= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

OSEK/VDX

Time-Triggered Operating System

Verson 1.0

July 24" 2001

This document is an official release. The OSEK group retains the right to make changes to this document
without notice and does not accept any liability for errors. All rights reserved. No part of this document
may be reproduced, in any form or by any means, without permission in writing from the OSEK/VDX
steering committee.

OSEKtime OS 1.0 © by OSEK Document: ttos10.doc

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

Preface

OSEK/VDX is a joint project of the automotive industry. It ams at an industry standard for an
open-ended architecture for digtributed control unitsin vehicles.

For detailed information about OSEK project gods and partners, plesse refer to the “OSEK
Binding Specification”.
This document describes the concept of a time-triggered real-time operating system (OSEKtime). It

is not a product description which relates to a specific implementation. This document aso specifies
the OSEKtime operating system - Application Program Interface.

Generd conventions, explanations of terms and abbreviaions have been compiled in the additiona
inter-project "OSEK Overdl Glossary". Regarding implementation and system generation aspects
please refer to the "OSEK Implementation Language” (OIL) specification.

2 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

Table of Contents

R 10110 o 01 [0 o PSP R 5
IS V/S = 0 4 I 0110 oo Y/ PSSRSO 5
1.2 Purpose of thiSDOCUMENTLccuiiiiieiie ettt e e e eere e nreeennas 6
1.3 Structure Of thiSDOCUMENT........cceiieiiriisie st 7

P U110 07 3 PR PP USRI 8
2.1 Architecture of aOSEKHME SYSIEM.......ocveiieieceeie et nne s 8

3 Architecture of the OSEKtime Operating SySeML.........ccciieiieeiieiie e s 10
TNt R . (070 = T o [= Y = P 10

T = S QY =0T = 10 0 SRR 12
I R 1= S Qo o= o SRR 12
4.2 TasKk SEEEMOUE.......c.oieeieeee et re e ene e e 12

v N 100 T= (00 = = o N 1= N TSRS 12
ZA G I o (17 (100 [F= W I < PSPPSR 13
4.4 Scheduling Policy —time-triggered ACHVAIONccverieeieieerece e 13
45 TemMINAON Of TASKS.....coiiieiieieeie ettt et sreesbe e e neenbeas 15
4.6 Deadling MONITOMNGeeiveeeesieesieeiesteesieeeeseesseeeesseesteeaesseesseeaesseesseesesseesseensesseensens 15
O 11 o L= IS SRRSO 15
Vi AN o o [o= (L0 1Y, oo /=30 SRS 16

I [0 1= (U o0 (0705 S | o [SRR 17

IS Y/ 07 100 1S (T o 19
6.1 Synchronisation Of SYSEM TIME........coiiiiiiece e e 19
6.2 Start-up and RESYNCHIONISALION.cevuiiiiiieiece et 19

6.2.1 Synchronisation Methods............ccuviiiiiii i 20
6.2.2 SYNCIIONISAION........ecieieeeiieeie et eree ettt e s te e sre e te e e e e teeneesreenseeneenneensens 21

7 System Start-up and Shutdown in amixed OSEKtime/ OSEK/VDX System..........ccccceenee... 22
7.1 Start-up of mixed OSEKtime and OSEK/VDX OS Systems........ccceevvevereeerieseeseeeneenn 22
7.2 Shutdown of mixed OSEKtime and OSEK/VDX OS Systems.......cccceeeenernieneenieennn 22

8 Inter-Task COMMUNICAIION........couiieierieie sttt sttt e bbb re e e 23

LS T = 10 gl = 070 1o SRR 24
9.1 Error Handling for Deadline Violation............c.ccveueiieieeiesecre e 24

10 Specification of OSEKtime Operating SyStemM SENVICES........oveeveriiriereeee e 25
10.1 COmMMON DAA TYPES.....eeiueiiieesiierieesiee st esreesteessee e sseessbeesseessaeessessnseesneesnseesseesnseenns 26
10.2 Generd Naming COnMVENTIONS.........c.eeiieiiieeiie e eiee st e sre e sreesae e s e sreesreesreesreeenne e 26
O RC I > S Q1= 00 = 07 27

ORI I B = B)Y o= TR 27
LO.3.2CONTAIMS ...ttt sttt s b e e e s b e et e e e e sa e e b e ennesneennesnnennes 27
10.3.3Congtructional EIEMENES........cceoiiiieiie e 27
10.3.4 SYSIEM SENVICES.....ccuveceeesieeieeeesteeee s e steeae e e e ste e e sreesseeeesseesteensesreesseeseesseensesnnenees 27

10341 HGEETASKID..ovvvvvvusessssssssssssssssssssssssssssssssss s8R 27

10.34.2 HGEATASKSEAE. .vvvvvvesssssssssssssssssssssssssssssssssssss s 555555555 28
10.3.5NaMING CONVEITION........eeiiieiieeiieesiee e e e s e ere e e sr e e sseesreesreeeaeesseesareesreeennes 28

OSEKtime 0S 1.0 © by OSEK 3

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

|
10.4 INtemUPt HaNDINGc.coeeeieiereeeeee e 29
10.5 Operating System EXecution CONLIOl............ccoveieieieieeiecieeseerie e s 29
LO.5. 1 DAAIYPES ..ottt ne s 29
LO.5.2CONTANES. ..ottt sttt sttt b e bbbt e b et e st e b e n e neenne e 29
1O.5.3SYSEM SENVICES.....ccuieeeeieerieeie ettt e te e steete e sse e se e e sre e tesseesseeseeneesneeneas 30
10531 tESWItCNAPPMOE ..ottt bbb 30

10532 ttGEtACtiVEAPPIICAIONMOUEciveeeireeeiteiet et 30

10533 HGEOSEKOSSIAE.ooooummmmmeeess 30

10534 TESHAIOS ...oovvvruummmerseesesssssssssssssessssssssssssssssss s sssssssssss s s 31

10535 TESNULAOWNOSevvvvvevssssssseeesssssssssssssss s ssssssssssss s ssssssssssss s sssssssssss s sssssssssssss 31

10.6 HOOK ROULINES........ccveiuieieeeieeiiesie e ste et e ee e steseesreeae s e s beetesseesseensesneesseennesneenneennens 32
O 1= 0 [0 32

10.6. 2 ESEATUPHOOK ...t 32
10.6.3ttSNULAOWNHOOK.ceveeeieieeeie et n e e sneeneas 33

