
OSEK/VDX Time-Triggered Operating System

Specification 1.0

OSEKtime OS 1.0 © by OSEK Document: ttos10.doc

OSEK/VDX

Time-Triggered Operating System

Version 1.0

July 24th 2001

This document is an official release. The OSEK group retains the right to make changes to this document
without notice and does not accept any liability for errors. All rights reserved. No part of this document
may be reproduced, in any form or by any means, without permission in writing from the OSEK/VDX

steering committee.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 2 © by OSEK OSEKtime OS 1.0

Preface
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.

For detailed information about OSEK project goals and partners, please refer to the “OSEK
Binding Specification”.

This document describes the concept of a time-triggered real-time operating system (OSEKtime). It
is not a product description which relates to a specific implementation. This document also specifies
the OSEKtime operating system - Application Program Interface.

General conventions, explanations of terms and abbreviations have been compiled in the additional
inter-project "OSEK Overall Glossary". Regarding implementation and system generation aspects
please refer to the "OSEK Implementation Language" (OIL) specification.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 3

 Table of Contents

1 Introduction... 5
1.1 System Philosophy.. 5
1.2 Purpose of this Document ... 6
1.3 Structure of this Document.. 7

2 Summary... 8
2.1 Architecture of a OSEKtime System... 8

3 Architecture of the OSEKtime Operating System.. 10
3.1 Processing Levels ... 10

4 Task Management ... 12
4.1 Task Concept... 12
4.2 Task State Model... 12

4.2.1 Time-triggered Tasks.. 12
4.3 Activating a Task.. 13
4.4 Scheduling Policy – time-triggered Activation.. 13
4.5 Termination of Tasks .. 15
4.6 Deadline Monitoring ... 15
4.7 ttIdleTask... 15
4.8 Application Modes... 16

5 Interrupt Processing... 17

6 Synchronisation.. 19
6.1 Synchronisation of System Time.. 19
6.2 Start-up and Resynchronisation... 19

6.2.1 Synchronisation Methods.. 20
6.2.2 Synchronisation... 21

7 System Start-up and Shutdown in a mixed OSEKtime / OSEK/VDX System....................... 22
7.1 Start-up of mixed OSEKtime and OSEK/VDX OS Systems... 22
7.2 Shutdown of mixed OSEKtime and OSEK/VDX OS Systems 22

8 Inter-Task Communication... 23

9 Error Handling... 24
9.1 Error Handling for Deadline Violation.. 24

10 Specification of OSEKtime Operating System Services... 25
10.1 Common Data Types.. 26
10.2 General Naming Conventions.. 26
10.3 Task Management .. 27

10.3.1Data Types... 27
10.3.2Constants ... 27
10.3.3Constructional Elements.. 27
10.3.4System Services.. 27

10.3.4.1 ttGetTaskID..27
10.3.4.2 ttGetTaskState...28

10.3.5Naming Convention.. 28

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 4 © by OSEK OSEKtime OS 1.0

10.4 Interrupt Handling...29
10.5 Operating System Execution Control...29

10.5.1Data types ..29
10.5.2Constants..29
10.5.3System Services..30

10.5.3.1 ttSwitchAppMode ..30
10.5.3.2 ttGetActiveApplicationMode ...30
10.5.3.3 ttGetOSEKOSState..30
10.5.3.4 ttStartOS ...31
10.5.3.5 ttShutdownOS ...31

10.6 Hook Routines..32
10.6.1 ttErrorHook..32
10.6.2 ttStartupHook...32
10.6.3 ttShutdownHook...33

10.7 Synchronisation...33
10.7.1Data Types ...33
10.7.2Constants..33
10.7.3System Services..34

10.7.3.1 ttGetOSSyncStatus ...34
10.7.3.2 ttSyncTimes ...34

10.8 API Services ..35

11 Index...36
11.1 List of Services, Data Types, and Constants ..36
11.2 List of Figures...36
11.3 List of Tables..36

12 History...37

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 5

1 Introduction
 The specification of the OSEKtime operating system (OSEKtime OS) is to represent a uniform
functioning environment which supports efficient utilisation of resources for automotive control unit
application software. The OSEKtime operating system is a single processor operating system meant
for distributed embedded control units.

1.1 System Philosophy
 The objective of the OSEKtime working group is to specify a time-triggered operating system with a
fault-tolerant communication layer as a standardised run-time environment for highly dependable
real-time software in automotive electronic control units. The operating system must implement the
following properties:

• predictability (deterministic, a priori known behaviour even under defined peak load and fault
conditions),

• clear, modular concept as a basis for certification,

• dependability (reliable operation through fault detection and fault tolerance),

• support for modular development and integration without side-effects (composability), and

• compatibility to the OSEK/VDX.

 The OSEKtime operating system supports static scheduling and offers all basic services for real-time
applications, i.e., interrupt handling, dispatching, system time and clock synchronisation, local
message handling, and error detection mechanisms.

 All services of OSEKtime are hidden behind a well-defined API. The application interfaces to the
OS and the communication layer only via this API.

 For a particular application the OSEKtime operating system can be configured such that it only
comprises the services required for this application. Thus the resource requirements of the operating
system are as small as possible.

 OSEKtime also comprises a fault-tolerant communication layer that supports real-time
communication protocols and systems and is described in FTCom specification.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 6 © by OSEK OSEKtime OS 1.0

1.2 Purpose of this Document
The following description is to be regarded as a generic description which is mandatory for any
implementation of the OSEKtime operating system. This concerns the general description of strategy
and functionality, the interface of the calls, the meaning and declaration of the parameters and the
possible error codes.

The specification leaves a certain amount of flexibility. The description is generic enough for future
upgrades.

