
2SHQ�6\VWHPV�DQG�WKH�&RUUHVSRQGLQJ�,QWHUIDFHV

IRU�$XWRPRWLYH�(OHFWURQLFV

This document is an official release and replaces all previously distributed documents. The OSEK group retains
the right to make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without
permission in writing from the OSEK/VDX steering committee.

COM test plan 1.0  by 26(. Document: Comtpl10.doc

26(.�9';

&20�WHVW�SODQ

Version 1.0

July 24th, 1998

Page 2  by 26(. COM test plan 1.0

:KDW�LV�26(.�9';"
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and
network management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means „Vehicle Distributed eXecutive“. The functionality of OSEK operating
system was harmonized with VDX. For simplicity OSEK will be used instead of OSEK/VDX
in the document.

26(.�SDUWQHUV�
Adam Opel AG, BMW AG, Daimler-Benz AG, IIIT University of Karlsruhe, Mercedes-
Benz AG, Robert Bosch GmbH, Siemens AG, Volkswagen AG.
GIE.RE. PSA-Renault (Groupement d’intérêt Economique de Recherches et d’Etudes PSA-
Renault).

0RWLYDWLRQ�

• High, recurring expenses in the development and variant management of non-
application related aspects of control unit software.

• Incompatibility of control units made by different manufacturers due to different inter-
faces and protocols.

*RDO�
Support of the portability and reusability of the application software by:

• Specification of interfaces which are abstract and as application-independent as
possible, in the following areas: real-time operating system, communication and
network management.

• Specification of a user interface independent of hardware and network.

• Efficient design of architecture: The functionality shall be configurable and scaleable, to
enable optimal adjustment of the architecture to the application in question.

• Verification of functionality and implementation of prototypes in selected pilot projects.

$GYDQWDJHV�

• Clear savings in costs and development time.

• Enhanced quality of the control units software of various companies.

• Standardized interfacing features for control units with different architectural designs.

• Sequenced utilization of the intelligence (existing resources) distributed in the vehicle,
to enhance the performance of the overall system without requiring additional hardware.

• Provides absolute independence with regards to individual implementation, as the speci-
fication does not prescribe implementation aspects.

COM test plan 1.0  by 26(. Page 3

26(.�FRQIRUPDQFH�WHVWLQJ
OSEK conformance testing aims at checking conformance of products to OSEK
specifications. Test suites are thus specified for implementations of OSEK operating system,
communication and network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored
by the Commission of European Communities. The term MODISTARC means ”Methods and
tools for the validation of OSEK/VDX based DISTributed ARChitectures”.

This document has been drafted by the COM/NM project group of MODISTARC:

Harald Heinecke BMW AG

Wolfgang Kremer BMW AG

Didier Stunault Dassault Electronique

Benoit Caillaud INRIA

Dirk John IIIT, Karlsruhe University

Yevgeny Shakuro Motorola GmbH

Barbara Ziker Motorola GmbH

Jean-Paul Cloup Peugeot Citroën S.A.

Jean-Emmanuel Hanne Peugeot Citroën S.A.

Samuel Boutin Renault S.A.

Patrick Palmieri Siemens Automotive SA

Page 4  by 26(. COM test plan 1.0

7$%/(�2)�&217(176

���,1752'8&7,21 �

�����6FRSH �

�����5HIHUHQFHV �

�����$EEUHYLDWLRQV �

���7(67�385326(6�6758&785(�

�����'HVFULSWLRQ �

�����'HWDLOHG�VWUXFWXUH �

���26(.�&20�7(67�385326(6 ��
3.1.1. Service test group 10

3.1.1.1. Interaction Layer services 10
3.1.1.2. Interaction layer API 13

3.1.2. UUDT protocol test group 17
3.1.2.1. UUDT protocol 17
3.1.2.2. UUDT sending state machine 18
3.1.2.3. UUDT receiving state machine 18

3.1.3. USDT protocol test group 18
3.1.3.1. USDT protocol 19
3.1.3.2. USDT sending state machine 21
3.1.3.3. USDT receiving state machine 24

COM test plan 1.0  by 26(. Page 5

1. Introduction

1.1. Scope

This document specifies a test plan for services and protocols of the OSEK COM as defined
in specification document [3]. It applies to conformance test suites for testing
implementations which claim conformance to the OSEK COM specification.