10.7 SYNCHIONISAION.......c.eiieieieeieciese ettt e e e e e st e e te s e e sseennesreenreennens 33
1O.7. 1 D@B TYPES. ...eeueeeueeteeee sttt ettt b e sb e s e b e nense e neen e e e neenns 33
O 0§ = £ TR RR 33
10.7.3SYTEM SEVICES.....cvieiterieetieieeee ettt sttt e ettt b bt se e e e e nne st e ene e 34
10.7.31 tHGEIOSSYNCSIALUSvvvvvvesssssssseessssssssssssssssssssesss K

10.7.3.2 tESYNCTIIMES ..ottt b A

10.8 APl SEIVICESiiuieiieeeiesie sttt sttt st sttt be sttt s b e be s be b e s bt e st e ne et e ntesaenbenreenis 35

3 R 1 0T [S 36
11.1 Ligt of Services, Data Types, and CONSLANS........ccceeveeiieieeireerie et eee e 36
11,2 LIS OF FIQUIES.....eeceieeeeee ettt bbbt a et sb e e 36
RS I I 1 o I o [P 36
12 HISIOMY... ettt b e b a et b bR Rt R a e e e e e renrennenne s 37

4 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

1 Introduction

The specification of the OSEKtime operating system (OSEKtime OS) is to represent a uniform
functioning environment which supports efficient utilisation of resources for automotive control unit
goplication software. The OSEKtime operating system is a Sngle processor operating system meant
for distributed embedded control units.

1.1 System Philosophy

The objective of the OSEKtime working group is to specify atime-triggered operating system with a
fault-tolerant communication layer as a sandardised run-time environment for highly dependable
red-time software in automotive eectronic control units. The operating sysem must implement the
following properties.

predictability (determinigtic, a priori known behaviour even under defined peek load and fault

conditions),

clear, modular concept as abasisfor certification,

dependability (reliable operation through fault detection and fault tolerance),

support for modular development and integration without side-effects (composability), and

compatibility to the OSEK/VDX.

The OSEKtime operating system supports static scheduling and offers dl basic services for red-time
aoplications, i.e, interrupt handling, digpatching, sysem time and clock synchronisation, loca
message handling, and error detection mechaniams.
All services of OSEKtime are hidden behind a well-defined API. The gpplication interfaces to the
OS and the communication layer only viathis AP,

For a particular gpplication the OSEKtime operating system can be configured such that it only
comprises the services required for this gpplication. Thus the resource requirements of the operating
system are as smd|l as possible.

OSEKtime dso comprises a fault-tolerant communication layer that supports red-time
communication protocols and systems and is described in FTCom specification.

OSEKtime 0S 1.0 © by OSEK 5

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

1.2 Purpose of this Document

The following description is to be regarded as a generic description which is mandatory for any
implementation of the OSEKtime operating system. This concerns the generd description of Strategy
and functiondity, the interface of the calls, the meaning and declaration of the parameters and the
possible error codes.

The specification leaves a certain amount of flexibility. The description is generic enough for future
upgrades.

It is assumed that the description of the OSEKtime operating system is to be updated in the future,
and will be adapted to extended requirements. Therefore, each implementation must specify which
officidly authorised verson of the OSEKtime operating system description has been used as a
reference description.

Because this description is mandatory, definitions have only been made where the generd system
srategy is concerned. In al other respects, it is up to the system implementation to determine the
optimal adaptation to a specific hardware type.

6 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

1.3 Structure of this Document

In the following text, the essential specification chapters are described briefly:

Chapter 2, Summary

This chapter provides a brief introduction to the OSEKtime operating system concept.
Chapter 3, Architecture of the OSEKtime Operating System

This chapter gives a survey about the design principles and the architecture of the OSEKtime-
triggered operating system.

Chapter 4, Task Management

This chapter contains a description of the attributes of a task, the task states and trangitions, and the
gpecid case of task deadline monitoring supported in OSEKtime.

Chapter 5, Interrupt Processing
This chapter contains a short description of the interrupt handling mechanism within OSEKtime OS.
Chapter 6, Synchronisation

This chapter contains a description of loca and globa times, together with the possibilities to handle
the start-up of a system under various conditions.

Chapter 7, System Start-up and Shutdown in a mixed OSEKtime/ OSEK/VDX System

This chapter contains a description of system Start-up and Shutdown in a mixed OSEKtime /
OSEK/VDX system.

Chapter 8, Inter-Task Communication

The main topic of this chepter is the definition of inter-task communication. Full message handling is
described in OSEKtime FTCom.

Chapter 9, Error Handling

This chapter contains a description of the error handling..

Chapter 10, Specification of OSEKtime Operating System Services

This chapter contains a description of the services provided by the operating system.
Chapter 11, Index

Ligt of adl operating system services and figures.

Chapter 12, History

Lig of dl versons.

OSEKtime 0S 1.0 © by OSEK 7

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

2 Summary

The OSEKtime operating system provides the necessary services to support distributed fault-tolerant
highly dependable red-time applications (eg., dart-up of the system, message handling, state
message interface, interrupt processing, synchronisation and error handling).

The operating system is built according to the user's configuration ingtructions a system generation
time. The operating system cannot be modified later a execution time.

The sarvice groups are sructured in the terms of functiondity.
Task management
Management of task states, task switching
Scheduling policy
Deadline monitoring
I nterrupt management
Services for interrupt processing
System time and start-up
Synchronisation of system time
Services for system sart-up
I ntra processor message handling
Services for exchange of data
Error treatment
Mechanisms supporting the user in case of various errors
Event mechanisms, alarms, and resour ces

Event mechanisms, darms, and resources are restricted for the use to OSEK/VDX tasks and
are not alowed for time-triggered tasks. So event mechanism, alarms, and resources are not part
of the OSEKtime specification as the norma OSEK/VDX OS mechanisms apply.

2.1 Architecture of a OSEKtime System

The operating system is responsible for the on-line management of the CPUs resources, management
of time and task scheduling. The FTCom layer is respongible for the communication between nodes,
error detection and fault-tolerance functiondity within the domain of the communication subsystem.
Figure 2-1 shows the architecture of a OSEKtime system. Application software and FTCom layer
are executed under control of the operating system. OSEK-NM describes node-related (local) and
network-rlated (globa) management methods. The globa NM component is optiond and
described in the OSEK/VDX NM specification.

