended
7 \\

task T1 [running ‘ ready running

\ request resource

Figure7-4 Resource assignment with priority ceiling between pre-emptive tasks and
interrupt services routines.

The example shown in figure 7-4 describes the following scenario:

The pre-emptive task T1 is running and requests a resource shared with the interrupt service
routine INT1. The task T1 activates the higher prior tasks T2 and T3. Because of OSEK
Priority Celling Protocol the task T1 is still running. Interrupt INT1 occurs. Because of OSEK
Priority Ceiling Protocol the task T1 is still running, the interrupt INT1 is pending. Interrupt
INT2 occurs. The interrupt service routine INT2 interrupts the task T1 and it is executed.
After INT2 is done the task T1 is continued. The task T1 releases the resource. The interrupt
service routine INT1 is executed, the task T1 is interrupted. After INT1 is done the Task3 is
running. After termination of task T3 the task T2 is running. After termination of task T2 the
task T1 is continued.

The example below shown in figure 7-5 describes the following scenario:

The pre-emptive task T1 isrunning. The interrupt INT1 occurs. The task T1 isinterrupted and
the interrupt service routine INT1 is executed. The INT1 requests a resource shared with the
interrupt service routine INT2. The higher prior interrupt INT2 occurs. Because of OSEK
Priority Ceiling Protocol the INT1 is still executed, the INT2 is pending. The interrupt INT3
occurs. Because of higher priority than the INT1, the INT3 interrupts this interrupt service
routine and is executed. The INT3 activates the task T2. After the INT3 is done the INT1 is
continued. After the INT1 releases the requested resource the INT2 is executed because of
higher priority than the INT1. After the INT2 is done the INT1 is continued. After the INT1 is
done the task T2 is running because of higher priority than the task T1, the task T1 is ready.
After thetask T2 isterminated the task T1 is continued.

OSEK OS2.1r1 © by OSEK 35

B U OSEK/VDX Operating System

Specification 2.1r1

interrupt occurs

. \
isrINT3 execution
relegse resource
ceiling =
priority Al.execution linterrupted
interrupt occurs)
isr INT2 \\4 pending execution
|
isrINT1 /‘ executionl/ \ interrupted
interrupt occurs request resource
task T2 suspended ready running | suspended
task T1 [running ready running

Figure7-5 Resource assignment with priority ceiling between interrupt services
routines

36 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

8 Alarms

The OSEK operating system provides services for processing recurring events. Such events
may be for example timers which provide an interrupt at regular intervals, or encoders at axles
which generate an interrupt in case of a constant change of a (camshaft or crankshaft) angle, or
other regular application specific triggers.

The OSEK operating system provides a two-stage concept to process such events. The
recurring events (sources) are registered by implementation specific counters. Based on
counters, the OSEK operating system software offers alarm mechanisms to the application
software.

8.1 Counters

A counter is represented by a counter value, measured in "ticks’, and some counter specific
constants.

The OSEK operating system does not provide a standardised APl to manipulate counters
directly.

The OSEK operating system takes care of the necessary actions of managing alarms when a
counter is advanced and how the counter is advanced.

The OSEK operating system offers at least one counter which is derived from a (hardware or
software) timer. The user can assume the existence of this counter.

8.2 Alarm management

The OSEK operating system provides services to activate tasks or set events when an alarm
expires. An alarm will expire when a predefined counter value is reached. This counter value
can be defined relative to the actua counter value (= relative alarm) or as an absolute value
(= absolute alarm). Alarms can be defined to be either single alarms or cyclic darms. Alarms
may be for example the receipt of a number of timer interrupts, a specific angular position, or
receiving a message. In addition the OS provides services to cancel alarms and to get the
current state of an alarm.

More than one alarm can be attached to a counter.

Anadarmis statically assigned at system generation time to:
. one counter
. one task

Depending on configuration this task will be activated, or an event will be set for this task
when the alarm expires. Task activation and event setting when an alarm expires have the same
properties as normal task activation and event setting.

OSEK OS2.1r1 © by OSEK 37

Specification 2.1r1

ﬂ OSEK /VDX ‘ Operating Sysem

: source for counter

implementation counter
OS internal :

=)

Figure8-1 Layered model of alarm management
Counters and alarms are defined statically. The assignment of alarmsto counters, as well asthe
action to be performed when an alarm expires, are defined statically, too.

Dynamic parameters are the counter value when an aarm has to expire, and the period for
cyclic alarms.

38 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

9 Messages

For an OSEK implementation to be compliant, message handling for intra processor
communication has to be offered. The minimum functionality required is CCCA as described in
the OSEK COM specification. CCCA describes a communication conformance class
specifically tailored to the needs of intra processor communication which supports ungqueued
messages. CCCB defines an extension which adds queued messages.

If an implementation offers even more functionality which is specified in other conformance
classes described in the OSEK COM specification, the implementation must stick to syntax and
semantic of the respective OSEK COM functionality.

Please note that for messages the rules stated in the OSEK COM specification are valid. For
example, OSEK COM system interfaces do not call ErrorHook. However, if the OSEK COM
functionality internally calls OS system function like ActivateTask, ErrorHook will be called if
necessary from ActivateTask. For more detalls, refer to the OSEK COM specification.

OSEK OS2.1r1 © by OSEK 39

B U OSEK/VDX Operating System

Specification 2.1r1

10 Error handling, tracing and debugging

10.1 Hook routines

The OSEK operating system provides system specific hook routines to allow user-defined
actions within the OS internal processing. The first parameter is fixed for al implementations
of OSEK operating systems, additional parameters are optional and implementation dependent.

Those hook routines are

. called by the operating system, in a specia context depending on the implementation of
the operating system

. higher prior than al tasks

. not interrupted by category 2 and 3 interrupt routines

. using an implementation dependent calling interface.

. part of the operating system

. implemented by the user with user defined functionality

. standardised in interface per OSEK OS implementation, but not standardised in
functionality (environment and behaviour of the hook routine itself), therefore usualy
hook routines are not portable

. are only allowed to use a subset of API functions
. optiona (the implementation should omit calls to hook routines which do not exist)

In the OSEK operating system hook routines may be used for:

. system start-up (see chapter 10.3, System start-up).
The corresponding hook routine (StartupHook) is called after the operating system start-
up and before the scheduler is running.

. system shutdown (see chapter 10.4, System shutdown).
The corresponding hook routine (ShutdownHook) is called when a system shutdown is
requested by the application or by the operating system in case of a severe error.

. tracing or application dependent debugging purposes as well as user defined extensions
of the context switch (see chapter 10.5, Debugging).

. error handling.
Each implementation of OSEK has to describe the interfaces and conventions for the hook
routines.

If the application calls a not allowed API service in hook routines the behaviour is not defined.
If an error is raised, the implementation should return an implementation specific error code.

40 © by OSEK OSEK OS2.1r1

Operating System
Specification 2.1r1

=1 OSEK /VDX

Service

PostTask
Hook

Sartup
Hook

Shutdown
Hook

ActivateT ask

allowed

TerminateTask -- - - - -
ChainTask - - - - -
Schedule - - - - -
GetTaskID

GetTaskState
EnterISR - - - - -
Leavel SR - - - - -
Enablelnterrupt - - - - -
Disablelnterrupt - - - - -
GetlnterruptDescriptor
DisableAllInterrupts - - - - -
EnableAllInterrupts - - - - -
SuspendOSInterrupts - - - - -

ResumeOS| nterrupts - - - - -

GetResource -- - - - -
ReleaseResource -- - - - -
SetEvent -- - - - -
ClearEvent -- - - - -
GetEvent
WaitEvent -- - - - -
GetAlarmBase
GetAlarm

SetRelAlarm -- - - - -
SetAbsAlarm -- - - - -
CancelAlarm -- - - - -
GetActiveApplicationMode | allowed
StartOS - - - - -
ShutdownOS

allowed -- --

Figure 10-1 APl services for hook routines

Most operating system services are not allowed for hook routines. This restriction is necessary
to reduce system complexity.

10.2 Error handling

An error service is provided to handle temporarily and permanently occurring errors within the
OSEK operating system. Its basic framework is predefined and has to be completed by the
user. This gives the user a choice of efficient centralised or decentralised error handling.

"1t may happen that currently no task is running. In this case the service returnsthe task ID INVALID_TASK
(see chapter 12.2.3.5 GetTaskID).

OSEK OS2.1r1 © by OSEK 41

B U OSEK/VDX Operating System

Specification 2.1r1

Two different kinds of errors are distinguished:

. Application errors
The operating system could not execute the requested service correctly, but assumes the
correctness of itsinternal data
In this case, centralised error treatment is called. Additionally the operating system
returns the error by the status information for decentralised error treatment. It isup to
the user to decide what to do depending on which error has occured.

. Fatal errors
The operating system can no longer assume correctness of itsinternal data.
In this case the operating system calls the centralised system shutdown.

All those error services are assigned with a parameter that specifies the error.

The return value of the OSEK API-services has precedence over the output parameters. If an
API service returns an error, the values of the output parameters are undefined.

The corresponding hook routine (ErrorHookK) is called if a system service returns a StatusType
value not equal to E_OK. The hook routine ErrorHook is not called if a system service is
called from the ErrorHook itself (i.e., a recursive cal of error hook never occurs). Any
possibly occuring error by calling system services from the ErrorHook can only be detected by
evaluating the return value.

ErrorHook aso is caled if an error is detected during task activation or event setting, for
example upon alarm expiration or message arrival.

If atask is activated in the version with standard status, only "E_OK" isreturned. Moreover, in
aversion with extended status, the additional return values "Task isinvalid" or "Too many task
activations', etc. can be returned. These extended return values must no longer occur in the
target application at the time of execution, i.e. the corresponding errors are not intercepted in
the run time version of the operating system.

10.3 System start-up

Initialisation after a processor reset is up to the implementation, but OSEK OS offers support
for a standardised way of initialisation.

Interfaces for initialisation of hardware, operating system and application have to be clearly
defined by the implementation.

OSEK OS does not force the application to define specia tasks which have to be started after
the operating system initialisation, but it allows the user to specify autostart-tasks during
system generation.

After a reset of the CPU, hardware-specific application software is executed (no operating
system context). The non-portable section ends with the detection of the application mode. For
safety reasons this detection should not rely on system history.

In case of a system where OSEK OS and OSEKtime OS coexist (not reflected in Figure 10-2),
the OSEKtime initialisation will aways run first, and the remaining parts of the OSEK
initialisation will be performed after OSEKtime enters the idle loop, which will cause
OSEKtime to automatically call StartOS with the application mode already passed to
OSEKtime as parameter.