It is assumed that the description of the OSEKtime operating system is to be updated in the future,
and will be adapted to extended requirements. Therefore, each implementation must specify which
officially authorised version of the OSEKtime operating system description has been used as a
reference description.

Because this description is mandatory, definitions have only been made where the general system
strategy is concerned. In all other respects, it is up to the system implementation to determine the
optimal adaptation to a specific hardware type.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 7

1.3 Structure of this Document
 In the following text, the essential specification chapters are described briefly:

 Chapter 2, Summary

 This chapter provides a brief introduction to the OSEKtime operating system concept.

 Chapter 3, Architecture of the OSEKtime Operating System

 This chapter gives a survey about the design principles and the architecture of the OSEKtime-
triggered operating system.

 Chapter 4, Task Management

This chapter contains a description of the attributes of a task, the task states and transitions, and the
special case of task deadline monitoring supported in OSEKtime.

 Chapter 5, Interrupt Processing

 This chapter contains a short description of the interrupt handling mechanism within OSEKtime OS.

 Chapter 6, Synchronisation

 This chapter contains a description of local and global times, together with the possibilities to handle
the start-up of a system under various conditions.

 Chapter 7, System Start-up and Shutdown in a mixed OSEKtime / OSEK/VDX System

 This chapter contains a description of system Start-up and Shutdown in a mixed OSEKtime /
OSEK/VDX system.

 Chapter 8, Inter-Task Communication

 The main topic of this chapter is the definition of inter-task communication. Full message handling is
described in OSEKtime FTCom.

 Chapter 9, Error Handling

 This chapter contains a description of the error handling..

 Chapter 10, Specification of OSEKtime Operating System Services

 This chapter contains a description of the services provided by the operating system.

 Chapter 11, Index

 List of all operating system services and figures.

 Chapter 12, History

 List of all versions.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 8 © by OSEK OSEKtime OS 1.0

2 Summary
The OSEKtime operating system provides the necessary services to support distributed fault-tolerant
highly dependable real-time applications (e.g., start-up of the system, message handling, state
message interface, interrupt processing, synchronisation and error handling).

The operating system is built according to the user's configuration instructions at system generation
time. The operating system cannot be modified later at execution time.

The service groups are structured in the terms of functionality.

Task management

• Management of task states, task switching

• Scheduling policy

• Deadline monitoring

Interrupt management

• Services for interrupt processing

System time and start-up

• Synchronisation of system time

• Services for system start-up

Intra processor message handling

• Services for exchange of data

Error treatment

• Mechanisms supporting the user in case of various errors

Event mechanisms, alarms, and resources

• Event mechanisms, alarms, and resources are restricted for the use to OSEK/VDX tasks and
are not allowed for time-triggered tasks. So event mechanism, alarms, and resources are not part
of the OSEKtime specification as the normal OSEK/VDX OS mechanisms apply.

2.1 Architecture of a OSEKtime System
 The operating system is responsible for the on-line management of the CPUs resources, management
of time and task scheduling. The FTCom layer is responsible for the communication between nodes,
error detection and fault-tolerance functionality within the domain of the communication subsystem.
Figure 2-1 shows the architecture of a OSEKtime system. Application software and FTCom layer
are executed under control of the operating system. OSEK-NM describes node-related (local) and
network-related (global) management methods. The global NM component is optional and
described in the OSEK/VDX NM specification.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 9

Bus I/O Driver

OSEKtime Operating System

OSEKtime FTCom Layer

Application

Bus I/O Driver

Fault-Tolerant Subsystem

OSEK/VDX
Network

Management

Message Filtering Layer

Fault Tolerant Layer

Application Layer

Interaction Layer

Communication Subsystem

Time
Service

Bus I/O Driver

CNI Driver

Bus Communication HardwareBus Communication Hardware

 Figure 2-1: Architecture of an OSEKtime system

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 10 © by OSEK OSEKtime OS 1.0

3 Architecture of the OSEKtime Operating System
 This chapter describes the architecture of the OSEKtime operating system.

3.1 Processing Levels
 The OSEKtime operating system serves as a basis for application programs which are independent
of each other, and provides their environment on a processor. The OSEKtime operating system
enables a controlled real-time execution of several processes which appear to run in parallel.

 The OSEKtime operating system provides a defined set of interfaces for the user. These interfaces
are used by entities which are competing for the CPU. The are two types of entities:

• Interrupt services routines managed by the operating system

• Tasks

 The hardware resources of a control unit can be managed by operating system services. These
operating system services are called by a unique interface, either by the application program or
internally within the operating system.

 OSEKtime defines two processing levels:

• Interrupt level

• TT Task level

 Figure 3-1 shows the interrupt and task level model of the OSEKtime OS:

Processing
Level

Non-maskable Interrupt Routines

OSEKtime Dispatcher

Maskable TT Interrupt

Routines
Time-Triggered Tasks

OSEK Interrupt
Routines

OSEK Scheduler

OSEK Tasks

ttIdleTask

 Figure 3-1: Processing levels

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 11

 Beside the OSEKtime subsystem it is possible to include a full OSEK/VDX OS subsystem in the
kernel. In a highly dependable application, however, the OSEK/VDX subsystem can only be used, if
the following restriction is fulfilled:

• The complete OSEKtime must have a higher processing level than the OSEK/VDX subsystem.

The following requirements should be fulfilled:

• The microcontroller should provide a sufficient number of interrupt levels for the implementation
of the above model.

• For highly dependable applications memory protection mechanisms either in hardware or
software should be used.

 Only if these requirements are fulfilled it can be guaranteed that tasks of the OSEK/VDX subsystem
cannot interfere with a highly dependable time-triggered task located in the OSEKtime subsystem.