8 © by OSEK OSEKtime 0S 1.0

Iﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

Application

OSEKtime FTCom Layer

Application Layer

OSEK/VDX
Network

Time Management

Service

Communication Subsystemy

Interaction Layer
CNI Driver

Bus I/O Driver

| Bus Communication Hardware ”—‘

o
+

Figure2-1: Architecture of an OSEKtime system

OSEKtime 0S 1.0 © by OSEK

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

3 Architecture of the OSEKtime Operating System
This chapter describes the architecture of the OSEKtime operating system.

3.1 Processing Levels

The OSEKtime operating system serves as a basis for gpplication programs which are independent
of each other, and provides their environment on a processor. The OSEKtime operating system
enables a controlled red-time execution of severa processes which appear to run in pardld.

The OSEKtime operating system provides a defined set of interfaces for the user. These interfaces
are used by entities which are competing for the CPU. The are two types of entities:

Interrupt services routines managed by the operating system
Tasks

The hardware resources of a control unit can be managed by operating system services. These
operating system services are caled by a unique interface, either by the application program or
interndly within the operating system.

OSEKTtime defines two processing levels:
Interrupt leve
TT Task levd

Figure 3-1 shows the interrupt and task level modd of the OSEKtime OS:

Processing
Level
A

Non-maskable Interrupt Routines

OSEKtime Dispatcher

Maskable TT Interrupt

. Time-Triggered Tasks
Routines 99

OSEK Interrupt

ttldleTask Routines

OSEK Scheduler

OSEK Tasks

Figure3-1: Processing leves

10 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

Besde the OSEKtime subsystem it is possible to include a full OSEK/VDX OS subsystem in the
kernel. In a highly dependable application, however, the OSEK/VDX subsystem can only be used, if
the following restriction is fulfilled:

The complete OSEKtime must have a higher processing level than the OSEK/VDX subsystem.
The following requirements should be fulfilled:

The microcontroller should provide a sufficient number of interrupt levels for the implementation
of the above modd!.

For highly dependable applications memory protection mechanisms ether in hardware or
software should be used.

Only if these requirements are fulfilled it can be guaranteed that tasks of the OSEK/VDX subsystem
cannot interfere with a highly dependable time-triggered task located in the OSEKtime subsystem.

In case no OSEK/VDX subsystem is required or the above requirements cannot be met, OSEKtime
can aso be implemented without an OSEK/VDX subsystem without compromising the functiondity
of the OSEKtime subsystem. In this case the OSEKtime subsystem must offer an idle (background)
task.

In the model a mixture of interrupt routines and time-triggered tasks is possble, i.e, the time-
triggered tasks can have precedence over interrupt service routines.

Non-preemptive OSEK/VDX tasks are allowed but they are non-preemptable by OSEK/VDX
tasks only. The OSEKtime dispatcher that activates time-triggered tasks according to the dispatcher
table preempts even non-preemptive OSEK/VDX tasks in order to redise determinigtic timing
behaviour for dl time-triggered tasks.

Additionaly time-triggered tasks and OSEK/VDX tasks do not share common resources. The inter-
task communication is done by local message handling as defined in chapter 8.

Please note that assgnment of a priority to the OSEKtime Dispatcher is only alogica concept which
can be implemented without directly using priorities.

OSEKtime 0S 1.0 © by OSEK 11

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

4 Task Management

4.1 Task Concept

Tasks are executed sequentidly gtarting at the entry point and running to the exit point (see Figure
4-1). Interna loops are alowed but one must be able to determine the Worst Case Execution Time
(WCET). Blocking (i.e., waiting for an externd event) of tasks is not supported. The beginning of
task execution is linked to an activation event. In a time-triggered gpplication activation events
originate from the digpatcher table only.

%Activation event

Task Sequential execution

Figure4-1: Task model

4.2 Task State Model

A task must be able to change between the dates running, suspended and preempted, as the
processor can only execute one ingtruction of a task at any time static scheduling is supported by
OS. Task activation times are stored in the digpatcher table. The OSEKtime operating system is
respongble for garting the tasks at the right time and the monitoring of the deadlines. Time-triggered
tasks dways preempt the execution of other time-triggered tasks.

4.2.1 Time-triggered Tasks
Time-triggered tasks only have three task ates:

running: In the running state, the CPU is assigned to the task, so that its ingtructions can be
executed. Only one task can be in this date a any point in time, while dl the other
states can be adopted smultaneoudy by severd tasks.

preempted: Inthe preempted State the indructions of atask are not executed. A task enters this
date from the running state only. The only alowed succeeding Sate of this Sate isthe
running state. A task enters this state from the running sate if and only if another task
changes from the suspended state to the running state, triggered by the dispatcher. A
task leaves this date if its preempting task changes from the running date to the
suspended state.

suspended: Inthe suspended state the task is passive and can be activated.

12 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

Time-triggered task state trangitions are shown on Figure 4-2.

terminate

activate

preempt

resume suspended

preempted

Figure4-2: Time-triggered task model

States and status trangtions for time-triggered tasks are shown in Table 4-1.

Trangtion | Former New Description
state state

activate suspended | running A new task is st into the running State by the
OSEKtime Dispatcher as a result of an OSEKtime
Dispatcher tick.

resume preempted | running The lagt preempted task is resumed.

preempt running preempted | The OSEKtime Dispaicher decides to start another task
as a result of an OSEKtime Digpatcher tick. The
running task is put into the preempted state.

terminate running suspended | The running task causes its trandtion into the
suspended state as aresult of task completion.

Table4-1: States and gtatus trangitions for time-triggered tasks

4.3 Activating a Task

Task activations are performed by the OSEKtime dispatcher as a result of OSEKtime dispatcher
ticks (TT interrupts). OSEKtime dispaicher invocation events are defined in an offline generated
dispatcher table. A task can be activated more than once during one dispatcher round, but is not
alowed to preempt itsdlf.

4.4 Scheduling Policy —time-triggered Activation

The OSEKtime OS is based on preemptive scheduling. Static scheduling is supported. From the
task timing characterigtics (such as offsets, worst case execution times and deadlines) an externd

OSEKtime 0S 1.0 © by OSEK 13

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

scheduling tool generates a dispatcher table. The time-triggered tasks can preempt each other. No
blocking mechanisms through events or resource management like in OSEK/VDX OS are alowed.

The dispatcher activates the tasks in a drictly sequentid order, which is stored in the dispatcher
table. A complete execution of the digpatcher table is called dispatcher round. A task (except the
idle task) cannot run during the end of one dispatcher round and the start of the consecutive
dispatcher round.