Otherwise, the portable section of the application starts with the call to a function which starts
up the operating system, i.e. StartOS with the application mode as a parameter. After the

42 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

operating system is initialised (scheduler is not running), it calls the hook routine StartupHook,
where the user can place the initialisation code for all his operating system dependent
initialisation. In order to structure the initialisation code in SartupHook according to the
started application mode, the service GetActiveApplicationMode is provided. After the return
from that hook routine the operating systems enables the interrupts according to the
INITIAL_INTERRUPT DESCRIPTOR?, and starts the scheduler. After that the system is
running and executes user tasks.

(Re-)Start
hardware-specific | call to opgli'c?:;ZL;;Zm OS executes | OS kernel flggﬁsiser
initialization code | StartOS i e e StartupHook | IS running running

@ © & @, ®

During StartupHook
all user interrupts are disabled

Figure 102 System start-up

(1) After areset, the user is free to execute (non-portable) hardware specific code. Interrupts
of category 2 and 3 are not allowed to run until the phase 5. The non-portable section ends
by detection of the application mode.

(2) Call SartOSwith the application mode as a parameter. This call starts the operating system
(of OSEKtimeis present, thisis done automatically).

(3) The operating system performs internal start-up functions and

(4) calls the hook routine SartupHook, where the user may place initialisation procedures.
During this hook routine, all user interrupts are disabled.

(5) The operating system enables user interrupts according to the
INITIAL_INTERRUPT _DESCRIPTOR, and sarts the scheduling activity. The
INITIAL_INTERRUPT_DESCRIPTOR is statically assigned by the user.

10.4 System shutdown
The OSEK OS specification defines a service to shut down the operating system, ShutdownOS.
This service can be requested by the application or by the operating system due to afatal error.

When ShutdownOS is called the operating system will call the hook routine ShutdownHook and
shut down afterwards.

The user is usualy free to define any system behaviour in ShutdownHook e.g. not to return
from the routine. (See chapter 12.7.2.3, ShutdownOS). However, in case of a system where
OSEK OS coexists with OSEKtime OS, there are restrictions with respect to functionality
which may be performed in ShutdownHook. It is possible that only OSEK OS is shut down,
whereas OSEKtime OS remains intact. Consequently, 1/O devices which are handled within
OSEKtime must not be reset in ShutdownHook, and ShutdownHook must return.

8 Thevalue of the INITIAL_INTERRUPT_DESCRIPTOR is defined by the user or by the implementation.

OSEK OS2.1r1 © by OSEK 43

B U OSEK/VDX Operating System

Specification 2.1r1

10.5 Debugging
Two hook routines (PreTaskHook and PostTaskHook) are called on task context switches.

These two hook routines may be used for debugging or time measurement (including context
switch time). Therefore PostTaskHook is called after leaving the context of the old task,
PreTaskHook is called before entering the context of a new task. However, the task is
aready/still in the running state, and GetTaskld will not return INVALID _TASK.

PostTask [OS internal PreTask

<Hook activities Hook w

task T1 [running) suspended
7
task T2 ready \b running

Figure 10-3 PreTaskHook and PostTaskHook

When ShutdownOS s called while atask is running ShutdownOS may or may not call
PostTaskHook. If PostTaskHook is called it is undefined if it is called before or after
ShutdownHook.

44 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

11 Description of system services

11.1 Definition of system objects

Within the OSEK operating system al system objects have to be determined statically by the
user. The definition of the operating system objects is provided by the operating system
supplier. The actual creation of the objects (unique names and specific characteristics) is done
during the system generation phase. The declarations done in the application source are
externa references to those operating system objects. There are no system services available to
dynamically create system objects. Declarations provide information that a system object is to
be used which has been created at another location. The names are used as identifications
within the system services.

Usually the scope of those names is like an external variable in C-language.

The creation of system objects within the source should be considered as an exception, due to
loss of portability.

Internal representation of system objects is implementation specific. There are various
dternatives for implementation of system objects. For example, a TaskType could be
implemented either as a pointer to the data structure of the task or as an index to the
corresponding list element. Application programmers cannot assume a specific representation.

The creation of system objects may require additional tools. They enable the user to add or to
modify values which have been specified in definitions. Consequently, the system generation
and the tools used to this effect are also implementation-specific.

11.2 Conventions

11.2.1 Type of calls

The system service interface is ISO/ANSI-C. Itsimplementation is normally a function call, but
may also be solved differently, as required by the implementation - for example by macros of
the C pre-processor. A specific type of implementation cannot be assumed.

11.2.2 Legitimacy of calls

System services are called from tasks, interrupt service routines, and hook routines. Depending
on the system service, there may be restrictions regarding the availability. Further restrictions
are imposed by the conformance classes.

11.2.3 Error characteristics

To keep the system efficient and fast, the OSEK operating system does not test all errors. If
the application uses operating system services incorrectly, undefined system behaviour may
result.

Most system services return astatus to the user. The return statusis E_OK if it was possible to
execute the system service without any restrictions. If the system recognises an exceptional
condition which restricts execution of the system service, adifferent statusis returned.

A satus other than E_ OK may be information which is not considered to be an error
("warning"). An example is the return status of the system service Cancel Alarm, which informs
that the alarm to be cancelled has already expired. A user program is thus informed that e.g. a

OSEK OS2.1r1 © by OSEK 45

B U OSEK/VDX Operating System

Specification 2.1r1

task activation has taken place which was not wanted. The detection of mild errors (warnings)
is part of the system services.

If it is possible to exclude errors before run time, the run time verson may omit checking of
these errors. If the only possible return statusis E_OK, the implementation is free not to return
astatus.

All return values of a system service are listed under the individua descriptions. The return
status distinguishes between the "standard” and ”"extended’ status. The "standard” version
fulfils the requirements of a debugged application system as described before. The "extended"
version is considered to support testing of not yet fully debugged applications. It comprises
extended error checking compared to the standard version.

The sequence of error checking within the operating system is not specified. Whenever
multiple errors occur, it is implementation dependent which status is returned to the
application.

In case of application errors, the OSEK operating system will call the hook routine ErrorHook
if defined. The purpose of ErrorHook isto treat status information centralised.

In case of fata errors, the system service does not return to the application, but activates
ShutdownOS. An example is a non-detected incorrect parameter of a system service which
generates an inconsistency in the system. The parameter passed to ShutdownOS is an
implementation dependent system error code. System error codes occupy a range of numbers
of their own and do not conflict with the states of the operating system services.

The functionality of ShutdownOS is implementation-specific. Possible implementations are to
stop the application or to issue an assertion. The application itself can access ShutdownOS to
shut down the operating system in a controlled fashion.

Cdling of ShutdownOS is also recommended when processing non-assignable errors, for
example "illegal instruction code". This is not mandatory because hardware support is
necessary, which cannot be taken for granted.

46 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

12 Specification of operating system services

Structure of the description

Operating system services are arranged in logical groups. A coherent description is provided
for all services of the task management, the interrupt management, etc.

The description of each logical group starts with data type definitions. A description of the
group-specific constructional elements and system services follows. The last items are a
description of constants, and of any additional conventions.

Constructional eements

The description of constructional elements contains the following fields:

Syntax: Interface in C-like syntax.

Parameter (In): List of all input parameters.

Description: Explanation of the constructional element.

Particularities: Explanation of restrictions relating to the utilisation.
Conformance: Specifies the conformance classes where the constructional

element is provided.
Servicedescription
A service description contains the following fields:

Syntax: Interface in C-like syntax.

Parameter (In): List of all input parameters.

Parameter (Out): List of all output parameters.

Description: Explanation of the functionality of the operating system service.

Particularities: Explanation of restrictions relating to the utilisation of the op-
erating system service.

Status: List of possible return values.

Standard: ¢ List of return values provided in the operating system's stan-
dard version. Special case: Service does not return.

Extended: < List of additional return values in the operating system's ex-
tended version.

Conformance: Specifies the conformance classes where the operating system
service is provided.

The specification of operating system services uses the following naming conventions for data
types:

.. Type: describes the values of individual data (including pointers).

...RefType: describes a pointer to the ... Type (for call by reference).

12.1 Common datatypes

StatusType

This data type is used for all status information the API services offer. Naming convention: all
errors for APl services start with E_. Those reserved for the operating system will begin with
E OS .

OSEK OS2.1r1 © by OSEK 47

B U OSEK/VDX Operating System

Specification 2.1r1

The normal return valueis E_OK which is associated with the value 0.
The following error values are defined:

All errorsof API services:

- E_OS ACCESS =1,
e E_OSCALLEVEL =2
- EOSID =3,
« E_OSLIMIT =4,
« E_OSNOFUNC =5
- E_OS RESOURCE =86,
- E_OS STATE =7,
- E_OS VALUE =8

If the only possible return statusis E_OK, the implementation is free not to return a status, this
is not separately stated in the description of the individual services.

Internal errors of the operating system:

These errors are implementation specific and not part of the portable section. The error names
reside in the same name-space as the errors for APl services mentioned above, i.e. the range of
numbers must not overlap.

To show the difference in use, the names internal errors must start withE_OS _SYS
Examples:

. E OS SYS STACK

. E OS SYS PARITY

. ... and other implementation-specific errors, which have to be described in the vendor-
specific document.

The names and range of numbers of the internal errors of the OSEK operating system do not
overlap the names and range of numbers of other OSEK services (i.e. communication and
network management) or the range of numbers of the API error values.

12.2 Task management

12.2.1 Datatypes

TaskType

This data type identifies a task.

TaskRefType

This data type points to a variable of TaskType.
TaskStateType

This data type identifies the state of atask.

TaskStateRefType
This data type points to a variable of the data type TaskStateType.

48 © by OSEK OSEK OS2.1r1

m

OSEK/VDX Operating System

Specification 2.1r1

12.2.2 Constructional elements

12.2.2.1 DeclareTask

Syntax:
Parameter (In):

Description:

Particularities:
Conformance:

DeclareTask (Taskldentifier)

Task identifier (C-identifier)
DeclareTask serves as an external declaration of a task. The

function and use of this service are similar to that of the exter-
nal declaration of variables.

BCC1, BCC2, ECC1, ECC2

12.2.3 System services

12.2.3.1 ActivateTask

Syntax:

Parameter (In):
TaskID

Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

StatusType ActivateTask (TaskType <TaskID>)

Task reference
none

The task <TaskID> is transferred from the suspended state into
the ready state’. The operating system ensures that the task
code is being executed from the first statement.

The service may be called from interrupt level, from task level
and the hook routine StartupHook (see Figure 10-1).

Rescheduling after the call to ActivateTask depends on the
place it is called from (ISR, non-preemptive task, preemptive
task).

If E_OS_LIMIT is returned the activation is ignored.

When an extended task is transferred from suspended state
into ready state all its events are cleared.