 In case no OSEK/VDX subsystem is required or the above requirements cannot be met, OSEKtime
can also be implemented without an OSEK/VDX subsystem without compromising the functionality
of the OSEKtime subsystem. In this case the OSEKtime subsystem must offer an idle (background)
task.

 In the model a mixture of interrupt routines and time-triggered tasks is possible, i.e., the time-
triggered tasks can have precedence over interrupt service routines.

 Non-preemptive OSEK/VDX tasks are allowed but they are non-preemptable by OSEK/VDX
tasks only. The OSEKtime dispatcher that activates time-triggered tasks according to the dispatcher
table preempts even non-preemptive OSEK/VDX tasks in order to realise deterministic timing
behaviour for all time-triggered tasks.

 Additionally time-triggered tasks and OSEK/VDX tasks do not share common resources. The inter-
task communication is done by local message handling as defined in chapter 8.

 Please note that assignment of a priority to the OSEKtime Dispatcher is only a logical concept which
can be implemented without directly using priorities.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 12 © by OSEK OSEKtime OS 1.0

4 Task Management

4.1 Task Concept
 Tasks are executed sequentially starting at the entry point and running to the exit point (see Figure
4-1). Internal loops are allowed but one must be able to determine the Worst Case Execution Time
(WCET). Blocking (i.e., waiting for an external event) of tasks is not supported. The beginning of
task execution is linked to an activation event. In a time-triggered application activation events
originate from the dispatcher table only.

Task

Activation event

Sequential execution

 Figure 4-1: Task model

4.2 Task State Model
 A task must be able to change between the states running, suspended and preempted, as the
processor can only execute one instruction of a task at any time static scheduling is supported by
OS. Task activation times are stored in the dispatcher table. The OSEKtime operating system is
responsible for starting the tasks at the right time and the monitoring of the deadlines. Time-triggered
tasks always preempt the execution of other time-triggered tasks.

4.2.1 Time-triggered Tasks

Time-triggered tasks only have three task states:

 running: In the running state, the CPU is assigned to the task, so that its instructions can be
executed. Only one task can be in this state at any point in time, while all the other
states can be adopted simultaneously by several tasks.

 preempted: In the preempted state the instructions of a task are not executed. A task enters this
state from the running state only. The only allowed succeeding state of this state is the
running state. A task enters this state from the running state if and only if another task
changes from the suspended state to the running state, triggered by the dispatcher. A
task leaves this state if its preempting task changes from the running state to the
suspended state.

 suspended: In the suspended state the task is passive and can be activated.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 13

 Time-triggered task state transitions are shown on Figure 4-2.

running

preempted

suspendedpreempt resume

terminate

activate

 Figure 4-2: Time-triggered task model

States and status transitions for time-triggered tasks are shown in Table 4-1.

Transition Former
state

New
state

Description

activate suspended running A new task is set into the running state by the
OSEKtime Dispatcher as a result of an OSEKtime
Dispatcher tick.

resume preempted running The last preempted task is resumed.

preempt running preempted The OSEKtime Dispatcher decides to start another task
as a result of an OSEKtime Dispatcher tick. The
running task is put into the preempted state.

terminate running suspended The running task causes its transition into the
suspended state as a result of task completion.

 Table 4-1: States and status transitions for time-triggered tasks

4.3 Activating a Task
Task activations are performed by the OSEKtime dispatcher as a result of OSEKtime dispatcher
ticks (TT interrupts). OSEKtime dispatcher invocation events are defined in an offline generated
dispatcher table. A task can be activated more than once during one dispatcher round, but is not
allowed to preempt itself.

4.4 Scheduling Policy – time-triggered Activation
 The OSEKtime OS is based on preemptive scheduling. Static scheduling is supported. From the
task timing characteristics (such as offsets, worst case execution times and deadlines) an external

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 14 © by OSEK OSEKtime OS 1.0

scheduling tool generates a dispatcher table. The time-triggered tasks can preempt each other. No
blocking mechanisms through events or resource management like in OSEK/VDX OS are allowed.

 The dispatcher activates the tasks in a strictly sequential order, which is stored in the dispatcher
table. A complete execution of the dispatcher table is called dispatcher round. A task (except the
idle task) cannot run during the end of one dispatcher round and the start of the consecutive
dispatcher round.

 In the dispatcher table all task activations are pre-planned. The dispatcher table is executed cyclically
providing a periodic task execution scheme. This guarantees that no internal intermediate calculation
results of a task are exposed to other tasks. The dispatcher is initiated by an interrupt, the interrupt
source is the local logical time, which is synchronised with the global time, when a global time is
available (see Chapter 6).

 Time-triggered tasks do not have a static priority that is configurable by the user. The dispatcher
always activates a new time-triggered task according to the dispatcher table. If another time-
triggered task is running at that activation time it is always preempted and remains preempted until
termination of the newly activated task. This scheduling policy is referred to as stack-based
scheduling. The stack-based scheduling policy requires that the off-line scheduling tool constructs a
dispatcher table in such a way that all deadlines are met and no stack overflows will occur.

The offline defined dispatcher table guarantees precedence relations between tasks (such as user-
defined task sequences and offline resource constraints). In order to guarantee precedence relations,
the dispatcher table prevents unexpected task preemptions.

 Figure 4-3 shows an example of time-triggered task activation. The time-triggered tasks 1-3 (TT1-
3) are started at their activation time. If no time-triggered task is running OSEK/VDX OS tasks will
be executed. The states of the Idle Task in Figure 4-3 are corresponding to OSEK/VDX tasks.

suspendedTask TT3 running

suspendedTask TT2 running

Task TT1 running suspended

OSEKtime
Dispatcher

next activation
time

suspended

next activation
time

ttIdleTask preempted running
g

preempted

preempted running

 time

 Figure 4-3: Time-triggered scheduling

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 15

4.5 Termination of Tasks
In the OSEKtime operating system, a time-triggered task has to terminate itself before its deadline
occurs.