In the dispatcher table dl task activations are pre-planned. The dispatcher table is executed cyclicaly
providing a periodic task execution scheme. This guarantees that no internd intermediate caculation
results of a task are exposed to other tasks. The dispatcher is initiated by an interrupt, the interrupt
source is the locd logicd time, which is synchronised with the globd time, when a globd time is
available (see Chapter 6).

Time-triggered tasks do not have a datic priority that is configurable by the user. The dispatcher

adways activates a new time-triggered task according to the dispatcher table. If another time-

triggered task is running a that activation time it is dways preempted and remains preempted until

termination of the newly activated task. This scheduling policy is referred to as stack-based

scheduling. The stack-based scheduling policy requires that the off-line scheduling tool congtructs a
dispatcher table in such away that al deadlines are met and no stack overflows will occur.

The offline defined digpatcher table guarantees precedence relations between tasks (such as user-
defined task sequences and offline resource congtraints). In order to guarantee precedence relations,
the dispatcher table prevents unexpected task preemptions.

Figure 4-3 shows an example of time-triggered task activation. The time-triggered tasks 1-3 (TT1-
3) are sarted at their activation time. If no time-triggered task is running OSEK/VDX OS tasks will
be executed. The states of the Idle Task in Figure 4-3 are corresponding to OSEK/VDX tasks.

next activation next activation
time time
time
: : | >
OSEKtime | /H /H /H
Dispatcher/] /

Task TT1

i _ . Euspended
N

susp%nded

Task TT2 | suspended

Task TT3 suspended \ _

\

ttidleTask preempted \‘-‘ preempted

Figure4-3: Timetriggered scheduling

14 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

45 Termination of Tasks

In the OSEKtime operating system, a time-triggered task has to terminate itsaf before its deadline
occurs.

4.6 Deadline Monitoring

An important atribute of atask in ared-time system is its deadling, i.e, the point in time when the
task execution must be finished. Task deadline violation must be checked for each task during
runtime.

The deadline monitoring is done by the dispatcher. A specid dispaicher table entry caled “Deadline
Monitoring” is used to check task deadline. This entry indicates that the dispatcher should be started
and the deadline monitoring should be performed. If a task violates its deadline, error handling is
initiated (see chapter 9).

Each Task deadline has to be checked by one of the following mechanisms

Sringent task deadline monitoring: A “Deadline Monitoring” entry is added in the dispatcher
table exactly at the point of time when the task deadline is expired.

Non-stringent task deadline monitoring: A “Deedline Monitoring” entry is added in the
dispatcher table at a convenient point (after the task deadline expiration), but not later than the
end of the current dispaicher round. In this case, the “Deadline Monitoring” entry may be
grouped with an entry associated with an activation of a new task in order to enhance
performance characterigtics.

The task deadline monitoring method is atask-leve attribute configurable by the user.

4.7 ttldleTask

The firgt task garted by the OSEKtime dispatcher is dways a task with the predefined name:
ttldieTask. It has the following specid properties:

it is not registered in a dispatching round and therefore not periodicaly restarted (however, it
may be restarted under specia conditions),

it can beinterrupted by dl interrupts handled by OSEKtime (normaly, interrupts are grouped to
either be able to interrupt OSEKtime tasks, or not be able to do so, see Figure 3-1),

no deadline is defined for ttldleTask and
because it is started firgt, it will dways run if thereis no other task ready.
ttldleTask never returns.

With these properties, ttldieTask acts asthe idle task of the OSEKtime OS.

A default ttldieTask has to be supplied as part of an OSEKtime OS. The user can replace this task
by atask covering his specia needs aslong as it conformsto the restrictions stated above.

In case of amixed OSEKtime/OSEK system, ttidieTask is supplied by the OSEK manufacturer.

OSEKtime 0S 1.0 © by OSEK 15

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

4.8 Application Modes

The concept of application modes dlows the efficient management of different processng states in
the application software. An gpplication mode is defined by a dispatcher table. The length of al
dispatcher rounds must be equal. Application modes can be, for example, initidisation, norma
operation and shutdown.

The operating system is started with the gpplication mode passed as parameter by caling the system
sarvice ttSartOS. The switching between different dispatcher tables during runtime, without losing
synchronisation is performed by the system service ttSwitchAppMode (see chapter 10.5.3). The
actual switch happens at the end of the current dispatcher round.

16 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

5 Interrupt Processing

The OSEKtime operating system provides an |SR-frame to prepare a run-time environment for a
dedicated user routine. The contents of function will be assgned to this ISR during configuration of
the OS. Within an interrupt service routine, usage of OSEKtime operating system services is
restricted according to Table 10-1.

The operating system must provide means to define intervals in time where each interrupt may occur
at most once. This property must be enforced by the operating system during runtime.

Interrupts will be disabled when they get serviced (see Figure 5-1). Reenabling of interrupts is done
at particular pointsin time defined offline and controlled from the dispaicher table (IEE; ... |EE,).

When supported by processors or other devices, dternative means of interrupt control are
permitted.

4 Dispatcher round »
IEE, IEE, IEE, IEE, .. IEE, |EET:1...
z' T

Interrupt 1 Interrupt 1

disabled disabled
Interrupt 1
Interrupt 2
disabled :
Interrupt 2 I }

é . Interrupt activation

1 Interrupt execution
— : Interrupt disabled

IEE,: Interrupt re-enable schedule event

IEE,, IEE,: enable Interrupt 1
IEE;: enable Interrupt 2

Figure5-1: Interrupt re-enable schedule event

OSEKtime 0S 1.0 © by OSEK 17

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

Non-maskable interrupts should be used with specid care because such interrupts may delay
OSEKtime OS dispatching interrupts. If it is not possble to guarantee MINT of non-maskable
interrupts, the usage of non-maskable interrupts should be prevented.

Nested interrupt support is an implementation specific and hardware specific fegture, there are no
redtrictions connected with nested interrupt implementation in an OSEKtime system.

The gpplication must not enable or disable interrupts during runtime. The operating system must
enable dl interrupts for which an ISR is specified in the configuration, and disable al other interrupts.

A lig of dlowed API cdlsin ISRs can be found in chapter 10.

18 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

6 Synchronisation

6.1 Synchronisation of System Time
Each ECU operates with aloca time that increments according to the loca clock source.

If a globd time is avalable by the synchronisation layer the synchronisation mechanism will be
executed:

At system gtart-up and after loosing the synchronisation with the globa time base.

During norma operation (no temporary loss of the globa time) the adjustment is done repestedly
(e.g., a every end of the dispatching table).

The synchronisation of the loca time has to be done in the ground State,

The synchronisation of the locd time can be done by setting the loca time to the vaue of the globa
time.