According to the Conformance Methodology [1], definition of conformance tests is a two-
stage process. This test plan document corresponds to the first step. It specifies a list of test
purposes extracted from the COM specification. In the second step, test cases will be derived
from the test purposes to build up the OSEK COM conformance test suite. Basically, a test
case specifies the sequence of interactions between a tester and the COM implementation in
order to verify a test purpose of this document. However, it is possible to have individual test
cases that address multiple test purposes and likewise multiple test cases that address the same
test purpose.

According to the Conformance Methodology this document follows the principle of black box
testing. There is no test purpose for explicitely checking the COM sublayer interfaces, such as
the Network Layer API and the Data Link Layer API. Also, interfaces between COM and NM
have also been considered not mandatory and no test purpose has either been specified for the
related APIs.

The test purposes are organised according to a tree structure described in Chapter 2.

1.2. References

[1] OSEK/VDX Conformance Testing Methodology - Version 1.0 - 19 December
1997.

[2] OSEK/VDX Operating System - Version 2.0 - revision 1 - 15 October 1997.

[3] OSEK/VDX Communication - Version 2.1 - revision 1- 17th June 1998.

[4] OSEK Network Management - Concept and Application Programming Interface-
Version 2.50 - 31th of May 1998.

[5] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection,
Conformance testing methodology and framework, SDUW� ���� *HQHUDO� &RQFHSWV,
1992.

[6] ISO/IEC 9646-3 - Information technology, Open Systems Interconnection,
Conformance testing, methodology and framework, SDUW�����7KH�7UHH�DQG�7DEXODU
&RPELQHG�1RWDWLRQ��77&1�� 1992.

1.3. Abbreviations

API Application Programming Interface

CF Consecutive Frame

COM Communication

Page 6  by 26(. COM test plan 1.0

CTS Clear To Send

ECU Electronic Control Unit

FC Flow Control

FF First Frame

ISO International Standard Organization

ISR Interrupt Service Routine

OS Operating System

MUDBPF Maximum User Data Bytes Per Frame

PCI Protocol Control Information

PDU Protocol Data Unit

SF Single Frame

SDL Specification and Description Language

TTCN Tree and Tabular Combined Notation

USDT Unacknowledged and Segmented Data Transfer

UUDT Unacknowledged and Unsegmented Data Transfer

WFT WaitFrameTransmissions

COM test plan 1.0  by 26(. Page 7

2. Test purposes structure

2.1. Description

The test purposes for the OSEK COM services and protocols are arranged in groups and
subgroups following a hierarchical structure. This organisation follows the COM specification
structure. It intends to facilitate cross-checking with the specification and verification of
completeness. It does not preclude a different approach for test cases organisation inside the
test suite.

The tree structure of COM test purposes is illustrated in Figure 1 below:

COM Test suite

 Services

 UUDT protocol

 Interaction layer functionality

 Protocol functionality

 Sending state machine

 Interaction layer services

 Receiving state machine

 USDT protocol

 Protocol functionality

 Sending state machine

 Receiving state machine

Figure 1 Hierarchy of COM test purposes

The service tests are subdivided on a per service basis. There is at least one test for each API
in order to demonstrate that all implemented services can be successfully called by an
application.

The protocol tests are subdivided according to protocol states and substates defined in the
COM specification. They intend to verify that the COM implementation behaves as specified
in all implemented (sub)states. They also check all transitions between the different
(sub)states.

Both the service and the protocol test purposes include verification of:

• valid behaviour: the implementation is actually waiting for the stimuli received from the
tester,

• error cases: the implementation has not received the expected stimulus after a given

Page 8  by 26(. COM test plan 1.0

time-out, or has received an unexpected stimulus.