No error, E_OK

Task <TaskID> is invalid, E_OS_ID
Too many task activations of <TaskID>, E_OS_LIMIT

BCC1, BCC2, ECC1, ECC2

® ActivateTask will not immediately change the state of the task in case of multiple activation reguests. If the
task is not suspended, the activation will only be recorded and performed later.

OSEK OS2.1r1

© by OSEK 49

B U OSEK/VDX Operating System

Specification 2.1r1

12.2.3.2 TerminateTask

Syntax:
Parameter (In):
Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

12.2.3.3 ChainTask

Syntax:

Parameter (In):
TaskID

Parameter (Out):
Description:

Particularities:

StatusType TerminateTask (void)
none
none

This service causes the termination of the calling task. The
calling task is transferred from the running state into the
suspended state™.

The resources occupied by the task must have been released
before the call to TerminateTask. If the resource is still
occupied in standard status the behaviour is undefined.

If the call was successful, TerminateTask does not return to the
call level and the status can not be evaluated.

If the version with extended status is used, the service returns
in case of error, and provides a status which can be evaluated
in the application.

If the service TerminateTask is called successfully, it enforces
a rescheduling.
Ending a task function without call to TerminateTask or

ChainTask is strictly forbidden and may leave the system in an
undefined state.

No return to call level

Task still occupies resources, E. OS RESOURCE
Call at interrupt level, E_OS_CALLEVEL

BCC1, BCC2, ECC1, ECC2

StatusType ChainTask (TaskType <TaskID>)

Reference to the sequential succeeding task to be activated.
none

This service causes the termination of the calling task. After
termination of the calling task a succeeding task <TaskID> is
activated. Using this service, it ensures that the succeeding
task starts to run at the earliest after the calling task has been
terminated.

If the succeeding task is identical with the current task, this
does not result in multiple requests. The task is not transfered
to the suspended state.

The resources occupied by the calling task must have been
released before ChainTask is called. If the resource is still
occupied in standard status the behaviour is undefined.

191 case of tasks with multi ple activation requests, terminating the current instance of the task automatically
puts the next instance of the same task into the ready state.

50

© by OSEK OSEK OS2.1r1

m

OSEK/VDX

Operating System
Specification 2.1r1

Status:
Standard:
Extended:

Conformance:

12.2.3.4 Schedule
Syntax:

Parameter (In):
Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended: -
Conformance:

12.2.3.5 GetTaskID

Syntax:
Parameter (In):
Parameter (Out):

If called successfully, ChainTask does not return to the call
level and the status can not be evaluated.

If the version with extended status is used, the service returns
in case of error to the calling task, and provides a status which
can then be evaluated in the application.

If the service ChainTask is called successfully, this enforces a
rescheduling.

Ending a task function without call to TerminateTask or
ChainTask is strictly forbidden and may leave the system in an
undefined state.

If E_OS_LIMIT is returned the activation is ignored.

When an extended task is transferred from suspended state
into ready state all its events are cleared.

No return to call level

Task <TaskID> is invalid, E_OS_ID

Too many task activations of <TaskID>, E_OS_LIMIT
Calling task still occupies resources, E_OS _RESOURCE
Call at interrupt level, E_OS_CALLEVEL

BCC1, BCC2, ECC1, ECC2

StatusType Schedule (void)
none
none

If a higher-priority task is ready, the current task is put into the
ready state, its context is saved and the higher-priority task is
executed. Otherwise the calling task is continued.

In non pre-emptive tasks Schedule enables a processor
assignment to other tasks in application-specific locations.

This service has no influence on full pre-emptive tasks.

No error, E_OK
Call at interrupt level, E_ OS_CALLEVEL
BCC1, BCC2, ECC1, ECC2

StatusType GetTaskID (TaskRefType <TaskID>)
none

TaskID Reference to the task which is currently running
Description: GetTaskID returns the information about the TaskID of the task
which is currently running.
OSEK 0S2.1r1 © by OSEK 51

B U OSEK/VDX Operating System

Specification 2.1r1

Particularities:

Status:
Standard:
Extended:

Conformance:

Allowed on task level, ISR level and in several hook routines
(see Figure 10-1).

This service is intended to be used by library functions and
hook routines.

If <TaskID> can’t be evaluated (no task currently running), the
service returns INVALID_TASK as TaskType.

No error, E_OK
No error, E_OK
BCC1, BCC2, ECC1, ECC2

12.2.3.6 GetTaskState

Syntax:

Parameter (In):
TaskID

Parameter (Out):
State

Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

12.2.4 Constants

StatusType GetTaskState (TaskType <TaskID>,
TaskStateRefType <State>)

Task reference

Reference to the state of the task <TaskID>

Returns the state of a task (running, ready, waiting, suspended)
at the time of calling GetTaskState.

The service may be called from interrupt service routines, task
level, and some hook routines (see Figure 10-1).

Within a full pre-emptive system, calling this operating system
service only provides a meaningful result if the task runs in an
interrupt disabling state at the time of calling.

When a call is made from a task in a full pre-emptive system,
the result may already be incorrect at the time of evaluation.

When the service is called for a task, which is multiply
activated, the state is set to running if any instance of the task
IS running.

No error, E_OK
Task <TaskID> is invalid, E_OS_ID
BCC1, BCC2, ECC1, ECC2

RUNNI NG » Constant of data type TaskStateType for task state running.

VAI Tl NG » Congtant of data type TaskStateType for task state waiting.

READY » Congtant of data type TaskStateType for task state ready.
SUSPENDED » Constant of data type TaskStateType for task state suspended.

| NVALI D_TASK < Constant of data type TaskType for a not defined task.

52 © by OSEK OSEK 0S 2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

12.2.5 Naming convention

The operation system must be able to assign the entry address of the task function to the name
of the corresponding task for identification. With the entry address the operating systemis able
to call the task.

Within the application, atask is defined according to the following pattern:

TASK (TaskNane)

{
}

With the macro TASK the user may use the same name for "task identification" and "name of
task function”.

The task identification will be generated from the TaskNane during system generation time.**
12.3 Interrupt handling

12.3.1 Datatypes

IntDescriptor Type

Datatype for logical interrupt masks.

IntDescriptorRef Type

Reference to the logical interrupt mask, this data type usualy is implemented as "pointer to
IntDescriptorType".

12.3.2 System services

12.3.2.1 EnterISR

Syntax: void EnterISR (void)

Parameter (In): none

Parameter (Out): none

Description: EnterlSR establishes the conditions needed to request OS

services in an interrupt service routine category 3 (see
particularities). Inside EnterISR the following functions are
executed if needed:

* Registration of the switching to the interrupt level inside the
operating system.
» Switch of the current context (e.g. to the ISR stack).
Particularities: EnterlSR establishes in ISRs category 3 the possibility to use

operating system services. It is necessary to place EnterISR
before the first call of an operating system service.

The detailed implementation of EnterlSR depends on the target
system. It is explicitly allowed to use system specific variations.

M The pre-processor could for example generate the name of the task function by using the pre-processor
symbol sequence ## to add a string ,, Func* to the task name:

#defi ne TASK(TaskNane) St at usType Func ## TaskName(voi d)
With this macro, TASK(My Task) hasthe entry function Func My Task

OSEK OS2.1r1 © by OSEK 53

B U OSEK/VDX Operating System

Specification 2.1r1

Status:
Standard:
Extended:

Conformance:

12.3.2.2 LeavelSR
Syntax:

Parameter (In):
Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

The call to this service is only allowed in ISRs category 3, but
the specification does not force an error status. For example
some microcontrollers can not perform the test "called outside
from ISR". But a system analysis tool may check whether the
call is performed within task level.

This service is a counterpart of LeavelSR service (see
Chapter 5).

none
none
BCC1, BCC2, ECC1, ECC2

void LeavelSR (void)
none
none

LeavelSR is the counterpart of EnterlISR and resets the
conditions to request operating system services in an ISR
category 3. LeavelSR may only be called after EnterISR has
been called.

This function does not imply the return from ISR although it has
to be the last statement executed in the ISR.

The call to this service is only allowed in ISRs category 3.

The detailed implementation of LeavelSR depends on the
target system. It is explicitly allowed to use system specific
variations.

none
none
BCC1, BCC2, ECC1, ECC2

12.3.2.3 Enablelnterrupt

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:

Particularities:

StatusType Enablelnterrupt (IntDescriptorType <Descriptor>)

Hardware dependent parameter for selections of interrupt
sources to enable. In <Descriptor>, a "1" means "enable".

none

This service allows enabling of several interrupt sources
simultaneously.

The service may be called from an ISR and from the task level,
but not from hook routines.

To save the current state of interrupt sources the application
must use GetInterruptDescriptor before.

The implementation has to adapt this service to the target
hardware.

© by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

Status:
Standard: .
Extended:
Conformance:

If not all requested interrupt sources are disabled, this service
is nevertheless executed for the disabled interrupt sources and
returns E_OS_NOFUNC in Extended Status.

No error, E_OK

At least one of the interrupt sources was not disabled,
E_OS_NOFUNC

BCC1, BCC2, ECC1, ECC2

12.3.2.4 Disablelnterrupt

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:

Particularities:

Status:
Standard: -
Extended: -
Conformance

StatusType Disablelnterrupt (IntDescriptorType <Descriptor>)

Hardware dependent parameter for selections of interrupt
sources to disable. In <Descriptor>, a "1" means "disable".

none

This service allows disabling of several interrupt sources
simultaneously.

The service may be called from an ISR and from the task level,
but not from hook routines.

To save the current state of interrupt sources the application
must use GetInterruptDescriptor before.

The implementation has to adapt this service to the target
hardware.

If not all requested interrupt sources are enabled, this service
is nevertheless executed for the enabled interrupt sources and
returns E_OS_NOFUNC in Extended Status.

No error, E_OK
At least one interrupt source was not enabled, E_OS_NOFUNC
BCC1, BCC2, ECC1, ECC2

12.3.2.5 GetinterruptDescriptor

Syntax:

Parameter (In):

Parameter (Out):
Descriptor

Description:
Particularities:

StatusType GetlnterruptDescriptor (IntDescriptorRefType
<Descriptor>)

none

Reference to current status of interrupt sources. In
<Descriptor> all interrupt sources, which are enabled, are
marked by "1", “0” otherwise.

Query of interrupt status

The service may be called from an ISR, task level, and some
hook routines (see Figure 10-1).

The implementation has to adapt this service to the target
hardware.

OSEK OS2.1r1

© by OSEK 55

B U OSEK/VDX Operating System

Specification 2.1r1

Status:
Standard:
Extended: -
Conformance:

No error, E_OK
none
BCC1, BCC2, ECC1, ECC2

12.3.2.6 EnableAllinterrupts

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:
Particularities:

Status:
Standard:
Extended: -
Conformance:

void EnableAllinterrupts (void)

none
none
This service restores the state saved by DisableAllinterrupts.