4.6 Deadline Monitoring
An important attribute of a task in a real-time system is its deadline, i.e., the point in time when the
task execution must be finished. Task deadline violation must be checked for each task during
runtime.

The deadline monitoring is done by the dispatcher. A special dispatcher table entry called “Deadline
Monitoring” is used to check task deadline. This entry indicates that the dispatcher should be started
and the deadline monitoring should be performed. If a task violates its deadline, error handling is
initiated (see chapter 9).

Each Task deadline has to be checked by one of the following mechanisms:

• Stringent task deadline monitoring: A “Deadline Monitoring” entry is added in the dispatcher
table exactly at the point of time when the task deadline is expired.

• Non-stringent task deadline monitoring: A “Deadline Monitoring” entry is added in the
dispatcher table at a convenient point (after the task deadline expiration), but not later than the
end of the current dispatcher round. In this case, the “Deadline Monitoring” entry may be
grouped with an entry associated with an activation of a new task in order to enhance
performance characteristics.

The task deadline monitoring method is a task-level attribute configurable by the user.

4.7 ttIdleTask
The first task started by the OSEKtime dispatcher is always a task with the predefined name:
ttIdleTask. It has the following special properties:

• it is not registered in a dispatching round and therefore not periodically restarted (however, it
may be restarted under special conditions),

• it can be interrupted by all interrupts handled by OSEKtime (normally, interrupts are grouped to
either be able to interrupt OSEKtime tasks, or not be able to do so, see Figure 3-1),

• no deadline is defined for ttIdleTask and

• because it is started first, it will always run if there is no other task ready.

• ttIdleTask never returns.

With these properties, ttIdleTask acts as the idle task of the OSEKtime OS.

A default ttIdleTask has to be supplied as part of an OSEKtime OS. The user can replace this task
by a task covering his special needs as long as it conforms to the restrictions stated above.

In case of a mixed OSEKtime/OSEK system, ttIdleTask is supplied by the OSEK manufacturer.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 16 © by OSEK OSEKtime OS 1.0

4.8 Application Modes
The concept of application modes allows the efficient management of different processing states in
the application software. An application mode is defined by a dispatcher table. The length of all
dispatcher rounds must be equal. Application modes can be, for example, initialisation, normal
operation and shutdown.

The operating system is started with the application mode passed as parameter by calling the system
service ttStartOS. The switching between different dispatcher tables during runtime, without losing
synchronisation is performed by the system service ttSwitchAppMode (see chapter 10.5.3). The
actual switch happens at the end of the current dispatcher round.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 17

5 Interrupt Processing
The OSEKtime operating system provides an ISR-frame to prepare a run-time environment for a
dedicated user routine. The contents of function will be assigned to this ISR during configuration of
the OS. Within an interrupt service routine, usage of OSEKtime operating system services is
restricted according to Table 10-1.

 The operating system must provide means to define intervals in time where each interrupt may occur
at most once. This property must be enforced by the operating system during runtime.

 Interrupts will be disabled when they get serviced (see Figure 5-1). Reenabling of interrupts is done
at particular points in time defined offline and controlled from the dispatcher table (IEE1 ... IEEn).

 When supported by processors or other devices, alternative means of interrupt control are
permitted.

IEE1...IEE1

Dispatcher round

IEE2 IEE3 IEEn

Interrupt 1
disabled

Interrupt 2
disabled

Interrupt 1
disabled

IEE4 ...

IEEk: Interrupt re-enable schedule event

IEE2, IEE4: enable Interrupt 1
IEE3: enable Interrupt 2

: Interrupt execution

: Interrupt activation

Interrupt 1

Interrupt 2

: Interrupt disabled

 Figure 5-1: Interrupt re-enable schedule event

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 18 © by OSEK OSEKtime OS 1.0

 Non-maskable interrupts should be used with special care because such interrupts may delay
OSEKtime OS dispatching interrupts. If it is not possible to guarantee MINT of non-maskable
interrupts, the usage of non-maskable interrupts should be prevented.

 Nested interrupt support is an implementation specific and hardware specific feature, there are no
restrictions connected with nested interrupt implementation in an OSEKtime system.

 The application must not enable or disable interrupts during runtime. The operating system must
enable all interrupts for which an ISR is specified in the configuration, and disable all other interrupts.

 A list of allowed API calls in ISRs can be found in chapter 10.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 19

6 Synchronisation

6.1 Synchronisation of System Time
 Each ECU operates with a local time that increments according to the local clock source.

 If a global time is available by the synchronisation layer the synchronisation mechanism will be
executed:

• At system start-up and after loosing the synchronisation with the global time base.

• During normal operation (no temporary loss of the global time) the adjustment is done repeatedly
(e.g., at every end of the dispatching table).

The synchronisation of the local time has to be done in the ground state.

The synchronisation of the local time can be done by setting the local time to the value of the global
time.

 For the application a system call is available (ttGetOSSyncStatus) to detect if the local time is
synchronous to the global one or not.

 The global time is provided by the synchronisation layer which has the knowledge about the start
of every dispatcher round. The synchronisation layer will in general be provided by FTCom. If
FTCom is not used the functionality of the synchronisation layer as described in FTCom must be
provided by an additional software module.

 The operating system offers the ttSyncTimes API service which is used by the synchronisation
layer to provide the operating system with the current global time and the value of the global time at
the start of the current dispatcher round.

 For a detailed description of ttSyncTimes refer to the API specification (see chapter 10).