Test purposes are brought together into tables corresponding to the leaves of the tree structure.
Each table is made up of four columns providing:

• a reference number,

• the test assertion,

• the paragraph or picture of the COM specification from which the assertion was
extracted,

• the specification variant needing to be implemented for the test purpose to be verified.
The main variants are the conformance classes defined in the specification, CCC0,
CCC1, CCC2, CCC3. As conformance classes are upward compatible, the variant
column indicates the lowest class that must verify the test assertion. For example, a
CCC2 indication means that the test is valid for CCC2 and CCC3 implementations.

The "SDL" indication means that the test assertions is derived from the SDL models
attached to the specification.

Each test assertion contains:

• the stimulus to be sent to verify the test purpose and if necessary the COM specification
state needing to be reached before sending the stimulus,

• the action that shall be performed by the implementation to verify the test purpose and
the subsequent output that should be observed by the tester. Note that the output can be
"nothing" in which case the tester shall verify that the implementation did not send
anything.

COM test plan 1.0  by 26(. Page 9

2.2. Detailed structure

COM
Services

Interaction layer services
General
Application notification
Transmission modes
COM deadline monitoring on transmissions
COM deadline monitoring on receptions

Interaction layer API
StartCom
SendMessage/SendMessageTo - With copy
SendMessage/SendMessageTo - Without copy
ReceiveMessage/ReceiveMessageFrom - Unqueued messages with copy
ReceiveMessage/ReceiveMessageFrom - Unqueued messages without copy
ReceiveMessage - Queued messages without copy
GetMessageResource/ReleaseMessageResource
GetMessageStatus
Extended stati
Usage of COM services in OS routines

UUDT
UUDT protocol

Protocol format
Protocol errors
Protocol capabilities

UUDT sending state machine
Successful transfers
Unexpected frames
Error cases

UUDT receiving state machine
Successful transfers
Unexpected frames
Error cases

USDT
USDT protocol

Protocol format
Protocol errors
Protocol capabilities

USDT sending state machine
Successful transfers
Unexpected frames
Error cases

USDT receiving state machine
Successful transfers
Unexpected frames
Error cases

Table 1 Structure of COM Test Purposes

Page 10  by 26(. COM test plan 1.0

3. OSEK/COM test purposes

This clause contains a set of test purposes relevant to COM services and protocols. These test
purposes provide ground material for developing the TTCN test suite which will be used to
evaluate conformance to COM specification [3].

3.1.1. Service test group

This section specifies tests purposes relative to the COM Interaction Layer and the COM API
as defined in chapter 3 of the COM specification.

Each test purpose defines both the test stimulus to be sent and the subsequent output(s) to be
observed at the COM API.

The test stimuli include:

• API calls with different sets of input parameters,

• COM messages received by the implementation under test.

• COM deadline alarms (internal stimuli).

The observable outputs are either:

• the stati and output parameters returned by API, or

• the tasks activations or event settings performed by the implemention on message
transmission/reception or on deadline occurrence.

Each test purpose also gives information on the specification variant(s) that need to be
implemented for the test purpose to be verified.

The implementation variants are the conformance classes defined in the specification.

Remark:

Two properties of the specification will not be verified in the test suite because testing them
requires implementation specific means:

• OSEK/COM adopts an asynchronous communication. There is no test purpose to verify
that application is not blocked while data is transmitted and APIs for sending or
receiving COM messages return immediately to the application.

• Message consistency during transfers or read/write operations by concurrent tasks.
There is no test purpose regarding the return status E_COM_LOCKED of the
OSEK/COM API.

3.1.1.1. Interaction Layer services

The functionnality described in sections “Application notification”, “Transmission modes”
and “COM deadline monitoring” of the table below may be supported or not, depending on
application requirements. The test purposes have to be verified on COM messages requiring
that functionality.

Test purposes marked with * have to be verified for both ECU internal and ECU external
communication. The others are specific to external communication.

COM test plan 1.0  by 26(. Page 11

Nr Assertion Paragraph
in spec.

Affected
variants

General

1 The OSEK COM supports communication within
ECUs.

1 +
Table 2.2

CCC0 (1)

2 The OSEK COM supports communication between
networked ECUs.

1 +
Table 2.2

CCC0

3 An unqueued message is overwritten whenever a new
message arrives.

2.5 CCC0*

4 Queued messages are delivered in the same order as
they were sent.

2.5 CCC3*

Application notification

5 The application is informed of message transmission by
means of task activation or event setting depending on
the selected mechanism at system generation time.