The service may be called from an ISR and from the task level,
but not from hook routines.

This service is a counterpart of DisableAlllnterrupts service,
which must have been called before, and its aim is the
completion of the critical section of code. No API service calls
are allowed within this critical section.

The implementation should adapt this service to the target
hardware providing a minimum overhead. Usually this service
enables recognition of interrupts by the central processing unit.

none
none
BCC1, BCC2, ECC1, ECC2

12.3.2.7 DisableAllinterrupts

Syntax:

Parameter (In):
Descriptor

Parameter (Out):
Description:

Particularities:

void DisableAlllnterrupts (void)

none
none

This service allows disabling of all interrupts supported by the
hardware. The state before is saved for the EnableAlllnterrupts
call.

The service may be called from an ISR and from the task level,
but not from hook routines.

This service is intended to start a critical section of the code.
This section must be finished by calling the EnableAllinterrupts
service. No API service calls are allowed within this critical
section.

The implementation should adapt this service to the target
hardware providing a minimum overhead. Usually this service
disables recognition of interrupts by the central processing unit.

Note that this service does not support nesting. If nesting is
needed for critical sections e.g. for libraries

56

© by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

SuspendOSinterrupts and ResumeOSinterrupts should be
used.

Status:
Standard: ¢ none
Extended: < none
Conformance: BCC1, BCC2, ECC1, ECC2

12.3.2.8 ResumeOSinterrupts

Syntax: void ResumeOSinterrupts (void)
Parameter (In):
Descriptor none
Parameter (Out): none
Description: This service restores the recognition status of interrupts saved
by the SuspendOSinterrupts service.
Particularities: The service may be called from an ISR and from the task level,

but not from hook routines.

This service is the counterpart of SuspendOSinterrupts service,
which must have been called before, and its aim is the
completion of the critical section of code. No API service calls
beside SupendOSinterrupts/ ResumeOSinterrupts are allowed
within this critical section.
The implementation should adapt this service to the target
hardware providing a minimum overhead.
In case of nesting pairs of the calls SuspendOSinterrupts and
ResumeOSinterrupts the interrupt recognition status saved by
the first call of SuspendOSinterrupts is restored by the last call
of the ResumeOSiInterrupts service.
Status:
Standard: ¢ none
Extended: <« none

Conformance: BCC1, BCC2, ECC1, ECC2

12.3.2.9 SuspendOSinterrupts

Syntax: void SuspendOSinterrupts (void)
Parameter (In):
Descriptor none

Parameter (Out): none

Description: This service saves the recognition status of interrupts of
categories 2 and 3 and disables the recognition of these
interrupts.

Particularities: The service may be called from an ISR and from the task level,

but not from hook routines.

This service is intended to protect a critical section of code.
This section must be finished by calling the
ResumeOSinterrupts service. No API service calls beside

OSEK OS2.1r1 © by OSEK 57

B U OSEK/VDX Operating System

Specification 2.1r1

SupendOSinterrupts/ResumeOSinterrupts are allowed within
this critical section.

The implementation should adapt this service to the target
hardware providing a minimum overhead.

It is intended only to disable interrupts of category 2 and 3.
However if this is not possible in an efficient way more
interrupts may be disabled.

Status:
Standard: ¢ none
Extended: < none
Conformance: BCC1, BCC2, ECC1, ECC2

12.3.3 Constants
I NI TI AL_I NTERRUPT_DESCRI PTOR

» Congtant of data type IntDescriptor Type (see chapter 10.3, System
start-up).

12.3.4 Naming convention
Within the application, an interrupt service routine of category 2 is defined according to the
following pattern:

| SR (FuncNane)

{
}

The keyword | SR is evaluated by the system generation to clearly distinguish between func-
tions and interrupt service routines in the source code.

For category 1 and 3 interrupt service routines no naming conventions are prescribed, their
definition is implementation specific.

12.4 Resource management

12.4.1 Datatypes
ResourceType
Data type for aresource.

12.4.2 Constructional elements

12.4.2.1 DeclareResource
Syntax: DeclareResource (Resourceldentifier)

Parameter (In):
- Resource identifier (C-identifier)

Description: DeclareResource serves as an external declaration of a re-
source. The function and use of this service are similar to that
of the external declaration of variables.

Particularities: -
Conformance: BCC1, BCC2, ECC1, ECC2

58 © by OSEK OSEK OS2.1r1

m

OSEK/VDX Operating System

Specification 2.1r1

12.4.3 System services

12.4.3.1 GetResource

Syntax:

Parameter (In):
ResID

Parameter (Out):
Description:

Particularities:

Status:
Standard:
Extended:

Conformance:

StatusType GetResource (ResourceType <ResID>)

Reference to resource
none

This call serves to enter critical sections in the code that are
assigned to the resource referenced by <ResID>. A critical
section must always be left using ReleaseResource.

The OSEK priority ceiling protocol for resource management is
described in chapter 7.5.

Nested resource occupation is only allowed if the inner critical
sections are completely executed within the surrounding critical
section (strictly stacked, see chapter 7.2, Restrictions when
using resources). Nested occupation of one and the same
resource is also forbidden!

Corresponding calls to GetResource and ReleaseResource
should appear within the same function on the same function
level.

Services which put the running task into the state suspended or
waiting must not be used in critical sections (i.e.
TerminateTask, ChainTask and WaitEvent).

Generally speaking, critical sections should be short.

The service may be called from an ISR and from task level (see
Figure 10-1).

No error, E_OK
Resource <ResID> is invalid, E_OS_ID

Attempt to get resource which is already occupied by any task
or ISR, or the statically assigned priority of the calling task or
interrupt routine is higher than the calculated ceiling priority,
E_OS_ACCESS

BCC1, BCC2, ECC1, ECC2

12.4.3.2 ReleaseResource

Syntax: StatusType ReleaseResource (ResourceType <ResID>)
Parameter (In):
ResID Reference to resource

Parameter (Out): none

Description: ReleaseResource is the counterpart of GetResource and
serves to leave critical sections in the code that are assigned to
the resource referenced by <ResID>.

OSEK 0S2.1r1 © by OSEK 59

B U OSEK/VDX Operating System

Specification 2.1r1

Particularities: For information on nesting conditions, see particularities of
GetResource.
The service may be called from an ISR and from task level (see
Figure 10-1).
Status:
Standard: < No error, E_OK
Extended: <« Resource <ResID> is invalid, E_OS_ID
» Attempt to release a resource which is not occupied by any
task or ISR, or another resource has to be released before
E_OS_NOFUNC
» Attempt to release a resource which has a lower ceiling priority
than the statically assigned priority of the calling task or
interrupt routine, E_OS_ACCESS
Conformance: BCC1, BCC2, ECC1, ECC2

12.4.4 Constants

RES SCHEDULER ¢ Constant of datatype ResourceType (see chapter 7, Resource
management).

12.5 Event control

12.5.1 Datatypes
EventM askType

Datatype of the event mask.
EventM askRefType
Reference to an event mask.

12.5.2 Constructional elements

12.5.2.1 DeclareEvent
Syntax: DeclareEvent (Eventldentifier)

Parameter (In):
Event identifier (C-identifier)

Description: DeclareEvent serves as an external declaration of an event.
The function and use of this service are similar to that of the
external declaration of variables.

Particularities: -
Conformance: ECC1, ECC2

12.5.3 System services

12.5.3.1 SetEvent

Syntax: StatusType SetEvent (TaskType <TaskID>
EventMaskType <Mask>)

60 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

Parameter (In):

TaskID Reference to the task for which one or several events are to be
set.
Mask Mask of the events to be set
Parameter (Out): none
Description: The service may be called from an interrupt service routine and

from the task level, but not from hook routines.

The events of task <TasklD> are set according to the event
mask <Mask>. Calling SetEvent causes the task <TaskID> to
be transferred to the ready state, if it was waiting for at least
one of the events specified in <Mask>.

Particularities: Any events not set in the event mask remain unchanged.
Status:
Standard: < No error, E_OK

Extended: < Task <TaskID>isinvalid, E_OS ID
» Referenced task is no extended task, E_OS_ACCESS
» Events can not be set as the referenced task is in the
suspended state, E_ OS_STATE

Conformance: ECC1, ECC2

12.5.3.2 ClearEvent

Syntax: StatusType ClearEvent (EventMaskType <Mask>)
Parameter (In)
Mask Mask of the events to be cleared
Parameter (Out) none
Description: The events of the extended task calling ClearEvent are cleared
according to the event mask <Mask>.
Particularities: The system service ClearEvent is restricted to extended tasks

which own the event.
Status:
Standard: < No error, E_OK
Extended: < Call not from extended task, E_OS_ACCESS
» Call at interrupt level, E_OS_CALLEVEL
Conformance: ECC1, ECC2

12.5.3.3 GetEvent

Syntax: StatusType GetEvent (TaskType <TaskID>
EventMaskRefType <Event>)

Parameter (In):

TaskID Task whose event mask is to be returned.
Parameter (Out):
Event Reference to the memory of the return data.
Description: This service returns the current state of all event bits of the task

<TaskID>, not the events that task is waiting for.

OSEK OS2.1r1 © by OSEK 61

B U OSEK/VDX Operating System

Specification 2.1r1

The service may be called from interrupt service routines, task
level and some hook routines (see Figure 10-1).

The current status of the event mask of task <TaskID> is
copied to <Event>.

Particularities: The referenced task must be an extended task.
Status:
Standard: ¢ No error, E_OK

Extended: < Task <TaskID> isinvalid, E_OS ID
» Referenced task <TaskID> is not an extended task,
E_OS_ACCESS
» Referenced task <TaskID> is in the suspended state,
E_OS_STATE
Conformance: ECC1, ECC2
12.5.3.4 WaitEvent
Syntax: StatusType WaitEvent (EventMaskType <Mask>)
Parameter (In):
Mask Mask of the events waited for.
Parameter (Out): none
Description: The state of the calling task is set to waiting, unless at least
one of the events specified in <Mask> has already been set.
Particularities: This call enforces the rescheduling, if the wait condition occurs.
This service may be called from the extended task owning the
event.
Status:
Standard: + No error, E_OK
Extended: < Calling task is not an extended task, E_OS_ACCESS
» Calling task occupies resources, E_ OS RESOURCE
» Call at interrupt level, E_OS_CALLEVEL
Conformance: ECC1, ECC2
12.6 Alarms

12.6.1 Datatypes

TickType

This data type represents count valuesin ticks.
TickRefType

This data type points to the data type TickType.
AlarmBaseType

This data type represents a structure for storage of counter characteristics. The individua
elements of the structure are:

maxal | owedval ue + Maximum possible allowed count value in ticks

62 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

ti cksperbase » Number of ticks required to reach a counter-specific (significant)
unit.

m ncycl e » Smallest allowed value for the cycle-parameter of
SetRelAlarm/SetAbsAlarm) (only for systems with extended
status).