For the application a system cdl is available (ttGetOSSyncSatus) to detect if the locd time is
synchronous to the globa one or not.

The globd time is provided by the synchronisation layer which has the knowledge about the start
of every dispatcher round. The synchronisation layer will in genera be provided by FTCom. If
FTCom is not used the functiondity of the synchronisation layer as described in FTCom must be
provided by an additiona software module.

The operating system offers the ttSyncTimes APl service which is used by the synchronisation
layer to provide the operating system with the current globd time and the value of the globd time at
the start of the current dispatcher round.

For adetailed description of ttSyncTimes refer to the APl specification (see chapter 10).

6.2 Start-up and Resynchronisation
Requirements on the loca and global time:

It must be possible to represent one complete dispatcher round without an overflow of the global
time. One overflow during one digpatcher round must be considered.

The vaue domain of the globa time must be configurable and must be identica a the OSEKtime
OS and at the Synchronisation Layer.

The time vaues have to have the granularity of the globd time, the rate between loca and globd
time must be defined as a congtant.

OSEKtime 0S 1.0 © by OSEK 19

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

6.2.1 Synchronisation Methods

At system gart-up and after loosing the synchronisation with the globa time base the following three
scenarios (see Figure 6-1) are possible:

Synchronous start-up: The ECU does not execute the time-triggered tasks before a globd time
isavalable.

Asynchronous start-up - hard synchronisation: The ECU has to perform time-triggered task
execution according to the loca time without waiting for the synchronisation to the globd time.
The synchronisation of the loca time to the globd time is done at the end of a dispatcher round
(end of the dispatcher table) by delaying the start of the next dispatcher round.

Asynchronous start-up - smooth synchronisation: The ECU hasto perform time-triggered task
execution according to the loca time without waiting for the synchronisation to the globd time.
The synchronisation of the loca time to the globa time is done during severd dispatcher rounds
by limiting the ddlay of the dart of the next dispaicher round according to pre-defined
configuration parameters. The system is considered to be synchronised as long as the delay does
not exceed such alimit.

Synchronous Start-up

Start of the Dispatcher Table
\]

Dispatcher Table \ \ \ [| |

Global Time [| []

Global Time available

Asynchronous Start-up - hard

) Task1 | Task2 | Task 3{. fl’ask n § 2
Start of Dispatcher Table G0
Y T e
Dispatcher Table | | \ \ \ | |
Global Time | [[N [[[N —
| >
T I Synchronised

Global Time available
Asynchronous Start-up - smooth

Start of Dispatcher Table
\

Dispatcher Table | l i i | | |

Global Time Fﬁﬁﬁiﬁ—i
Synchronised

Global Time available

Figure6-1: Start-up

© by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

6.2.2 Synchronisation

When the synchronisation layer cdls ttSyncTimes, the operating system is able to caculate the drift
between the local time and the global time. At the end of the dispatcher round, this difference can be
used to extend or shorten the last ground State of the dispatcher round. In the case of smooth
synchronisation this adjustment may be limited by some configuration parameters.

After a synchronisation loss, there is no explicit notification of the application. The application can
detect a synchronisation loss by the API cdl ttGetOSSyncStatus.

OSEKtime 0S 1.0 © by OSEK 21

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

7 System Start-up and Shutdown in a mixed
OSEKtime / OSEK/VDX System

Implementations may combine OSEKtime and OSEK OS systems if the OSEK OS subsystern does
not interfere with the OSEKtime system. The entire OSEKtime has to have priority over OSEK OS
and neither OSEK OS tasks nor |ISRs must delay any OSEKtime tasks or ISRs.

Also, the OSEK OS functions for disabling interrupts/interrupt-sources have to be locd to OSEK
OS and mugt not affect any interrupts used by OSEKtime. In such a combined system no ttldieTask
is used. The OSEK OS subsystem will run during the idle-times of the OSEKtime system. The
OSEKtime system can query the dtate of the OSEK OS subsystem by using the APl service
ttGetOSEKOSState.

The current version of start-up and shutdown describes only a one vendor solution of a combined
OSEKtime / OSEK/VDX system, therefore a detailed interface specification between OSEKtime
and OSEK/VDX is not necessary.

7.1 Start-up of mixed OSEKtime and OSEK/VDX OS Systems

The gart-up of a combined OSEK OSOSEKtime system is initiated by calling the APl service
ttSartOS. This will dso initiate the start-up of the OSEK OS system. However, the OSEKtime
system has to be started first within a defined start-up time. The start-up of the OSEK OS system
must not cause unbounded delay of this start-up time, even if sart-up of the OSEK OS subsystem
fals

OSEKtime start-up completes first and OSEK OS tasks and ISRs will not be activated before the
ttldleTask of an OSEKtime-only system would start to run.

7.2 Shutdown of mixed OSEKtime and OSEK/VDX OS Systems

Two types of shutdown-procedures are supported. A loca shutdown of the OSEK OS subsystem
which does not affect the OSEKtime system and a globa shutdown of the entire system.

Theloca shutdown will not affect the OSEKtime system. The ShutdownHook (which has to return)
will be cdled and the OSEK OS system will stop running, i.e. no OSEK OS tasks or ISRs will be
executed. OSEKtime is aie to notice a locd shutdown by cdling the APl service
ttGetOSEKOSSate

The globa shutdown will immediately shut down both operating sysems. ttShutdownHook will be
cdled and if it does return, the entire system will be shut down. The OSEK OS ShutdownHook is
not caled to guarantee a shutdown-time for OSEKtime. If necessary the OSEK OS
ShutdownHook may be cdled within ttShutdownHook.

Thelocd shutdown can beinitiated by caling ShutdownOS from the OSEK OS subsystem.

Globa shutdown can be initiated by cdling ttShutdownOS either from the OSEKtime system or
from the OSEK OS subsystem.

It is recommended to provide a configuration option which prevents OSEK OS from inititing a
globa shutdown.

2 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

8 Inter-Task Communication

For an OSEKtime implementation to be compliant, message handling for inter-task communication
(or intra-processor communication) has to be offered. The minimum functiondity to be supported is
the inter-task communication as described in the OSEKtime FTCom specification.

If an implementation offers even more functiondity which is specified in the FTCom specification the
implementation must gick to syntax and semantic of the OSEKtime FTCom functiondlity.

For more detalls, refer to the OSEKtime FTCom specification.