6.2 Start-up and Resynchronisation
Requirements on the local and global time:

• It must be possible to represent one complete dispatcher round without an overflow of the global
time. One overflow during one dispatcher round must be considered.

• The value domain of the global time must be configurable and must be identical at the OSEKtime
OS and at the Synchronisation Layer.

• The time values have to have the granularity of the global time, the rate between local and global
time must be defined as a constant.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 20 © by OSEK OSEKtime OS 1.0

6.2.1 Synchronisation Methods

At system start-up and after loosing the synchronisation with the global time base the following three
scenarios (see Figure 6-1) are possible:

• Synchronous start-up: The ECU does not execute the time-triggered tasks before a global time
is available.

• Asynchronous start-up - hard synchronisation: The ECU has to perform time-triggered task
execution according to the local time without waiting for the synchronisation to the global time.
The synchronisation of the local time to the global time is done at the end of a dispatcher round
(end of the dispatcher table) by delaying the start of the next dispatcher round.

• Asynchronous start-up - smooth synchronisation: The ECU has to perform time-triggered task
execution according to the local time without waiting for the synchronisation to the global time.
The synchronisation of the local time to the global time is done during several dispatcher rounds
by limiting the delay of the start of the next dispatcher round according to pre-defined
configuration parameters. The system is considered to be synchronised as long as the delay does
not exceed such a limit.

Global Time

Dispatcher Table

Synchronous Start-up

Global Time available

Start of the Dispatcher Table

Global Time

Asynchronous Start-up - hard

Global Time available

Start of Dispatcher Table

Dispatcher Table

Global Time

Asynchronous Start-up - smooth

Start of Dispatcher Table

Dispatcher Table

Synchronised

Synchronised
Global Time available

Task 1 Task 2 Task 3 Task n

G
ro

un
d

S
ta

te...

 Figure 6-1: Start-up

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 21

6.2.2 Synchronisation

When the synchronisation layer calls ttSyncTimes, the operating system is able to calculate the drift
between the local time and the global time. At the end of the dispatcher round, this difference can be
used to extend or shorten the last ground state of the dispatcher round. In the case of smooth
synchronisation this adjustment may be limited by some configuration parameters.

After a synchronisation loss, there is no explicit notification of the application. The application can
detect a synchronisation loss by the API call ttGetOSSyncStatus.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 22 © by OSEK OSEKtime OS 1.0

7 System Start-up and Shutdown in a mixed
OSEKtime / OSEK/VDX System

Implementations may combine OSEKtime and OSEK OS systems if the OSEK OS subsystem does
not interfere with the OSEKtime system. The entire OSEKtime has to have priority over OSEK OS
and neither OSEK OS tasks nor ISRs must delay any OSEKtime tasks or ISRs.

Also, the OSEK OS functions for disabling interrupts/interrupt-sources have to be local to OSEK
OS and must not affect any interrupts used by OSEKtime. In such a combined system no ttIdleTask
is used. The OSEK OS subsystem will run during the idle-times of the OSEKtime system. The
OSEKtime system can query the state of the OSEK OS subsystem by using the API service
ttGetOSEKOSState.

The current version of start-up and shutdown describes only a one vendor solution of a combined
OSEKtime / OSEK/VDX system, therefore a detailed interface specification between OSEKtime
and OSEK/VDX is not necessary.

7.1 Start-up of mixed OSEKtime and OSEK/VDX OS Systems
The start-up of a combined OSEK OS/OSEKtime system is initiated by calling the API service
ttStartOS. This will also initiate the start-up of the OSEK OS system. However, the OSEKtime
system has to be started first within a defined start-up time. The start-up of the OSEK OS system
must not cause unbounded delay of this start-up time, even if start-up of the OSEK OS subsystem
fails.

OSEKtime start-up completes first and OSEK OS tasks and ISRs will not be activated before the
ttIdleTask of an OSEKtime-only system would start to run.

7.2 Shutdown of mixed OSEKtime and OSEK/VDX OS Systems
Two types of shutdown-procedures are supported. A local shutdown of the OSEK OS subsystem
which does not affect the OSEKtime system and a global shutdown of the entire system.

The local shutdown will not affect the OSEKtime system. The ShutdownHook (which has to return)
will be called and the OSEK OS system will stop running, i.e. no OSEK OS tasks or ISRs will be
executed. OSEKtime is able to notice a local shutdown by calling the API service
ttGetOSEKOSState.

The global shutdown will immediately shut down both operating systems. ttShutdownHook will be
called and if it does return, the entire system will be shut down. The OSEK OS ShutdownHook is
not called to guarantee a shutdown-time for OSEKtime. If necessary the OSEK OS
ShutdownHook may be called within ttShutdownHook.

The local shutdown can be initiated by calling ShutdownOS from the OSEK OS subsystem.

Global shutdown can be initiated by calling ttShutdownOS either from the OSEKtime system or
from the OSEK OS subsystem.

It is recommended to provide a configuration option which prevents OSEK OS from initiating a
global shutdown.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 23

8 Inter-Task Communication
For an OSEKtime implementation to be compliant, message handling for inter-task communication
(or intra-processor communication) has to be offered. The minimum functionality to be supported is
the inter-task communication as described in the OSEKtime FTCom specification.

If an implementation offers even more functionality which is specified in the FTCom specification the
implementation must stick to syntax and semantic of the OSEKtime FTCom functionality.

For more details, refer to the OSEKtime FTCom specification.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 24 © by OSEK OSEKtime OS 1.0

9 Error Handling
The error handling of OSEKtime is equivalent to OSEK/VDX.

9.1 Error Handling for Deadline Violation
If a deadline violation is detected the dispatcher calls the ttErrorHook routine (see Figure 9-1) that
has to be programmed by the user (Error code: TT_E_OS_DEADLINE). Thus, the user can
implement an application specific error handling for deadline violations. After executing the
ttErrorHook, ttShutdownOS is called from the operating system. The operating system will shut
down and call the hook routine ttShutdownHook (Error code: TT_E_OS_DEADLINE).