All elements of the structure are of datatype TickType.
AlarmBaseRefType

This data type points to the data type AlarmBaseType.
AlarmType

This data type represents an alarm object.

12.6.2 Constructional elements

12.6.2.1 DeclareAlarm
Syntax: DeclareAlarm (Alarmldentifier)

Parameter (In):
Alarm identifier (C-identifier)

Description: DeclareAlarm serves as external declaration of an alarm
element.
Particularities: Conformance: BCC1, BCC2, ECC1, ECC2

12.6.3 System services

12.6.3.1 GetAlarmBase

Syntax: StatusType GetAlarmBase (AlarmType <AlarmiD>,
AlarmBaseRefType <Info>)

Parameter (In):

AlarmID Reference to alarm
Parameter (Out):

Info Reference to structure with constants of the alarm base.
Description: The system service GetAlarmBase reads the alarm base

characteristics. The return value <Info> is a structure in which
the information of data type AlarmBaseType is stored.

Particularities: Allowed on task level, ISR, and in several hook routines (see
Figure 10-1).
Status:
Standard: < No error, E_OK
Extended: < Alarm <AlarmID> is invalid, E_OS_ID
Conformance: BCC1, BCC2, ECC1, ECC2

OSEK OS2.1r1 © by OSEK 63

m

OSEK/VDX

Operating System
Specification 2.1r1

12.6.3.2 GetAlarm

Syntax:

Parameter (In):
AlarmID

Parameter (Out):
Tick
Description:

Particularities:

Standard:

Extended:
Conformance:

StatusType GetAlarm (AlarmType <AlarmID>
TickRefType <Tick>)

Reference to an alarm

Relative value in ticks before the alarm <AlarmID> expires.

The system service GetAlarm returns the relative value in ticks
before the alarm <AlarmID> expires.

It is up to the application to decide whether for example a
CancelAlarm may still be useful.

If <AlarmID> is not in use, <Tick> is not defined.

Allowed on task level, ISR, and in several hook routines (see
Figure 10-1). Status:

No error, E_OK

Alarm <AlarmID> is not used, E_OS_NOFUNC
Alarm <AlarmID> is invalid, E_OS_ID

BCC1, BCC2, ECC1, ECC2

12.6.3.3 SetRelAlarm

Syntax:

Parameter (In):
AlarmID
increment
cycle

Parameter (Out):
Description:

Particularities:

StatusType SetRelAlarm (AlarmType <AlarmiD>,
TickType <increment>,
TickType <cycle>)

Reference to the alarm element

Relative value in ticks

Cycle value in case of cyclic alarm. In case of single alarms,
cycle has to be zero.

none

The system service occupies the alarm <AlarmID> element.
After <increment> ticks have elapsed, the task assigned to the
alarm <AlarmID> is activated or the assigned event (only for
extended tasks) is set.

The behaviour of <increment> equal to 0 is up to the
implementation.

If the relative value <increment> is very small, the alarm may
expire, and the task may become ready before the system
service returns to the user.

If <cycle> is unequal zero, the alarm element is logged on
again immediately after expiry with the relative value <cycle>.

The alarm <AlarmID> must not already be in use.

To change values of alarms already in use the alarm has to be
cancelled first.

If the alarm is already in use, this call will be ignored and the
error E_OS_STATE is returned.

© by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

Allowed on task level and in ISR, but not in hook routines.
Status:
Standard:

No error, E_OK
* Alarm <AlarmID> is already in use, E_OS_STATE
Alarm <AlarmID> is invalid, E_OS_ID

* Value of <increment> outside of the admissible limits (lower
than zero or greater than naxal | owedval ue), E_OS VALUE

Extended:

» Value of <cycle> unequal to 0 and outside of the admissible
counter limits (less than m ncycl e or greater than
maxal | owedval ue), E_ OS VALUE

Conformance: BCC1, BCC2, ECC1, ECC2; Events only ECC1, ECC2

12.6.3.4 SetAbsAlarm

Syntax: StatusType SetAbsAlarm (AlarmType <AlarmID>,
TickType <start>,
TickType <cycle>)

Parameter (In):

AlarmID Reference to the alarm element
start Absolute value in ticks
cycle Cycle value in case of cyclic alarm. In case of single alarms,
cycle has to be = zero.
Parameter (Out): none
Description: The system service occupies the alarm <AlarmID> element.

When <start> ticks are reached, the task assigned to the alarm
<AlarmID> is activated or the assigned event (only for
extended tasks) is set.

Particularities: If the absolute value <start> is very close to the current counter
value, the alarm may expire, and the task may become ready
before the system service returns to the user.

If the absolute value <start> already was reached before the
system call, the alarm will only expire when the absolute value
<start> will be reached again, i.e. after the next overrun of the
counter.

If <cycle> is unequal zero, the alarm element is logged on
again immediately after expiry with the relative value <cycle>.

The alarm <AlarmID> must not already be in use.

To change values of alarms already in use the alarm has to be
cancelled first.

If the alarm is already in use, this call will be ignored and the
error E_OS_STATE is returned.

Allowed on task level and in ISR, but not in hook routines.
Status:
Standard: + No error, E_OK
* Alarm <AlarmID> is already in use, E_OS_STATE

OSEK OS2.1r1 © by OSEK 65

B U OSEK/VDX Operating System

Specification 2.1r1

Extended: < Alarm <AlarmID> is invalid, E_OS_ID
» Value of <start> outside of the admissible counter limit (less
than zero or greater than naxal | owedval ue), E_OS VALUE

» Value of <cycle> unequal to 0 and outside of the admissible
counter limits (less than m ncycl e or greater than
maxal | owedval ue), E_ OS VALUE

Conformance: BCC1, BCC2, ECC1, ECC2; Events only ECC1, ECC2
12.6.3.5 CancelAlarm
Syntax: StatusType CancelAlarm (AlarmType <AlarmiD>)
Parameter (In):
AlarmID Reference to an alarm
Parameter (Out): none
Description: The system service cancels the alarm <AlarmID>.
Particularities: Allowed on task level and in ISR, but not in hook routines.
Status:

Standard: < No error, E_OK
* Alarm <AlarmID> not in use, E_OS_NOFUNC
Extended: < Alarm <AlarmID> is invalid, E_OS_ID
Conformance: BCC1, BCC2, ECC1, ECC2

12.6.4 Constants

There always exists at least one counter which is a time counter (system counter). To facilitate
programming of this counter, the return values of the call GetAlarmBase are also defined as
constants.

OSVAXALLOWEDVALUE ¢ Maximum possible allowed value of the system counter in ticks.

OSTI CKSPERBASE * Number of ticks required to reach specific unit of the system
counter.

OSM NCYCLE * Minimum allowed number of ticks for a cyclic alarm.

Additionally the following constant is supplied:
OSTI CKDURATI ON » Duration of atick of the system counter in nanoseconds.

12.7 Operating system execution control

12.7.1 Datatypes
AppM odeType
This data type represents the application mode.

66 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

12.7.2 System services

12.7.2.1 GetActiveApplicationMode

Syntax
Description:

Particularities:

Conformance:

12.7.2.2 StartOS
Syntax

Parameter (In):
Mode

Parameter (Out):
Description:

Particularities:

Conformance:

AppModeType GetActiveApplicationMode (void)

This service returns the current application mode. It may be
used to write mode dependent code.

See chapter 4.8 for a general description of application modes.
Allowed for task, ISR and all hook routines.
BCC1, BCC2, ECC1, ECC2

void StartOS (AppModeType <Mode>)

application mode
none

The user can call this system service to start the operating
system in a specific mode, see chapter 4.8, Application modes.

Only allowed outside of the operating system, therefore
implementation specific restrictions may apply. See also
chapter 10.3, System start-up, especially with respect to
systems where OSEK and OSEKtime coexist. This call does
not need to return.

BCC1, BCC2, ECC1, ECC2

12.7.2.3 ShutdownOS

Syntax

Parameter (In):
Error

Parameter (Out):
Description:

void ShutdownOS (StatusType <Error>)

error occurred
none

The user can call this system service to abort the overall
system (e.g. emergency off). The operating system also calls
this function internally, if it has reached an undefined internal
state and is no longer ready to run.

If a ShutdownHook is configured the hook routine
ShutdownHook is always called (with <Error> as argument)
before shutting down the operating system.

If ShutdownHook returns, further behaviour of ShutdownOS is
implementation specific.

In case of a system where OSEK OS and OSEKtime OS
coexist, ShutdownHook must return.

<Error> must be a valid error code supported by OSEK OS. In
case of a system where OSEK OS and OSEKtime OS coexist,
<Error> might also be a value accepted by OSEKtime OS. In
this case, if enabled by an OSEKtime configuration parameter,
OSEKtime OS will be shut down after OSEK OS shutdown.

OSEK OS2.1r1

© by OSEK 67

B U OSEK/VDX Operating System

Specification 2.1r1

Particularities: After this service the operating system is shut down.

Allowed at task level, ISR level, in ErrorHook and StartupHook,
and also called internally by the operating system.

If the operating system calls ShutdownOS it never uses E_OK
as the passed parameter value.

Conformance: BCC1, BCC2, ECC1, ECC2

12.7.3 Constants
OSDEFAULTAPPMODE < Default application mode, always a valid parameter to StartOS.

12.8 Hook routines

The specification allows for implementation specific additional parameters in hook routines. In
the following description only mandatory parameters are listed.

12.8.1 ErrorHook

Syntax void ErrorHook (StatusType <Error>)
Parameter (In):
Error error occurred
Parameter (Out): none
Description: This hook routine is called by the operating system at the end

of a system service which returns StatusType not equal E_OK.
It is called before returning to the task level.

This hook routine is called when an alarm expires and an error
is detected during task activation or event setting.

The ErrorHook is not called, if a system service called from
ErrorHook does not return E_OK as status value. Any error by
calling of system services from the ErrorHook can only be
detected by evaluating the status value.

Particularities: See chapter 10.1 for general description of hook routines.

Conformance: BCC1, BCC2, ECC1, ECC2

12.8.2 PreTaskHook

Syntax void PreTaskHook (void)

Parameter (In): none

Parameter (Out): none

Description: This hook routine is called by the the operating system before

executing a new task, but after the transition of the task to the
running state (to allow evaluation of the TaskID by GetTaskID).

Particularities: See chapter 10.1 for general description of hook routines.
Conformance: BCC1, BCC2, ECC1, ECC2

68 © by OSEK OSEK OS2.1r1

m

OSEK/VDX Operating System

Specification 2.1r1

12.8.3 PostTaskHook

Syntax
Parameter (In):
Parameter (Out):
Description:

Particularities:
Conformance:

12.8.4 StartupHook

Syntax
Parameter (In):
Parameter (Out):
Description:

Particularities:
Conformance:

void PostTaskHook (void)
none
none

This hook routine is called by the operating system after
executing the current task, but before leaving the task's running
state (to allow evaluation of the TaskID by GetTaskID).