2.3.1 CCC1

6 The application is informed of message reception by
means of task activation or event setting depending on
the selected mechanism at system generation time.

2.3.1 CCC1*

Transmission modes

7 In direct transmission mode, each call to the API
transmission service updates the message object and
issues a transmission request to the COM layer.

2.7.1 CCC0

8 In periodic transmission mode, each call to the API
transmission service updates the message object. The
transmission is performed on a cyclic time basis
according to the time period defined at system
generation time.

2.7.2 CCC1 (2)

9 In periodic transmission mode, the first transmission
occurs once StartCOM is successfully executed.

2.7.2 CCC1 (2)

10 In mixed transmission mode, the COM module issues
transmissions on relevant changes in the message value.
Possible relevant changes are:
− value less than constant
− value greater than constant
− value equal to constant
− (value - oldvalue) less than constant
− (value - oldvalue) greater than constant
− (value - oldvalue) equal to constant

2.7.3 CCC1 (2)

Page 12  by 26(. COM test plan 1.0

11 In mixed transmission mode, the COM module issues
periodic transmission requests as in periodic mode.
Intermediate transmissions on relevant changes in the
message value do not modify the base cycle.

2.7.3 CCC1 (2)

COM deadline monitoring on transmissions

12 In direct transmission mode a monitoring alarm can be
started on each transmission request by the application.
If it expires due to failed transmission, the application
is informed by means of task activation or event setting
as specified at system generation time.

2.8 CCC1

13 In direct transmission mode the monitoring alarm
related to a given message is not started if it is already
running at the time of transmission request by the
application.

2.8 CCC1

14 If direct transmission succeeds, the monitoring alarm is
cancelled. No task is activated and no event is set.

2.8 CCC1

15 In periodic transmission mode a monitoring alarm can
be started on each periodic transmission request by the
COM module. If it expires due to failed transmission,
the application is informed by means of task activation
or event setting as specified at system generation time.

2.8 CCC1 (2)

16 In periodic transmission mode the monitoring alarm
related to a given message is not started if it is already
running at the time of transmission request by the COM
module.

2.8 CCC1 (2)

17 If the periodic transmission succeeds the monitoring
alarm is cancelled. No task is activated and no event is
set.

2.8 CCC1 (2)

18 In mixed transmission mode a monitoring alarm is
started on each periodic transmission request by the
COM module. If it expires due to failed transmission,
the application is informed by means of task activation
or event setting as specified at system generation time.

2.8 CCC1 (2)

19 In mixed transmission mode a monitoring alarm is
started on each transmission request due to relevant
change in the message value. If it expires due to failed
transmission, the application is informed by means of
task activation or event setting as specified at system
generation time.

2.8 CCC1 (2)

20 In mixed transmission mode the monitoring alarm
related to a given message is not started if it is already
running at the time of periodic transmission request.

2.8 CCC1 (2)

COM test plan 1.0  by 26(. Page 13

21 In mixed transmission mode the monitoring alarm
related to a given message is not started if it is already
running at the time of transmission request due to
relevant change in the message value.

2.8 CCC1 (2)

22 If the periodic transmission succeeds in mixed
transmission mode, the monitoring alarm is cancelled.
No task is activated and no event is set.

2.8 CCC1 (2)

23 If the transmission due to relevant change in the
message value succeeds in mixed transmission mode,
the monitoring alarm is cancelled. No task is activated
and no event is set.

2.8 CCC1 (2)

COM deadline monitoring on receptions

24 In periodic reception mode a monitoring alarm can be
started on each reception. If it expires due to no further
reception, the application is informed by means of task
activation or event setting as specified at system
generation time.

2.8 CCC1 (2)

25 In periodic reception mode the monitoring alarm is
automatically started once StartCOM is successfully
executed. A special value can be chosen for first alarm.

2.8 CCC1 (2)

26 In periodic reception mode the monitoring alarm is
restarted after expiration due to no reception of the
expected message.