The user is free to define any system behaviour in ttShutdownHook e.g. not to return from the
routine. If ttShutdownHook returns, the operating system jumps to the instruction following the initial
call to ttStartOS.

suspendedTask TT2

Task TT1 running

OSEKtime
Dispatcher

next dispatching time

deadline of TT1

ttErrorHook ttShutdownHook

Deadline Violation detected

ttShutdownOS

Hook
Routines

 Figure 9-1: Deadline Monitoring

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 25

10 Specification of OSEKtime Operating System
Services

 This chapter is structured according to the original OSEK/VDX OS-specification. Sections 10.3 to
10.7 include a classification of all OSEKtime OS system services. The table in Section 10.8 gives an
overview which services and elements could be called within which kind of tasks.

Type of Calls

The system service interface is ISO/ANSI-C. Its implementation is normally a function call, but may
also be solved differently, as required by the implementation - for example by macros of the C pre-
processor. A specific type of implementation cannot be assumed.

Structure of the Description

OSEKtime operating system services are arranged in logical groups. A coherent description is
provided for all services of the task management, the interrupt management, etc.

The description of each logical group starts with data type definitions and a description of constants.
A description of the group-specific constructional elements and system services follows. The last
items are additional conventions.

Service Description

A service description contains the following fields:

Syntax: Interface in C-like syntax.
Parameter (In): List of all input parameters.
Parameter (Out): List of all output parameters.
Description: Explanation of the functionality of the operating system service.
Particularities: Explanation of restrictions relating to the utilisation of the

operating system service.
Status: List of possible return values.

The specification of operating system services uses the following naming conventions for data types:

...Type: describes the values of individual data (including pointers).

...RefType: describes a pointer to the ...Type (for call by reference).

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 26 © by OSEK OSEKtime OS 1.0

10.1 Common Data Types
ttStatusType

This data type is used for all status information the API services offer. The normal return value is
TT_E_OS_OK which is associated with the value of OSEK’s E_OK.

The following error values are defined:

All errors of API services:

• TT_E_OS_ID: corresponds to E_OS_ID OSEK OS error code

• TT_E_OS_DEADLINE: task deadline violation - additional OSEKtime OS error code

If the only possible return status is TT_E_OS_OK, the implementation is free not to return a status,
this is not separately stated in the description of the individual services.

 Internal errors of the OSEKtime operating system:

 These errors are implementation specific and not part of the portable section. The error names reside
in the same name-space as the errors for API services mentioned above, i.e. the range of numbers
must not overlap.

 To show the difference in use, the names internal errors must start with TT_E_OS_SYS_

 Examples:

• TT_E_OS_SYS_STACK
• TT_E_OS_SYS_SCHEDOVERFLOW
• ... and other implementation-specific errors, which have to be described in the vendor-specific

document.

The names and range of numbers of the internal errors of the OSEKtime OS do not overlap the
names and range of numbers of other OSEK/VDX services (i.e. OSEK/VDX OS and OSEK/VDX
COM/NM) or the range of numbers of the API error values according to the OSEK/VDX binding
specification.

10.2 General Naming Conventions
The following prefixes are used for all OSEKtime OS constructional elements, data types, constants,
error codes and system services:

• “tt” prefix is used for constructional elements, data types and system services;

• “TT_E_OS_” prefix is used for error codes;

• “TT” prefix is used for constants.

This is to ensure that no name clashes occur.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 27

10.3 Task Management

10.3.1 Data Types

ttStatusType

This data type is identical with StatusType in the binding specification.

ttTaskType

This data type identifies a task.

ttTaskRefType

This data type points to a variable of ttTaskType.

ttTaskStateType

This data type identifies the state of a task.

ttTaskStateRefType

This data type points to a variable of the data type ttTaskStateType.

10.3.2 Constants

TT_RUNNING Constant of data type ttTaskStateType for task state running.
TT_PREEMPTED Constant of data type ttTaskStateType for task state preempted.
TT_SUSPENDED Constant of data type ttTaskStateType for task state suspended.
TT_INVALID_TASK Constant of data type ttTaskType for a not defined task.

10.3.3 Constructional Elements

No constructional elements which may be called during runtime are supported.

10.3.4 System Services

10.3.4.1 ttGetTaskID

Syntax: ttStatusType ttGetTaskID (

ttTaskRefType <TaskID>)

Parameter (In): none

Parameter (Out): TaskID reference to the task which is currently running.

Description: ttGetTaskID returns the information about the TaskID of the task
which is currently in the running state.

Particularities: Allowed on task level, ISR level and ttErrorHook hook routine.

This service is intended to be used by library functions and in the
ttErrorHook hook routine.

Status: No error, TT_E_OS_OK

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 28 © by OSEK OSEKtime OS 1.0

10.3.4.2 ttGetTaskState

Syntax: ttStatusType ttGetTaskState (

ttTaskType <TaskID>,

ttTaskStateRefType <State>)

Parameter (In): TaskID Reference to the task

Parameter (Out): State Reference to the state of the task <TaskID>

Description: Returns the state of a task (running, preempted, suspended) at
the time of calling ttGetTaskState by the output parameter State.

Particularities: The service may be called from interrupt service routines, task
level, and ttErrorHook hook routine. This service should be used
with special care in time-triggered systems because the task state
may be changed during ttGetTaskState service execution and the
result may already be incorrect at the time of evaluation.