OSEKtime 0S 1.0 © by OSEK 23

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

9 Error Handling
The error handling of OSEKtimeis equivaent to OSEK/VVDX.

9.1 Error Handling for Deadline Violation

If a deadline violation is detected the digpatcher cdls the ttErrorHook routine (see Figure 9-1) that
has to be programmed by the user (Error code: TT_E OS DEADLINE). Thus, the user can
implement an gpplication specific eror handling for deedline violations. After executing the
ttErrorHook, ttShutdownOS is cdled from the operating sysem. The operating system will shut
down and cdl the hook routine ttShutdownHook (Error code: TT_E OS DEADLINE).

The use is free to define any system behaviour in ttShutdownHook eg. not to return from the
routine. If ttShutdownHook returns, the operating system jumps to the ingtruction following theinitid
cdl to ttSartOS.

next dispatching time

deadline of TT1 ttShutdownOS
OSEKtime
Dispatcher
Deadline Violatjon detected
Task TT1
Task TT2 suspended {

\
Hook
Routines

Fgure9-1: Deadline Monitoring

24 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

10 Specification of OSEKtime Operating System
Services

This chapter is structured according to the origind OSEK/VDX OS-specification. Sections 10.3 to
10.7 include a classfication of dl OSEKtime OS system sarvices. Thetablein Section 10.8 gives an
overview which services and dements could be called within which kind of tasks.

Typeof Calls

The system sarvice interface is ISO/ANSI-C. Its implementation is normally a function cal, but may
aso be solved differently, as required by the implementation - for example by macros of the C pre-
processor. A specific type of implementation cannot be assumed.

Structure of the Description

OSEKtime operating system services are arranged in logica groups. A coherent description is
provided for al services of the task management, the interrupt management, etc.

The description of each logica group starts with data type definitions and a description of congtants.
A description of the group-specific congdructiond eements and system services follows. The last
items are additiona conventions.

Service Description
A sarvice description contains the following fidds:

Syntax: Interface in C-like syntax.

Parameter (In): List of all input parameters.

Parameter (Out): List of all output parameters.

Description: Explanation of the functionality of the operating system service.

Particularities: Explanation of restrictions relating to the utilisation of the
operating system service.

Status: List of possible return values.

The specification of operating system services uses the following naming conventions for data types:
.. Type describes the vaues of individua data (including pointers).
..RefType: describes apointer to the ... Type (for cdl by reference).

OSEKtime 0S 1.0 © by OSEK 25

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

10.1 Common Data Types
ttStatusType

This data type is used for dl satus information the APl services offer. The normd return vaue is
TT_E OS OK which is associated with the value of OSEK’sE_OK.

The following error vaues are defined:

All errorsof API services.
TT_E OS ID: correspondsto E_OS ID OSEK OS error code
TT_E OS DEADLINE: task deadline violation - additional OSEKtime OS error code

If the only possible return satusis TT_E OS OK, the implementation is free not to return a satus,
thisis not separately stated in the description of the individua services.

Internal errorsof the OSEKtime operating system:

These errors are implementation specific and not part of the portable section. The error names reside
in the same name-space as the errors for APl services mentioned above, i.e. the range of numbers
must not overlap.

To show the difference in use, the namesinterna errorsmust gart with TT_E OS SYS
Examples

TT_E OS SYS STACK

TT E OS SYS SCHEDOVERFLOW

... and other implementation-specific errors, which have to be described in the vendor-specific
document.

The names and range of numbers of the internal errors of the OSEKtime OS do not overlap the
names and range of numbers of other OSEK/VDX services (i.e. OSEK/VDX OS and OSEK/VDX
COM/NM) or the range of numbers of the APl error values according to the OSEK/VDX hbinding
Specification.

10.2 General Naming Conventions

The following prefixes are used for adl OSEKtime OS congtructiona € ements, data types, congtants,
error codes and system services:

“tt” prefix is used for congtructiona dements, data types and system services,
“TT_E OS ” prefix isused for error codes,
“TT” prefix is used for congants.

Thisisto ensure that no name clashes occur.

26 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

10.3 Task Management

10.3.1 Data Types

ttStatusType

This data type isidentica with StatusType in the binding specification.
ttTaskType

This data type identifies atask.

ttTaskRefType

This datatype pointsto avariable of ttTaskType.
ttTaskStateType

This data type identifies the State of atask.

ttTaskStateRefType

This data type points to a variable of the data type ttTaskStateType.

10.3.2 Constants

TT_RUNNI NG Constant of data type ttTaskStateType for task state running.
TT_PREEMPTED Constant of data type ttTaskStateType for task state preempted.
TT_SUSPENDED Congtant of data type ttTaskStateType for task state suspended.

TT_I NVALI D_TASK Congtant of data type ttTaskType for anot defined task.
10.3.3 Constructional Elements

No congructiona eements which may be caled during runtime are supported.
10.3.4 System Services

10.3.4.1 ttGetTaskID

Syntax: ttStatusType ttGetTaskID (
ttTaskRefType <TaskID>)
Parameter (In): none
Parameter (Out): TaskiD reference to the task which is currently running.
Description: ttGetTaskID returns the information about the TaskID of the task

which is currently in the running state.
Particularities: Allowed on task level, ISR level and ttErrorHook hook routine.

This service is intended to be used by library functions and in the
ttErrorHook hook routine.

Status: No error, TT_E_OS_OK

OSEKtime 0S 1.0 © by OSEK 27

= OSEK/V DX Time-Triggered Operating System
ﬂ Specification 1.0

10.3.4.2 ttGetTaskState

Syntax: ttStatusType ttGetTaskState (
ttTaskType <TaskID>,
ttTaskState RefType <State>)
Parameter (In): TaskiD Reference to the task
Parameter (Out): State Reference to the state of the task <TaskID>
Description: Returns the state of a task funning, preempted, suspended) at

the time of calling ttGetTaskState by the output parameter State.

Particularities: The service may be called from interrupt service routines, task
level, and ttErrorHook hook routine. This service should be used
with special care in time-triggered systems because the task state
may be changed during ttGetTaskState service execution and the
result may already be incorrect at the time of evaluation.

Status: No error, TT_E_OS OK, <TaskID> is invalid, TT_E_OS_ID

10.3.5 Naming Convention

The operation system must be able to assign the entry address of the task function to the name of the
corresponding task for identification. With the entry address the operating system is adle to cdl the
task.

Within the gpplication, atask is defined according to the following pattern:

tt TASK (TaskNane)

{
}

With the macro t t TASK the user may use the same name for "task identification” and "name of task
function’.

The task identification will be generated from the TaskName during System generation time.

For the definition of the ttldieTask the same pattern is used.