2.8 CCC1 (2)

(1) Characteristics of ECU-internal communication according to Table 2.2 of specification:
− direct transmission mode,
− static configuration.

(2) Characteristics of periodic/mixed transmissions according to Table 2.2 of specification:
− ECU-external communication using UUDT protocol,
− unqueued messages,
− static configuration.

3.1.1.2. Interaction layer API

As previously, the different variants of SendMessage/SendMessageTo and ReceiveMessage/
ReceiveMessageTo may be supported or not depending on application requirements.

In addition to conformance classes, the variant (6WDWXV means that the associated tests must be
executed if the extended stati of the COM API have been implemented.

Test purposes marked with * have to be verified for both ECU internal and ECU external
communication. The others are specific to external communication.

Nr Assertion Paragraph
in spec.

Affected
variants

StartCOM service

Page 14  by 26(. COM test plan 1.0

1 StartCOM service initialises the communication
hardware and calls the MessageInit function

4.4.2.3 CCC0

2 Assuming initialisation has succeeded, StartCOM
returns E_OK if MessageInit returns E_OK

4.4.2.3 CCC0

3 Assuming initialisation has succeeded, StartCOM
returns the MessageInit error code if MessageInit
returns an error

4.4.2.3 CCC0

SendMessage/SendMessageTo (1) - With copy

4 SendMessage updates the message object with the
given data and returns E_OK. In case of network
communication, it requests the transmission of the
message object to the receiving entities.

3.3.1 CCC0*

5 SendMessageTo updates the message object with the
given data and returns E_OK. Then it requests the
transmission of the message object to the receiving
entity. The receiving entity is selected by the
<Recipient> parameter. The length of message is
provided by the <Datalength> parameter.

3.3.6 CCC2

SendMessage/SendMessageTo (1) - Without copy

6 SendMessage returns E_OK if the message object is not
locked. In case of network communication, it requests
the transmission of the message object to the receiving
entities.

3.3.1 CCC0*

7 SendMessageTo returns E_OK if the message object is
not locked. Then it requests the transmission of the
message object to the receiving entity. The receiving
entity is selected by the <Recipient> parameter. The
length of message is provided by the <Datalength>
parameter.

3.3.6 CCC2

ReceiveMessage/ReceiveMessageFrom (1) - Unqueued messages with copy

8 If a message is available, ReceiveMessage delivers the
data of the message object and returns E_OK.

3.3.2 CCC0*

9 If no message has been received so far,
ReceiveMessage returns E_COM_NOMSG.

3.3.2 CCC0*

10 If no message has been received since the last call,
ReceiveMessage delivers the data of the current
message object and returns E_OK.

3.3.2 CCC0*

COM test plan 1.0  by 26(. Page 15

11 If a message is available, ReceiveMessageFrom
delivers the data of the message object and returns
E_OK. The length of the message is provided by the
<DataLength> parameter and the reference of the
message sender is provided by the <Sender> parameter.

3.3.7 CCC2

12 If no message has been received so far,
ReceiveMessageFrom returns E_COM_NOMSG.

3.3.7 CCC2

13 If no message has been received since the last call,
ReceiveMessageFrom delivers the data of the current
message object and returns E_OK.

3.3.7 CCC2

ReceiveMessage/ReceiveMessageFrom (1) - Unqueued messages without copy

14 If a message is available, ReceiveMessage returns
E_OK.

3.3.2 CCC0*

15 If no message has been received so far,
ReceiveMessage returns E_COM_NOMSG.

3.3.2 CCC0*

16 If a message is available, ReceiveMessageFrom returns
E_OK. The length of the message is provided by the
<DataLength> parameter and the reference of the
message sender is provided by the <Sender> parameter.

3.3.7 CCC2

17 If no message has been received so far,
ReceiveMessageFrom returns E_COM_NOMSG.

3.3.7 CCC2

ReceiveMessage - Queued messages with copy (2)

18 If the reception FIFO contains at least one message,
ReceiveMessage delivers the oldest message. The
returned status is E_OK.