Status: No error, TT_E_OS_OK, <TaskID> is invalid, TT_E_OS_ID

10.3.5 Naming Convention

The operation system must be able to assign the entry address of the task function to the name of the
corresponding task for identification. With the entry address the operating system is able to call the
task.

Within the application, a task is defined according to the following pattern:

ttTASK (TaskName)
{
}

With the macro ttTASK the user may use the same name for "task identification" and "name of task
function".

 The task identification will be generated from the TaskName during system generation time.

For the definition of the ttIdleTask the same pattern is used.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 29

10.4 Interrupt Handling
Within the application, an interrupt service routine is defined according to the following naming
convention:

ttISR (FuncName)
{
}

The keyword ttISR is evaluated by the system generation to clearly distinguish between functions
and interrupt service routines in the source code.

10.5 Operating System Execution Control

10.5.1 Data types

ttAppModeType

This data type represents the application mode.

ttAppModeRefType

Reference to the application mode of data type ttAppModeType.

ttOSEKOSStateType

This data type represents the state of an OSEK OS subsystem.

ttOSEKOSStateRefType

Reference to the state of an OSEK OS subsystem of data type ttOSEKOSStateType.

10.5.2 Constants

TT_OS_DEFAULTAPPMODE

Default application mode, always a valid parameter to ttStartOS. Constant of data type
ttAppModeType.

TT_OS_OSEKOSUP

There is an OSEK OS subsystem running. Constant of data type ttOSEKOSStateType.

TT_OS_OSEKOSDOWN

There is no OSEK OS subsystem or it has not yet been started or has been shut down. Constant of
data type ttOSEKOSStateType.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 30 © by OSEK OSEKtime OS 1.0

10.5.3 System Services

10.5.3.1 ttSwitchAppMode

Syntax: ttStatusType ttSwitchAppMode(

ttAppModeType <Mode>)

Parameter (In): Mode application mode

Parameter (Out): none

Description: This service performs switching between different dispatcher
tables during runtime, without losing synchronisation. The new
application mode is set by the parameter <Mode>. The actual
switch happens at the end of the current dispatcher round. The
length of the dispatcher round is not changed.

Particularities: Allowed for time-triggerd tasks and ISRs.

Status: No error, TT_E_OS_OK

10.5.3.2 ttGetActiveApplicationMode

Syntax: ttStatusType ttGetActiveApplicationMode (

ttAppModeRefType <Mode>)

Parameter (In): none

Parameter (Out): Mode Reference to the active application mode of data
type ttAppModeType.

Description: This service returns the current application mode. It may be used
to write mode dependent code.

Particularities: Allowed for task, ISR and all hook routines.

Status: No error, TT_E_OS_OK

10.5.3.3 ttGetOSEKOSState

Syntax: ttOSEKOSStateType ttGetOSEKOSState (

ttOSEKOSStateRefType <State>)

Parameter (In): none

Parameter (Out): Mode Reference to the state of an OSEK OS
subsystem of data type
OSEKOSStateType.

Description: This service returns the state of an OSEK OS subsystem.

Particularities: Allowed for task, ISR and all hook routines.

Status: No error, TT_E_OS_OK

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 31

10.5.3.4 ttStartOS

Syntax: void ttStartOS (

ttAppModeType <Mode>)

Parameter (In): Mode application mode

Parameter (Out): none

Description: This system service starts the operating system in a specific
mode.

Particularities: Only allowed outside of the operating system, therefore
implementation specific restrictions may apply. This call does not
need to return.

Status: none

10.5.3.5 ttShutdownOS

Syntax: void ttShutdownOS (

ttStatusType <Error>)

Parameter (In): Error error occured

Parameter (Out): none

Description: The user can call this system service to abort the overall system
(e.g. emergency off). The OSEKtime operating system also calls
this function internally, if it has reached an undefined internal state
and is no longer ready to run (for example if stack overflow has
been detected).

The hook routine ttShutdownHook is always called (with <Error>
as argument) before shutting down the operating system.

Particularities: After this service the OSEKtime operating system is shut down.

Allowed at task level, ISR level, in ttErrorHook and ttStartupHook
hook routines, and also called internally by the operating system.

If the operating system calls ttShutdownOS it never uses
TT_E_OS_OK as the passed parameter value.

Depending on the configuration this service might also be called
by an OSEK OS subsystem.

Status: none

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 32 © by OSEK OSEKtime OS 1.0

10.6 Hook Routines
The usage of all hook routines is mandatory.

10.6.1 ttErrorHook

Syntax: void ttErrorHook (

ttStatusType <Error>)

Parameter (In): Error error occured

Parameter (Out): none

Description: This hook routine is called by the OSEKtime operating system at
the end of a system service which returns ttStatusType not equal
TT_E_OS_OK (e.g. ttGetTaskState system service). It is called
before returning to the task or ISR level.

Also this hook routine is called when task deadline violation is
detected.

The ttErrorHook is not called if a system service called from
ttErrorHook does not return TT_E_OS_OK as status value. Any
error by calling of system services from the ttErrorHook can only
be detected by evaluating the status value.

Particularities: -

Status: none

10.6.2 ttStartupHook

Syntax: void ttStartupHook (void)

Parameter (In): none

Parameter (Out): none

Description: This hook routine is called by the OSEKtime operating system at
the end of the operating system initialisation and before the
scheduler is running. At this time the application can initialise
device drivers etc.

Particularities: -

Status: none

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 33

10.6.3 ttShutdownHook

Syntax: void ttShutdownHook (

ttStatusType <Error>)

Parameter (In): Error error occured

Parameter (Out): none

Description: This hook routine is called by the OSEKtime operating system
when the OS service ttShutdownOS has been called. This routine
is called during the operating system shutdown.

Particularities: ttShutdownHook is a hook routine for user defined shutdown
functionality.