28 © by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

10.4 Interrupt Handling
Within the application, an interrupt service routine is defined according to the following naming
convention:

ttl SR (FuncNane)

{
}
The keyword t t | SR is evaluated by the sysem generation to dearly distinguish between functions

and interrupt service routines in the source code.

10.5 Operating System Execution Control

10.5.1 Data types

ttAppModeType

This data type represents the application mode.

ttAppModeRefType

Reference to the application mode of data type ttAppModeType.

ttOSEK OSStateType

This data type represents the state of an OSEK OS subsystem.

ttOSEK OSStateRef Type

Reference to the state of an OSEK OS subsystem of data type tOSEK OSStateType.

10.5.2 Constants

TT_OS_DEFAULTAPPMODE

Default gpplication mode, dways a vdid paameter to ttSartOS. Congtant of data type
ttAppModeType.

TT_OS_OSEKOSUP

Thereisan OSEK OS subsystem running. Constant of data type tOSEK OSStateType.
TT_OS_OSEKOSDOWN

Thereis no OSEK OS subsystem or it has not yet been started or has been shut down. Constant of
data type ttOSEK OSStateType.

OSEKtime 0S 1.0 © by OSEK 29

o

OSEK/VDX Time-Triggered Operating System

Specification 1.0

10.5.3 System Services

10.5.3.1 ttSwitchAppMode

Syntax:

Parameter (In):
Parameter (Out):

Description:

Particularities:

Status:

ttStatusType ttSwitchAppMode(
ttAppModeType <Mode>)

Mode application mode

none

This service performs switching between different dispatcher
tables during runtime, without losing synchronisation. The new
application mode is set by the parameter <Mode>. The actual
switch happens at the end of the current dispatcher round. The
length of the dispatcher round is not changed.

Allowed for time-triggerd tasks and ISRs.
No error, TT_E_OS_OK

10.5.3.2 ttGetActiveApplicationMode

Syntax:

Parameter (In):
Parameter (Out):

Description:

Particularities:

Status:

ttStatusType ttGetActiveApplicationMode (
ttAppModeRefType <Mode>)
none

Mode Reference to the active application mode of data
type ttAppModeType.

This service returns the current application mode. It may be used
to write mode dependent code.

Allowed for task, ISR and all hook routines.
No error, TT_E_OS_OK

10.5.3.3 ttGetOSEKOSState

Syntax:

Parameter (In):
Parameter (Out):

Description:
Particularities:

Status:

ttOSEKOSStateType ttGetOSEKOSState (
ttOSEKOSStateRefType <State>)

none

Mode Reference to the state of an OSEK OS
subsystem of data type
OSEKOSStateType.

This service returns the state of an OSEK OS subsystem.
Allowed for task, ISR and all hook routines.
No error, TT_E_OS_OK

© by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System

Specification 1.0

10.5.3.4 ttStartOS
Syntax:

Parameter (In):
Parameter (Out):

Description:

Particularities:

Status:

void ttStartOS (
ttAppModeType <Mode>)

Mode application mode

none

This system service starts the operating system in a specific
mode.

Only allowed outside of the operating system, therefore
implementation specific restrictions may apply. This call does not
need to return.

none

10.5.3.5 ttShutdownOS

Syntax:

Parameter (In):
Parameter (Out):

Description:

Particularities:

Status:

void ttShutdownOS (
ttStatusType <Error>)

Error error occured

none

The user can call this system service to abort the overall system
(e.g. emergency off). The OSEKtime operating system also calls
this function internally, if it has reached an undefined internal state
and is no longer ready to run (for example if stack overflow has
been detected).

The hook routine ttShutdownHook is always called (with <Error>
as argument) before shutting down the operating system.

After this service the OSEKtime operating system is shut down.

Allowed at task level, ISR level, in ttErrorHook and ttStartupHook
hook routines, and also called internally by the operating system.

If the operating system calls ttShutdownOS it never uses
TT_E_OS_OK as the passed parameter value.

Depending on the configuration this service might also be called
by an OSEK OS subsystem.

none

OSEKtime 0S 1.0

© by OSEK 31

= ﬂ OSEK/V DX Time-Triggered Operating System

Specification 1.0

10.6 Hook Routines
The usage of dl hook routinesis mandatory.

10.6.1 ttErrorHook
Syntax:

Parameter (In):
Parameter (Out):

Description:

Particularities:

Status:

void ttErrorHook (
ttStatusType <Error>)

Error error occured

none

This hook routine is called by the OSEKtime operating system at
the end of a system service which returns ttStatusType not equal
TT_E _OS _OK (e.g. ttGetTaskState system service). It is called
before returning to the task or ISR level.

Also this hook routine is called when task deadline violation is
detected.

The ttErrorHook is not called if a system service called from
ttErrorHook does not return TT_E_OS OK as status value. Any
error by calling of system services from the ttErrorHook can only
be detected by evaluating the status value.

none

10.6.2 ttStartupHook

Syntax:
Parameter (In):
Parameter (Out):

Description:

Particularities:

Status:

void ttStartupHook (void)
none
none

This hook routine is called by the OSEKtime operating system at
the end of the operating system initialisation and before the
scheduler is running. At this time the application can initialise
device drivers etc.

none

32

© by OSEK OSEKtime 0S 1.0

= ﬂ OSEK/V DX Time-Triggered Operating System
_ Specification 1.0

10.6.3 ttShutdownHook

Syntax: void ttShutdownHook (
ttStatusType <Error>)
Parameter (In): Error error occured
Parameter (Out): none
Description: This hook routine is called by the OSEKtime operating system

when the OS service ttShutdownOS has been called. This routine
Is called during the operating system shutdown.

Particularities: ttShutdownHook is a hook routine for user defined shutdown
functionality.
Status: none

10.7 Synchronisation

10.7.1 Data Types

ttSynchronizationStatusT ype
This data type represents the synchronisation status of the OSEKtime operating system.
ttSynchronizationStatusRef Type

Reference to the daus of the OSEKtime operating sysem of data type
ttSynchronizationStatusType.

ttTickType
This data type defines the data type for the count vaue (count vaue in ticks).

10.7.2 Constants

TT_SYNCHRONOUS

Congtant of data type ttSynchronizationStatusType for synchronous system Sate.
TT_ASYNCHRONOUS

Congant of data type ttSynchronizationStatusType for asynchronous system state.