3.3.2 CCC3*

19 If the FIFO queue is empty, ReceiveMessage returns
E_COM_NOMSG.

3.3.2 CCC3*

20 If case of a FIFO overflow, ReceiveMessage delivers
the oldest message. The returned status is
E_COM_LIMIT.

3.3.2 CCC3*

GetMessageResource/ReleaseMessageResource - (Without copy)

21 GetMessageResource sets the given message object as
busy if it is not already so and it returns E_OK.

3.3.3 CCC0

22 If the message object is already busy,
GetMessageResource returns E_COM_BUSY.

3.3.3 CCC0

23 ReleaseMessageResource sets off the given message
object from busy and it returns E_OK.

3.3.4 CCC0

GetMessageStatus

Page 16  by 26(. COM test plan 1.0

24 GetMessageStatus returns the current status of the
message object (see tests 4 to 20 and 22).

3.3.5 CCC0

Extended stati

25 SendMessage returns E_COM_ID in case of invalid
<Message> parameter.

3.3.1 CCC0 +
EStatus

26 ReceiveMessage returns E_COM_ID in case of invalid
<Message> parameter.

3.3.2 CCC0 +
EStatus

27 GetMessageResource returns E_COM_ID in case of
invalid <Message> parameter.

3.3.3 CCC0 +
EStatus

28 ReleaseMessageResource returns E_COM_ID in case
of invalid <Message> parameter.

3.3.4 CCC0 +
EStatus

29 GetMessageStatus returns E_COM_ID in case of
invalid <Message> parameter.

3.3.5 CCC0 +
EStatus

30 SendMessageTo returns E_COM_ID in case of invalid
<Message> parameter.

3.3.6 CCC0 +
EStatus

31 ReceiveMessageFrom returns E_COM_ID in case of
invalid <Message> parameter.

3.3.7 CCC0 +
EStatus

Usage of COM services in OS routines (3)

32 SendMessage can be called at ISR level in case of
unqueued message with copy.

3.5 CCC0

33 ReceiveMessage can be called at ISR level in case of
unqueued message with copy.

3.5 CCC0

34 GetMessageStatus can be called at ISR level. 3.5 CCC0

35 ReceiveMessage can be called in ErrorHook routine in
case of unqueued message with copy.

3.5 CCC0 (4)

36 GetMessageStatus can be called in ErrorHook routine. 3.5 CCC0 (4)

(1) Usage of SendMessageTo/ReceiveMessageFrom (dynamic configuration):
− direct transmission mode,
− unqueued messages,
− ECU-external communication

(2) Characteristics queued messages according to Table 2.2 of specification:
− direct transmission mode,
− ECU-internal or ECU-external communication (UUDT protocol only)
− static configuration

(3) It is assumed that all previous tests will be executed at task level. Therefore, there is no
assertion regarding possible execution at task level.

(4) Assumes usage of an OSEK/OS.

COM test plan 1.0  by 26(. Page 17

3.1.2. UUDT protocol test group

This section specifies tests purposes relative to the UUDT protocol, as defined in chapter 4 of
the COM specification. The test purposes define actions expected from the implementation
under test on a given input in order to verify that its behaviour conforms to the specification.

Each test purpose defines both the test stimulus or stimuli to be sent and the subsequent
output(s) to be observed at the COM API. Some actions can also be triggered by internal
events. The test stimuli include:

• COM API procedure calls.

• UUDT frames received by the implementation under test.

• Timer expiration (internal stimuli): TA.

The observable outputs are as follows:

• Status of application messages.

• Reception of application messages or absence of reception.

• UUDT frames sent by the implementation under test.

Each test purpose also gives information on the specification variant(s) that need to be
implemented for the test purpose to be verified.

3.1.2.1. UUDT protocol

Beside conformance classes, two variants have been identified. They concern the type of
protocol encoding:

• QRUPDO for normal frame format,
• H[WHQGHG for extended frame format,

Nr Assertion Paragraph
in spec.

Affected
variants

Protocol formats

1 For a message using normal addressing, address
information is encoded in the frame header. User data
occupy the user data field.

4.1 CCC0 +
Normal

2 For a message using extended addressing, there is eight
bits of additional address information in the first byte of
user data field. User data start with the second byte.