Status: none

10.7 Synchronisation

10.7.1 Data Types

ttSynchronizationStatusType

This data type represents the synchronisation status of the OSEKtime operating system.

ttSynchronizationStatusRefType

Reference to the status of the OSEKtime operating system of data type
ttSynchronizationStatusType.

ttTickType

This data type defines the data type for the count value (count value in ticks).

10.7.2 Constants

TT_SYNCHRONOUS
Constant of data type ttSynchronizationStatusType for synchronous system state.
TT_ASYNCHRONOUS
Constant of data type ttSynchronizationStatusType for asynchronous system state.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 34 © by OSEK OSEKtime OS 1.0

10.7.3 System Services

10.7.3.1 ttGetOSSyncStatus

Syntax: ttStatusType ttGetOSSyncStatus (

ttSynchronisationStatusRefType <Status>)

Parameter (In): none

Parameter (Out): Status Synchronisation status of the system: synchronous
or asynchronous system time.

Description: This service returns the synchronization status of the system. If the
system is synchronised, Status will refer to a value equal to
TT_SYNCHRONOUS. If the system is not yet synchronised, Status
will refer to a value of data type ttSynchronisationStatusType equal
to TT_ASYNCHRONOUS.

Particularities: -

Status: No error, TT_E_OS_OK.

10.7.3.2 ttSyncTimes

Syntax: ttStatusType ttSyncTimes (

ttTickType <GlobalTime>,

ttTickType <ScheduleTime>)

Parameter (In): GlobalTime The current network-wide synchronised time.

ScheduleTime The value of the global time at start of the last
dispatching table.

Parameter (Out): None

Description: This service provides the operating system with the current global
time. It is used to calculate the difference between global and local
time and perform synchronisation as needed.

Particularities: Allowed for tasks and ISRs

Status: No error, TT_E_OS_OK.

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 35

10.8 API Services
In TT-Tasks, interrupt service routines (ISRs) and hook routines the following OSEKtime system
services and constructional elements can be used (see Table 10-1):

Service Tasks ttIdle
Task

ISRs ttStartup
Hook

ttShutdown
Hook

ttError
Hook

ttGetOSEKOSState allowed allowed allowed allowed allowed allowed

ttGetTaskID allowed allowed allowed -- -- allowed

ttGetTaskState allowed allowed allowed -- -- allowed

ttGetActiveApplication Mode allowed allowed allowed allowed allowed allowed

ttSwitchAppMode allowed allowed allowed -- -- --

ttStartOS -- -- -- -- -- --

ttShutdownOS allowed allowed allowed -- -- allowed

ttSyncTimes allowed -- allowed -- -- --

ttGetOSSyncStatus allowed allowed allowed -- allowed allowed

 Table 10-1: API services

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 36 © by OSEK OSEKtime OS 1.0

11 Index

11.1 List of Services, Data Types, and Constants

E_OK .. 26
StatusType.. 27
TT_ASYNCHRONOUS 33
TT_E_OS_ID... 26
TT_E_OS_OK... 26
TT_E_OS_SYS_SCHEDOVERFLOW... 26
TT_E_OS_SYS_STACK 26
TT_INVALID_TASK.............................. 27
TT_OS_DEFAULTAPPMODE............... 29
TT_OS_OSEKOSDOWN....................... 29
TT_OS_OSEKOSUP 29
TT_PREEMPTED.................................... 27
TT_RUNNING.. 27
TT_SUSPENDED.................................... 27
TT_SYNCHRONOUS 33
ttAppModeRefType.................................. 29
ttAppModeType....................................... 29
ttErrorHook.. 32
ttGetActiveApplicationMode............... 30, 35
ttGetOSEKOSState............................ 30, 35

ttGetOSSyncStatus..............................34, 35
ttGetTaskID..27, 35
ttGetTaskState28, 35
ttISR...29
ttOSEKOSStateRefType...........................29
ttOSEKOSStateType................................29
ttShutdownHook.......................................33
ttShutdownOS.....................................31, 35
ttStartOS...31, 35
ttStartupHook ...32
ttStatusType..26, 27
ttSwitchAppMode.....................................30
ttSynchronizationStatusRefType.................33
ttSynchronizationStatusType33
ttTASK...28
ttTaskRefType...27
ttTaskStateRefType...................................27
ttTaskStateType..27
ttTaskType..27
ttTickType...33

11.2 List of Figures
Figure 2-1: Architecture of an OSEKtime system...9
Figure 3-1: Processing levels ...10
Figure 4-1: Task model...12
Figure 4-2: Time-triggered task model...13
Figure 4-3: Time-triggered scheduling..14
Figure 5-1: Interrupt re-enable schedule event ...17
Figure 6-1: Start-up ..20
Figure 9-1: Deadline Monitoring..24

11.3 List of Tables
Table 4-1: States and status transitions for time-triggered tasks ...13
Table 10-1: API services ...35

OSEK/VDX Time-Triggered Operating System

Specification 1.0

 OSEKtime OS 1.0 © by OSEK 37

12 History

Version Date Remarks

1.0 July 24th 2001 Authors:
Volker Barthelmann 3SOFT
Anton Schedl BMW
Elmar Dilger Bosch
Thomas Führer Bosch
Bernd Hedenetz DaimlerChrysler
Jens Ruh DaimlerChrysler
Matthias Kühlewein DaimlerChrysler
Emmerich Fuchs DeComSys
Yaroslav Domaratsky Motorola
Andreas Krüger Motorola, since 04/01 Audi
Patrick Pelcat Peugeot Citroen
Martin Glück TTTech
Stefan Poledna TTTech
Thomas Ringler University of Stuttgart
Brian Nash Wind River
Tim Curtis Wind River