OSEKtime 0S 1.0 © by OSEK 33

o

OSEK/VDX Time-Triggered Operating System

Specification 1.0

10.7.3 System Services

10.7.3.1 ttGetOSSyncStatus

Syntax:

Parameter (In):

Parameter (Out):

Description:

Particularities:

Status:

ttStatusType ttGetOSSyncStatus (
ttSynchronisationStatusRefType <Status>)
none

Status Synchronisation status of the system: synchronous
or asynchronous system time.

This service returns the synchronization status of the system. If the
system is synchronised, Status will refer to a value equal to
TT_SYNCHRONOUS. If the system is not yet synchronised, Status
will refer to a value of data type ttSynchronisationStatusType equal
to TT_ASYNCHRONOUS.

No error, TT_E OS_OK.

10.7.3.2 ttSyncTimes

Syntax:

Parameter (In):

Parameter (Out):
Description:

Particularities:

Status:

ttStatusType ttSyncTimes (
ttTickType <GlobalTime>,
ttTickType <ScheduleTime>)
GlobalTime The current network-wide synchronised time.

ScheduleTime The value of the global time at start of the last
dispatching table.

None

This service provides the operating system with the current global
time. It is used to calculate the difference between global and local
time and perform synchronisation as needed.

Allowed for tasks and ISRs
No error, TT_E_OS_OK.

© by OSEK OSEKtime 0S 1.0

=i

OSEK/VDX

Time-Triggered Operating System

Specification 1.0

10.8 API Services

In TT-Tasks, interrupt service routines (ISRs) and hook routines the following OSEKtime system

services and congtructiona elements can be used (see Table 10-1):

Service Tasks ttidle ISRs ttStartup | ttShutdown | ttError
Task Hook Hook Hook
ttGetOSEK OSState alowed alowed alowed alowed alowed alowed
ttGetTasklD allowed alowed alowed - - alowed
ttGetTaskState allowed allowed alowed - - alowed
ttGetActiveApplication Mode alowed alowed alowed alowed alowed alowed
ttSwitchAppMode alowed alowed alowed - - -
ttStartOS -- - -- -- - --
ttShutdownOS allowed allowed allowed -- - alowed
ttSyncTimes allowed - allowed - - -
ttGetOSSyncStatus alowed allowed alowed - alowed allowed
Table10-1: APl services
OSEKtime OS 1.0 © by OSEK

= OSEK/VDX
=l

Time-Triggered Operating System
Specification 1.0

11 Index

11.1 List of Services, Data Types, and Constants

E OK o 26 ttGEOSSYNCIAUS.......ovveveiereeeerreene 34,35
Sz (015] 1Y/ 0 27 tGetTasKkIDcceeeveeceeceee e, 27,35
TT_ASYNCHRONOUS...........ccevrereeene 33 LETS G =S 165 - (S 28,35
TT_E OS ID..cooiiiiiiirereeeese e 26 TSR e 29
TT_E OS OK..ooovvveeeeeeeeese e 26 ttOSEK OSStateRef TYpe....c.vovvvvvevieriereenne 29
TT_E OS SYS SCHEDOVERFLOW...26 ttOSEK OSStAETYPE.ccvvenveeerierieriereeees 29
TT_E OS SYS STACK ...coevevereeiee 26 ttShutdownHOOKccveieieeieveceie 33
TT_INVALID_TASK ..ot 27 ttShutdownOS..........coveveieereeee 31,35
TT_OS DEFAULTAPPMODE............... 29 HSHATOS......o e 31,35
TT_OS OSEKOSDOWN........ccoereenrennne 29 TSXAtUPHOOK ... 32
TT_OS OSEKOSUP......ccevveierirrirninnns 29 LS LS Y/ o T 26, 27
TT_PREEMPTED.......cooiiiiieeresee 27 ttSwitchAppMode..........cccceveveneneneniee, 30
TT_RUNNING.......cooe e, 27 ttSynchronizationStatusRef Type................. 33
TT _SUSPENDED.......cccoveeeieeeceecieee 27 ttSynchronizationStatusType..........cceveeeeee. 33
TT_SYNCHRONOUS........ccccceierrrrennne 33 HTASK s 28
ttAPPMOdeREFTYPE......ccoveveeveeie e 29 HTaskKRETYPE.....coeee e 27
ttAPPMOdETYPE......cevvveereeceeee e 29 ttTaskStaeRef TYPe.....ccvevveeeeereeeecie, 27
TErTOrHOOK.ecveceeeecie e 32 tHTaskStACTYPE...cveeeeceeeeee e 27
ttGetActiveApplicationMode............... 30, 35 HTaSKTYPE. oo 27
ttGetOSEKOSState.cccevevvveveennns 30, 35 TICKTYPE.c.ve et 33
11.2 List of Figures

Figure2-1: Architecture of an OSEKHME SYSIEML......c.oiiiiiiiieieeeeee s 9
Figure 3-1: ProCESSING [EVEIS........oeiiece e e 10
FQUrE 4-1: Task MOOE.......cooiiiiieiee et sn e b 12
Figure4-2: Time-triggered task MOGE.ccooiiiiiiiccic e 13
Figure4-3: Time-triggered SChedUIiNg..........coiiiiiinene e 14
Figure5-1: Interrupt re-enable schedule eventc.oovvi e, 17
FIQUIE 6-1: SEAIMT-UP ..ttt bbbttt n et nn e b nne s 20
Figure 3-1: Deadline MONITOMNG.......veeiieiirie ettt eb e e e reenneas 24
11.3 List of Tables

Table4-1: States and status trangtions for time-triggered tasks........cooovvveveneneeieseree e 13
TADIE 10-1: APl SEIVICES ...cueeieieie ettt sttt sttt st sttt b e et et et et e be e b e 35

36 © by OSEK

OSEKtime 0S 1.0

= ﬂ OSEK/VDX

Time-Triggered Operating System

Specification 1.0

12 History

Verson Date Remarks

1.0 July 24™ 2001 Authors:
Volker Barthdmann 3SOFT
Anton Schedl BMW
Elmer Dilger Bosch
Thomeas Fihrer Bosch
Bernd Hedenetz DamlerChryder
JensRuh DamlerChryder
Matthias Kihlewein DamlerChryder
Emmerich Fuchs DeComSys
Yarodav Domaratsky Motorola
Andreas Kriger Motorola, since 04/01 Audi
Patrick Pelcat Peugeot Citroen
Martin Glick TTTech
Stefan Poledna TTTech
Thomas Ringler Univergty of Stuttgart
Brian Nash Wind River
Tim Curtis Wind River

OSEKtime 0S 1.0 © by OSEK 37