See chapter 10.1 for general description of hook routines.
BCC1, BCC2, ECC1, ECC2

void StartupHook (void)
none
none

This hook routine is called by the operating system at the end
of the operating system initialisation and before the scheduler
is running. At this time the application can start tasks, initialise
device drivers etc.

See chapter 10.1 for general description of hook routines.
BCC1, BCC2, ECC1, ECC2

12.8.5 ShutdownHook

Syntax

Parameter (In):
Error

Parameter (Out):
Description:

Particularities:

Conformance:

void ShutdownHook (StatusType <Error>)

error occurred
none

This hook routine is called by the operating system when the
OS service ShutdownOS has been called. This routine is called
during the operating system shut down.

ShutdownHook is a hook routine for user defined shutdown
functionality, see chapter 10.4.

BCC1, BCC2, ECC1, ECC2

OSEK OS2.1r1

© by OSEK 69

B U OSEK/VDX Operating System

Specification 2.1r1

13 Implementation and application specific topics

This chapter is not normative nor mandatory. It provides information for implementers and
application programmers.

13.1 Implementation hints.

OSEK specifies an operating system interface and its functionality. |mplementation aspects are
not prescribed. There is no restriction on the implementation of the operating system aslong as
the implementation corresponds to any of the defined conformance classes.

13.1.1 Aspects of implementation

The range of automotive applications varies greatly such that no performance characteristics of
the operating system implementation can be specified, i.e. as to the execution time and memory
space required.

Asaresult,
. the OSEK operating system can be implemented with various degrees of efficiency.

. The linker needs only to link those objects and services of the operating system which
are actually used.

. the operating system used in a product (e.g. in a control unit's EPROM) cannot be de-
scribed as OSEK operating system, but as an operating system which conformsto an
OSEK operating system conformance class.

. the tool environment of the operating system configuration and initialisation is not part of
the operating system specification and therefore implementation-specific.

. commercial systems which provide the user with al OSEK operating system specific
services and their functionalities via an OSEK adaptation layer, are also OSEK operating
system compliant. They are compliant irrespective of their actual suitability for control
units as regards the memory space they require and their processing speed.

The conformance class selected for an application software is determined by the needs on
functionality and flexibility.

The real-time behaviour of the application software used with a specific hardware is also
defined by the quality of implementation.

13.1.2 Parameters of implementation

The operating system vendor provides a list of parameters specifying the implementation.
Detailled information is required concerning the functionality, performance and memory
demand. Furthermore the basic conditions to reproduce the measurement of those parameters
have to be mentioned, e.g. functionality, target CPU, clock speed, bus configuration, wait
states etc.

13.1.2.1 Functionality

e Maximum number of tasks
e Maximum number of not suspended tasks
e Maximum number of priorities

70 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

* Number of tasks per priority (for BCC2 and ECC2)

* Upper limit for number of task activations (must be "1" for BCC1 and extended tasks)
e Maximum number of events per task

* Limitsfor the number of aarm objects (per system/ per task)

* Limitsfor the number of nested resources (per system/ per task)

* Lowest priority level used internally by the OS

13.1.2.2 Hardware resources

* RAM and ROM requirement for each of the operating system components
» Sizefor each linkable module

* Application dependent RAM and ROM requirements for operating system data (e.g. bytes
RAM per task, RAM required per darm, ...)

» Execution context of the operating system (e.g. size of OS internal tables)
* Timer unitsreserved for the OS
* Interrupts, traps and other hardware resources occupied by the operating system

13.1.2.3 Performance

« Total execution time for each service'

» OS start-up time (beginning of StartOS until execution of first task in standard mode)
without invoking hook routines

« Interrupt latency® for ISRs of category 1, 2 and 3
« Task switching times for all types of switching™
» Baseload of system without applications running

All performance figures shall be stated as minimum and maximum (worst case) values,

13.1.2.4 Configuration of run time context

A run time context is assigned to each task. This refers to al memory resources of the task
which are occupied at the beginning of the execution time, and which are released again once
the task is terminated. Typically the run time context consists of some registers, atask control
block and a certain amount of stack to operate.

Depending on the design of tasks (e.g. type and pre-emptibility) and depending on the
scheduling mechanism (non-, mixed- or full pre-emptive) the run time context may have

12 The time of execution may depend on the current state of the system, e.g. there are different execution times
of "SetEvent" depending on the state of the task (waiting or ready). Therefore comparable results have to be
extracted from a common benchmark procedure.

13 Time between interrupt request and execution of the first instruction of user code insidethe ISR. A
comparison of interrupt latencies of 1SRs from category 1 to ISRs from category 2 or 3 specifies the operating
system overhead.

14 Should be measured from the last user instruction of the preceding task to thefirst user ingtruction of the
following task so that all overhead is covered. Task switching types are different for: normal termination of a
task, termination forced by ChainTask(), preemptive task switch, task activation when OSidletask is running,
alarm triggered task activation and task activations from ISRs of types 2 and 3.

OSEK OS2.1r1 © by OSEK 71

B U OSEK/VDX Operating System

Specification 2.1r1

different sizes. Tasks which can never pre-empt each other may be executed in the same run
time context in order to achieve an efficient utilisation of the available RAM space.

The operating system vendor should provide information about the implemented handling of
the run time context (e.g. one context per task or one context per priority level). Considering
this information the user may optimise the design of his application regarding RAM
requirements versus run time efficiency.

13.2 Application design hints

The purpose of this chapter isto provide additional information about possible problems which
might arise when designing applications for the OSEK operating system. Not all of the
consequences for the system design can be mentioned in the specification itself. Other design
hints result from the experience of current ECU applications.

13.2.1 Resource management

Some aspects are mentioned in this chapter in order to guarantee a proper handling of all
resources.

13.2.1.1 Occupation in LIFO order

Each access to a resource should be encapsulated with calls to the services GetResource and
ReleaseResource. Resources have to be released in reversed order of their occupation. The
following code sequence is incorrect because function foo is not alowed to release resource
res 1.

TASK(i ncorrect)

Get Resource(res_1);
/* sone code accessing resource res_1 */

foo();
héieaseResource(res_2);

}

voi d foo()

Get Resource(res_2);
/* code accessing resource res_2 */

héieaseResource(res_1);

}
Nested resource occupations is alowed. The occupation of resources has to be performed in

strict LIFO order (stack principle). If the code accessing the resource as shown above is pre-
empted by atask with higher priority (higher than the ceiling priority of the resource), another
resource might be requested in that task leading to a nested resource occupation which
conforms to the LIFO order.

13.2.1.2 Call level of API-services

The OSEK API-services GetResource and ReleaseResource should be called from the same
functional call level. If functionfoo is corrected concerning the LIFO order of resource
occupation like:

void foo(void)

72 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

Rel easeResource(res_1);
Get Resource(res_2);
/* sone code accessing resource res_2 */

héieaseResource(res_2);

}
there still may be a problem because ReleaseResource(res 1) is called on a different level than

GetResource(res 1). Calling the API services from different call levels might cause problemsin
some implementations.

13.2.1.3 Resources still occupied at task termination

The access to a resource should be encapsulated directly by the calls of GetResource and
ReleaseResource. Otherwise one might miss to release the resource and possibly terminate the

task.
CGet Resource(res_1);

swi t ch (condition)
case CASE 1 :

do_sonet hi ng1();
Rel easeResource(res_1);

br eak;
case CASE 2 : /* 111 WWRONG no rel ease of */
/* resource here !!! */
do_sonet hi ng2();
br eak;
defaul t:

do_sonet hi ng3() ;
Rel easeResource(res_1);

}

If in standard status of the operating system a task terminates without releasing all of the
occupied resources the resulting behaviour is not defined by the specification. Depending on
the implementation of the operating system the resource may be locked forever since further
accesses are rejected by the operating system.

13.2.2 Placement of API calls

For the same reasons as above mentioned in chapter 13.2.1.2 the placement of API services
TerminateTask and ChainTask is crucial for the operating system. Both services are used to
terminate the running task. Calling these services from a subroutine level of the task, the
operating system is responsible for a correct treatment of the stack when terminating the task.
One solution could be to store the position of the stack pointer at the entry point of the
running task and restore that value after terminating the task.

13.2.3 Interrupt service routines
The user has to be aware of some possible error cases when using | SRs of category 1, 2 and 3
as described in chapter 5.

13.2.3.1 Local variables in ISRs of category 3

In ISRs of category 3 the user is allowed to write application code before the operating system
context is entered using the service EnterlSR. If EnterlSR switches to a different stack,
automatic variables defined in the preceding application code might be no longer accessible in
the operating system context.

OSEK OS2.1r1 © by OSEK 73

B U OSEK/VDX Operating System

Specification 2.1r1

The application code at the beginning of the ISR might not be portable between different
compilers when using local variables. This is because the convention for register usage is not
aways the same for compilers from different manufacturers.

13.2.3.2 Nested interrupts of different categories

Since al interrupts are of higher priority than the task levels, the processing of interrupts has to
be terminated before the system returns to task level. If an ISR of category 2 interrupts an ISR
of category 1 the system will continue processing of ISR1 after ISR2 terminates. Having tasks
activated or events set from interrupt level in ISR2 the operating system is not invoked after
termination of ISR1 in order to perform a rescheduling.

Please note that, in this respect, an ISR3, before Enterl SR is called, acts like an ISR category

1, afterwards like an I SR category 2.
/_ Interrupt

ISR of category 1 / ISR of category 2
{ é {

code without cal to code with cdl to
an OS service an OS service
eg.
ActivateTask();
SetEvent();
\—> No OScall
at theend
of ISR1

Figure 13-1 Nested interrupts

Because ISRs of category 1 (or category 3 before Enterl SR) do not run under control of the
operating system the OS has no possibility to perform a rescheduling when the | SR terminates.
Thus any activities corresponding to the calls of the operating system in the interrupting | SR2
(or ISR3 after Enterl SR) are unbounded delayed until the next rescheduling point.

As a result of the problems discussed above, each system should set up rules to avoid these
problems. There may be specific implementations which can avoid these problems, or the
application might have specific properties such that these problems can not occur (e.g. in non
pre-emptive systems). The rules must therefore take into account both the specific
implementations and the applications.

However, for maximal application portability, an easy rule of thumb which aways works is the
following:

» dl interrupts of category 1 have to have a higher or equal hardware priority compared with
interrupts of category 2.