4.1 CCC0 +
Extended

Protocol errors

3 Frames with bad addressing information (e.g. CAN
identifier) are ignored.

4.1 +
SDL

CCC0

4 Frames with bad extended address byte are ignored. 4.1 +
SDL

CCC0 +
Extended

Transfer capabilities

5 When using normal addressing the UUDT protocol
supports 1 to N user data bytes (N = size of frame data
field).

4.1 CCC0 +
Normal

Page 18  by 26(. COM test plan 1.0

6 When using extended addressing the UUDT protocol
supports 1 to N-1 user data bytes (N = size of frame
data field).

4.1 CCC0 +
Extended

3.1.2.2. UUDT sending state machine

The sending protocol consists of only one SDL state.

In the table below, the test stimuli for “successful transfers” are transmission requests from
the interaction layer. The tests are expected to end with a transmission notification by the
interaction layer. Successful transmission is notified by setting the message status and
possibly activating a task or setting an event depending on system configuration.

“Error cases” lead to abort message transmission. The interaction layer shall not send any
notification.

Nr Assertion Paragraph
in spec.

Affected
variants

Successful transfer

1 A unique UUDT data frame is transmitted. SDL CCC0

Error case

2 TA expiration due to bad UUDT frame transmission. SDL CCC0

3.1.2.3. UUDT receiving state machine

The receiving protocol consists of only one SDL state.

In the table below, tests of “successful receptions” are expected to end with a message
reception notification by the interaction layer. Successful reception is notified by setting the
message status and possibly activating a task or setting an event depending on system
configuration.

Nr Assertion Paragraph
in spec.

Affected
variants

Successful reception

1 End of message reception resulting from SF reception
(data length < MUDBPF).

4.1 CCC0

3.1.3. USDT protocol test group

This section specifies tests purposes relative to the USDT protocol, as defined in chapter 4 of
the COM specification. Test purposes have been established from the SDL diagrams
presented in the specification, according to the Conformance Methodology described in
document [1]. They intend to verify that the COM implementation behaviour conforms to the
specification. They include:

• tests of state activity: tests are specified to verify actions performed by the

COM test plan 1.0  by 26(. Page 19

implementation on a given input,

• tests of state transitions: one test is specified for each event leading to move from a
given state to another state of the COM specification.

Each test purpose defines both the test stimulus or stimuli to be sent and the subsequent
output(s) to be observed at the COM API. Some actions can also be triggered by internal
events. The test stimuli include:

• COM API procedure calls.

• USDT frames received by the implementation under test.

• Timer expirations (internal stimuli): TA, TB1, TB2, TD2.

The observable outputs are as follows:

• Status of application messages.

• Reception of application messages or absence of reception.

• USDT frames sent by the implementation under test.

Each test purpose also gives information on the specification variant(s) that need to be
implemented for the test purpose to be verified. According to table 2.2 of COM specification,
the USDT protocol is allowed in the following conditions:

• direct transmission mode,

• unqueued messages.

3.1.3.1. USDT protocol

Beside conformance classes, two variants have been identified. They concern the type of
protocol encoding:

• QRUPDO for normal frame format,
• H[WHQGHG for extended frame format,

Nr Assertion Paragraph
in spec.

Affected
variants

Protocol formats

1 For a message using normal addressing, address
information is encoded in the frame header. PCI byte
occupies the first byte of user data field.

4.1 CCC2 +
Normal

2 For a message using extended addressing, there is eight
bits of additional address information in the first byte of
user data field. PCI byte occupies the second byte.