» dl interrupts of category 3 have to share one hardware priority not higher than the lowest
category 1 interrupt priority, and not lower than the highest category 2 interrupt priority.

74 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

13.2.3.3 Direct manipulation of interrupt levels
Direct manipulation of interrupt levelsis not portable and restricted by the implementation.

13.2.4 Priority and pre-emption

Tasks are scheduled by the operating system according to their priority. A task is declared as
being pre-emptive / non pre-emptive (see chapter 4.6.3). The application hasto treat these two
task attributes in a consistent manner to avoid conflicts in the run-time behaviour of the
system. Care has to be taken because non pre-emptive tasks of lower priority delay tasks of
higher priority.

Typically the pre-emption of atask is assigned when designing, whereas priority is configured
during system integration. Because many people are involved in larger software projects, the
development process has to be co-ordinated precisely. To achieve a well-defined run-time
behaviour of the system this co-ordination is crucial.

13.2.5 Parameter to pass to ShutdownOS

The parameter passed to ShutdownOS is also passed to the ShutdownHook. If the operating
system calls ShutdownHook, the passed parameter is an implementation dependent error value.
If the user calls ShutdownOS he has to use one of the existing OSEK OS error numbers. |If
OSEKtime and OSEK coexist, an OSEKtime OS error number can also be passed.

It is strongly recommended to use the error number described in the implementation
documentation. If no specific error number for ShutdownOS is defined, it is possible to use
E OK and to distinguish this way between operating system calls of ShutdownOS and
application calls.

13.2.6 Error handling

Errorsin the application software are typically caused by:

. Errors on handling the operating system, i.e. incorrect configuration / initialisation /
dimensioning of the operating system or violations of restrictions regarding the operating
system service.

. Error in software design, e.g. inappropriate choice of task priorities, unprotected critical
sections, incorrect scaling of time, inefficient conceptual design of task organisation

Test of implementation

Breakpoints, traces and time stamps can be integrated individualy into the application
software.

Example: The user can set time stamps enabling him to trace the program execution at the
following locations before calling operating system services:

. When activating or terminating tasks.

. When setting or clearing events in the case of extended tasks.

. At explicit points of the schedule.

. At the beginning or the end of ISRs.

. When occupying and releasing resources or at critical locations.

OSEK OS2.1r1 © by OSEK 75

B U OSEK/VDX Operating System

Specification 2.1r1

Time monitoring

The operating system needs not include a time monitoring feature which ensures that each or
only, e.g. the lowest-priority task has been activated in any case after a defined maximum time
period.

The user can optionally use hook routines or establish a watchdog task that takes "one-shot
displays' of the operating system status.

Constructional elements

Congtructional elements (e.g. DeclareTask) were introduced in OSEK OS as means to create
references to system objects used in the application. Like externa declarations constructors
would be placed at the beginning of source files. With respect to the implementation they can
be implemented as macros. With the definition of OIL most implementations do not need them
any more. However they are till kept for compatibility.

13.2.7 Errors and warnings

Most of the error values of system services point to application errors. However, in some
special cases error values indicate warnings which might come up during normal operation.
These cases are:

* Enablelnterrupt, Disablelnterrupt E OS NOFUNC (extended)

* GetAlarm E_OS NOFUNC (standard)
» SetAbsAlarm, SetRelAlarm E OS STATE (standard)
» CancelAlarm E OS NOFUNC (standard)

Especially when implementing a central error handling using ErrorHook, this has to be taken
into account.

76 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

13.3 Implementation specific tools

When buying or writing portable code one has to be aware of the different implementation
tools on the market. This has an impact, on what kind of documentation has to go in paralle

with the code.

VersonA VesonB

indude OSEK X =

Dedlarations Gareration
User- Tod
program

User-

program

ler ﬁ

Linker @

e[l =l

Executeble

Figure 13-2 Implementation specific tools

The example here shows two possible implementations of atool chain:
. Version A, with al declarations related to task properties etc. within the code
. Version B, using a separate generation tool for these task properties etc.

For definitions which should be supplied with portable code please consult the OIL

specification.

OSEK OS2.1r1 © by OSEK

77

B U OSEK/VDX Operating System

Specification 2.1r1

14 Changes from specification 1.0 to 2.1r1

14.1 Changes from specification 1.0 to 2.0r1
This chapter mentions al changes in the concept and the API of the OSEK operating system,
with explanation for the reason of change.

14.1.1 Conceptual changes

14.1.1.1 Conformance classes
This chapter refersto chapter 3.2 Conformance classes.

The OSEK OS specification version 2.0 now supports only four conformance classes instead
of five (asin version 1.0). Also the CCs are renamed, so for example ECCL1 (version 1.0) has
other features than ECCL1 (version2.0). The experience of working with version 1.0 has shown
that the four CCs of version 2.0 will better meet application requirements.

Changes in detail are:

» Multiple requesting of task activation for extended tasks is not supported. That is only
allowed for basic tasks.

» The number of multiple requesting of task activation is an attribute of the basic task and no
requirement of the conformance class.

» The conformance classes of version 2.0 are no longer strictly upward compatible.

14.1.1.2 Messages

Specification version 2.0 does not support communication via messages. All message services
are part of the communication specification and therefore described in the OSEK COM
specification.

14.1.1.3 Multiple requesting of task activation

This chapter refersto chapter 4.3, Activating atask.

In version 1.0 the order of activation in case of multiple request was not explicitly defined but
up to the implementation. In version 2.0 it is clearly defined that the activations are queued in a
FIFO structure according to the order of requesting.

14.1.1.4 Application modes

This chapter refersto chapter 4.8, Application modes.

For some applications it should be useful to have different application modes depending on
external conditions.

14.1.1.5 Counters

The API for counters has been removed (see chapter 8.1, Counters). In version 1.0 access to
counters was allowed for the application. This feature is strongly depending on the underlying
hardware. Therefore the APl services for counters are cancelled in version 2.0. The API
services for darms are still available.

78 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

14.1.1.6 Hook routines
This chapter refersto chapter 10.1 Hook routines.
The naming of hook routines changed from OSxxxx to xxxxHook.

In verson 2.0 two additional hook routines SartupHook (see chapter 12.8.4) and
ShutdownHook (see chapter 12.8.5) are introduced. This feature offers the possibility of user
defined start-up and shutdown.

14.1.1.7 OS execution control

In version 2.0 of the OSEK OS specification two new API services are introduced, StartOS
(see chapter 12.7.2.1) and ShutdownOS (see chapter 12.7.2.3). With this two services, the user
can start-up and shutdown the overall system.

14.1.2 Clarifications

14.1.2.1 Scheduling of non pre-emptive tasks

When a non pre-emptive task is pre-empted by calling the scheduler, the task context is saved.
If the task is assigned to the processor again, the task will continue at the point of pre-emption
and will not be restarted from the beginning.

14.1.2.2 Services available on which level

In version 2.0 two tables are specifying which service is available on interrupt level, on task
level and in which hook routine.

14.1.2.3 Interrupt processing

Inversion 2.0 the | SR category 3 is mandatory and not optional any more.

14.1.2.4 Priority ceiling
This chapter refersto chapter 7.5, OSEK Priority Ceiling Protocol.

In version 2.0, the ceiling priority of aresource is defined exactly as:

a) identical or higher to the highest task priority with access to this resource (e.g. TaskX)
and

b) lower than the priority off all other of higher priority than that task (TaskX).

14.1.2.5 Types and constants
Inversion 2.0 the type TaskType is specified. The following types are defined:

. TaskType: identifies atask
. TaskRefType: points to a variable of TaskType
. TaskStateType: identifies the state of atask

. TaskStateRef Type: pointsto avariable of TaskStateType

14.1.2.6 Naming conventions

In version 2.0 the macro TASK has got a new meaning (see chapter 12.2.5). This change was
necessary because the old version of TASK had a drawback; the user was forced to define a
name for the task function he was not allowed to use as task name

OSEK OS2.1r1 © by OSEK 79

B U OSEK/VDX Operating System

Specification 2.1r1

TASK TaskFuncNane (voi d)
{ I* Task function for the Task "TaskNane" */
/* The nane "TaskFuncNanme" nust NOT be used as a task nanme */

}

14.1.3 Changes of the documentation

14.1.3.1 Document structure

The specification documentation of version 1.0 consists of two documents, the "concept” and
the "API". In version 2.0 these two papers are integrated into this one, called OSEK OS
specification.

14.1.3.2 New chapters

Portability of application software (paragraph in chapter 1.1)

This new chapter regards aspects of portability of OSEK software.

I mplementation and application specific topics (see chapter 13)

This new chapter gives hints for implementing an OSEK operating system.

14.1.3.3 Removed chapters
Chapter messages

The message concept is described in the OSEK COM specification. Therefore the message
parts are removed.

System generation

All questions of system generation are described in an extra paper called OIL specification
(OIL = OSEK Implementation Language). Severa references to that paper are made
throughout this document.

14.2 Changes from specification 2.0r1to 2.1 and 2.1r1
Most changes appeared from 2.0r1 to 2.1. Changes from 2.1 to 2.1r1 are specifically marked.

A lot of wording within the document has been changed for clarification and to improve
readability (2.1 and 2.1r1). The document structure was also changed for the same reason.
These changes are not explicitly mentioned in this section, but only changes in the concept and
the API of the OSEK operating system.

14.2.1 Behaviour of ChainTask/TerminateTask with allocated resources is
undefined.

In 2.0r1 the behaviour was not undefined but only the occupation of the resource was. Asthis
is a clear application error resulting in unsafe behaviour it was not considered useful to define
part of the behaviour in case of serious errors.

14.2.2 GetTaskID is allowed in ISRs.

As GetTaskState was allowed in ISRs and hook routines, and GetTasklD was already allowed
in hook routines, it seemed inconsistent and problematic not to alow it in ISRs.

80 © by OSEK OSEK OS2.1r1

B U OSEK/VDX Operating System

Specification 2.1r1

14.2.3 Interrupt handling has been clarified and extended.
» Support for interrupts of category 3 is optional.

» Clarification that Enablel nterrupt/Disablel nterrupt manipulates interrupt sources and that
the InterruptDescriptor is global.

* Added functions DisableAlll nterrupts/EnableAlll nterrupts.
* Added functions SuspendOSlI nterrupts/ResumeOSI nterrupts.

» Optional extension of resources to interrupts (including the concept of interrupt priorities).

14.2.4 Error checking of GetResource/ReleaseResource have been modified.
The definition in 2.0r1 was incomplete and the extension of the resource concept to ISRs
required this change.

14.2.5 Added constant OSTICKSPERBASE.

There have been constants for two of the three values returned by GetAlarmBase for a single
system counter. The missing third one was added for completeness.

14.2.6 ShutdownOS is allowed in ISRs and certain hook routines.

ShutdownOS is meant to be called by the application in case of fatal errors. As such errors are
likely to be discovered in ISRs or hooks (e.g. ErrorHook) it was considered dangerous to
prevent the application from immediately shutting down the operating system.

14.2.7 Behaviour of ShutdownOS after ShutdownHook returns is
implementation defined.

Version 2.0r1 of the specification was inconsistent in this point.

14.2.8 Added constant OSDEFAULTAPPMODE.
This constant was added to increase portability of applications.

14.2.9 ErrorHook is never called recursively.

Recursive calling of ErrorHook possibly leads to unbounded recursion and was considered too
dangerous.

14.2.10 Local Messages added to specification.

Intra processor message handling (refer to conformance class CCCA/CCAB as defined in the
OSEK Communication Specification) has been added.

14.2.11 Startup/shutdown when OSEK and OSEKtime coexist (2.1r1)

In case OSEK OS coexists with OSEKtime, restrictions have been added to the startup and the
shutdown procedure of the system. Especially, ShutdownHook must return.

OSEK OS2.1r1 © by OSEK 81

=1 OSEK /VDX

Operating System
Specification 2.1r1

15 Index

ACtiVALETaSKcoveeeeiiiieeiieeeee e 49
AlarmBaseRefType........ccccvvvveviciieennn, 62
AlarmBaseType.......ccocveeiiiveieeiiiieeeens 62
AlAMS...eei 37
AlarmTyYPe.....ccvveeeecieee e 62
APPMOAETYPE....eeeecriieeeeciieee e 66
CancelAlarmccoooeviiiiiiieieee 65
ChainTasK.......coeeerieieriee e 50
ClearEventcooceeeviieenieeeiee e 61
COUNLENS....eiieee e 37
DeclareAlarm........cccocceeeviieiniieniiieens 62
DeclareEventcccoooeeiiieeiiiieenieenne 60
DeclareResource.........cccvvveeeiieeenneenne 58
DeclareTasK.......cocoeviieeeiniieiiiiecnieene 49
DisableAllInterrupts.........cccvveeeeviveeenn. 56
Disablelnterruptccoeeeviiiieeeiiiieen, 55
E OS ACCESS.......cccooiiiieeieeeiene 48
E OS CALLEVEL ... 48
E OS ID .o 48
E OS LIMIT oo 48
E OS NOFUNC......ccooeiiiieiieeeiieene 48
E OS RESOURCE.........ccccevvieenienne 48
E OS STATE....oooeeeee 48
E OS SYS PARITY .o 48
E OS SYS STACK.....cooiiiiieerienne 48
E OS VALUE.......ccoiiiiieeeie 48
EnableAlllnterrupts.......ccccoevveeeeviinennn. 55
Enablelnterruptcooceeeviiieeiciiieee 54
ENterISR....oooii e 53
ErrorHOOKoovviiiiiiiieiiieeiee e 67
EventMaskRefType.........ccccvvveeiiiiveeeen. 60
EventMaskType......cccoeeeeviveeeeeiiiieeens 60
GetActiveApplicationMode.................. 66
GetAlarm.......coooeeeiieeee e, 63
GetAlarmBase.........ccceevveeevieeeiiieeee, 63
GetEVEN.......eeeeeeeeeeee e 61
GetInterruptDescriptor...........cccvveeenee. 55
GEtRESOUICE ... 58
GetTasKkID ..., 51
GetTaskState........ocovevvvveeeiieeeiee e, 52
INITIAL_INTERRUPT_DESCRIPTORS58
IntDescriptorRefTypeccvvveevciieeens 53
INtDesCriptorTYPe......vvveeeiieeeeeeiiieeeeas 53

INVALID_TASK ..., 52
ISR e 58
LeaVvelSR ... 54
maxallowedvalue.............ccccoveeeiiennne 62
MESSATC...eeeveeeeeeiiriirrreeee e e e e sssrrrrreeaaes 39
MINCYCIE ...eeeeiiiie e 62
multiple requesting...........cccceveeiiiiveeeenns 20
OSDEFAULTAPPMODE...........cc.c.... 67
OSMAXALLOWEDVALUE............... 66
OSMINCYCLE.......cooiiiiieeieeeieene 66
OSTICKDURATION.......cccveiriieeiienns 66
OSTICKSPERBASE........ccce i, 66
POStTaskHOOK............ceeviieeiiiceciee e, 68
PreTaskHOOKccceviiiieiiiiieiie e, 68
READY ..o 52
ReleaseResource.........coooveeieeeiieeennen. 59
RES SCHEDULER...........cccceviuirenen. 60
rescheduling.........cccccccvveeeiiiiieeeenee, 22, 26
RESOUICETYPE.....uvviiieeeiieiiiiieieee e 58
ResumeOSInterrupts..........cccvvveveeeeenns 56
RUNNING......cocoiiiieieeeeeee, 52
Schedule.........coooiiiiii 51
SetAbsAlarm ..o 64
SEtEVENT.....oooi 60
SetRelAlarm........cccceviiiiiiieeee 64
ShutdownHOOKccceveiiiieiiiieeienns 68
ShutdownOsS........coeeiiieiiee e 67
SEATOS ... 66
StartupHOOK........coeiiiiieeiciic e 68
SLAUSTYPC vt 47
SUSPENDEDcccooiiiiiiiieeieeeie, 52
SuspendOSInterruptsS........cccvveeeeeciveeeenn. 57
TASK ..o 52
TaskRefTYPE....cccveeeeecee e, 48
TaskStateRef Type.....ccccvvveeeviiiieecce, 48
TaskStateTYPe.....cvvvveevrveeeeeciieee e 438
TaSKTYPE ..vveeeeecieeee e 48
TerminateTasK.......cccceevveeerieeeiiieeeienn 49
TICKREfTYpe......cvveeeeeeeeeee e, 62
ticksperbase........coocceevvciiee e, 62
TICKTYPE. .t 62
WatEVeNtcccovviieeieeee e 61
WAITING.....coiiiieeeee e 52

82 © by OSEK

OSEK OS2.1r1

m

OSEK/VDX Operating System

Specification 2.1r1

15.1 List of figures

Figure 1-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 34
Figure 4-1
Figure 4-2
Figure 4-3
Figure 44
Figure 4-5
Figure 4-6
Figure 47
Figure 5-1
Figure 5-2
Figure 6-1
Figure 6-2
Figure 7-1
Figure 7-2
Figure 7-3
Figure 8-1
Figure 10-1
Figure 10-2
Figure 10-3
Figure 13-1
Figure 13-2

Software interfaces inSIde ECU ... 8
Processing levels of the OSEK operating System..........coccvveeeiiiveeecviiieee e 13
Processing levels of the OSEK operating system (tabl€).........cccceeeevvvvveiiinnnn. 14
Restricted upward compatibility for conformance classes..........ccccccvvveeinnneen. 15
The minimum requirements for Conformance Classes.........cccccevvcvevecciiieneens 15
Extended task State MOdEc.ceeiiiiiiiiie e 18
States and status transitions for extended tasks..........coocvvveincii e 18
BasiC task StAl@ MOcooviieiiiieee e 19
States and status transitions for basiC tasks.........covveviiieriiee e 19
Scheduler: order of BVENES.........oooiiiiiii e 21
Non pre-emptive SChedulingoooiiiiiie e 22
Full pre-emptive SChedulingooooiiiie i 23
| SR categories of the OSEK operating SyStemccoocvveeeiiiieeeeciiieeeeccineee e 26
API services allowed to be called by tasksand ISRScoocvveeiiiiiee e, 27
Full pre-emptive synchronisation of extended tasks...........ccccevevveeeiiiiieee e, 30
Non pre-emptive synchronisation of extended tasks..........ccccccveveeivciieeeciineenn. 30
Priority inversion on occupying Semaphores..........ccevevvveeeeeciiee e, 32
Deadlock Situation uSiNg SEMEPNOTES.........c.vveieeiiiiieeeeiiiee e e e e 33
Resource assignment with priority ceiling between pre-emptive tasks.............. 34
Layered model of alarm management...........cceeveiiiieie e 38
APl services for NOOK FOULINES...........cooveiiiieieiee e 41
VS (< A1 = U | o TP ERT PR 43
PreTaskHook and POStTaskHOOK...........ccceviiiiiiiiiiieee e 44
NESLE INTEITUPLS. ...ttt e e e e eanes 75
Implementation SPECITIC tOOIS........cccuviiiiiiiiee e 78

OSEK OS2.1r1

© by OSEK 83

m

OSEK/VDX

Operating System

Specification 2.1r1

16 History

Version Date Remarks

1.0 11. Sept. 1995 Authors:
Thomas Wollstadt Adam Opel AG
Wolfgang Kremer BMW AG
Jochem Spohr Damler-Benz AG
Stephan Steinhauer Damler-Benz AG
Thomas Thurner Damler-Benz AG
Karl Joachim Neumann University of Karlsruhe
Helmar Kuder Mercedes-Benz AG
Francois Mosnier Renault SA
Dietrich Schéfer-Siebert Robert Bosch GmbH
Jurgen Schiemann Robert Bosch GmbH
Reiner John Siemens AG

2.0 02. June 1997 Authors:
Wolfgang Kremer BMW AG
Salvatore Paris Centro Ricerche Fiat
Andree Zahir ETASGmbH & Co KG
Stephan Steinhauer Damler-Benz AG
Jochem Spohr ATM Computer GmbH
Jan Soderberg Delco
Piero Mortara Magneti Marelli
Helmar Kuder Mercedes-Benz AG
Bob France Motorola SPS
Kenji Suganuma Nippondenso co., Itd
Stefan Poledna Robert Bosch AG
Gerhard Goser Siemens Automotive SA
Georg Well Siemens Automotive SA
Alain Calvy Siemens Automotive SA
Karl Westerholz Siemens Semiconductors
Jirgen Meyer Softing GmbH
Ansgar Maisch University of Karlsruhe

2.0revisonl 15. October 1997 Authors seeversion 2.0

84 © by OSEK OSEK 0S 2.1r1

m

OSEK/VDX

Operating System
Specification 2.1r1

2.1 22. May 2000 Authors:
Manfred Geischeder BMW
Klaus Gresser BMW
Adam Jankowiak DamlerChryder
Jochem Spohr DamlerChryder
Andree Zahir ETAS
Markus Schwab I nfineon
Erik Svenske Mecel
Maxim Tchervinsky Motorola
Ken Tindéll NRTA
Gerhard Goser Siemens Automotive
Carsten Thierer University of Karlsruhe
Winfried Janz Vector Informatik
Volker Barthelmann 3Soft

2.1revisonl 13. November 2000 Authors:
OSEK OS WG/OSEKtime WG
compiled by: Jochem Spohr DaimlerChryder

OSEK 0S2.1r1 © by OSEK 85