4.1 CCC2 +
Extended

3 SF format is as follows:
− high nibble of PCI byte equals 0
− low nibble of PCI byte contains data length

(excluding PCI byte)
− the following bytes contain the user data

4.3.2.2.1 CCC2

Page 20  by 26(. COM test plan 1.0

4 FF format is as follows:
− high nibble of PCI byte equals 1
− low nibble of PCI byte contains the higher 4 bits of

data length (excluding PCI byte)
− the next byte contains the lower 8 bits of data length
− the following bytes contain the user data

4.3.2.2.2 CCC2

5 CF format is as follows:
− high nibble of PCI byte equals 2
− low nibble of PCI byte contains the Sequence

Number
− the following bytes contain the user data

4.3.2.2.3 CCC2

6 The Sequence Number is initialised to 0 when starting
transmission of a message

4.3.2.2.3 CCC2

7 The Sequence Number is incremented up to 15 and re-
initialised to 0 after wraparound.

4.3.2.2.3 CCC2

8 FC frame format is as follows:
− high nibble of PCI byte equals 3
− low nibble of PCI byte specifies the flow status

value: 0 for Clear To Send or 1 for WaiT
− the next byte contains the maximum Block Size
− the following byte contains the minimum Separation

Time

4.3.2.2.3 CCC2

9 Padding of unused data bytes shall be performed in a
single frame message, a flow control frame and the last
consecutive frame of a multiple frame message.
Padding pattern is not specified.

4.2.2 CCC2

Protocol errors

10 Frames with bad addressing information (e.g. CAN
identifier) are ignored.

4.1 +
SDL

CCC2

11 Frames with bad extended address byte are ignored. 4.1 +
SDL

CCC2 +
Extended

12 Frames with unauthorised PCI values (i.e. > 3) are
ignored.

SDL CCC2

Transfer capabilities and segmentation

13 An unsegmented message is carried out in a single
frame. The USDT protocol supports 1 to max
(MUDBPF, 15) user data bytes per single frame

4.2.3 CCC2

14 The USDT protocol supports up to 4095 user data bytes
per message

4.2.4 CCC2

COM test plan 1.0  by 26(. Page 21

15 A multiple frame message consists of:
− a First Frame containing the first (MUDBPF-1) user

data bytes
− 0 or more Consecutive Frames containing successive

segments of MUDBPF user data bytes
− the last Consecutive Frame containing the remaining

(1 to MUDBPF) user data bytes

4.2.4 CCC2

16 On receipt of a First Frame, the receiving entity shall
start assembling the segmented message. Then it shall
buffer the received data bytes on receipt of successive
Consecutive Frames until the whole message is
received (number of bytes defined in the First Frame).

4.3.2.2.2
4.3.2.2.3

CCC2

17 For segmented messages, the maximum block size is
255 frames.

4.2.4 CCC2

18 For segmented messages, if block size is set to 0 by the
receiver, no further flow control shall be performed
during the transmission of Consecutive Frame(s).

4.2.4 CCC2

19 The USDT protocol shall be capable of carrying out
parallel transmission of different messages, provided
that they are not mapped onto the same (normal or
extended) address.

4.4.4 CCC2

3.1.3.2. USDT sending state machine

Test purposes have been established from the SDL diagrams of the specification, according to
the Conformance Methodology described in document [1]. The sending protocol consists of
four SDL states, as follows:

• LGOH: no transfer of message is pending,

• DZDLWBIUVWBIFBIUP: awaiting next FC frame after sending FF until timeout B1,

• DZDLWBQ[WBIFBIUP: awaiting next FC frame after sending last CF of block until timeout
B2,

• DZDLWBVWBWLP: awaiting time-out of separation time (= STmin).

In the table below, the test stimuli for “successful transfers” are transmission requests from
the interaction layer. The tests are expected to end with a transmission notification by the
interaction layer. Successful transmission is notified by setting the message status and
possibly activating a task or setting an event depending on the selected mechanism at system
generation time.

“Error cases” lead to abort message transmission. The interaction layer shall not send any
notification.

Nr Assertion Paragraph
in spec.

Affected
variants

Successful transfers

Page 22  by 26(. COM test plan 1.0

1 End of message transmission in LGOH state (data length <
MUDBPF). A SF is transmitted.

4.2.3 +
SDL

CCC2

2 End of message transmission in DZDLWBIUVWBIFBIUP�state
(MUDBPF <= data length < 2*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS>=1) reception.

4.2.4 +
SDL

CCC2

3 End of message transmission after wait in
DZDLWBIUVWBIFBIUP� state (MUDBPF <= data length <
2*MUDBPF).
− a FF is transmitted
− nothing is transmitted after a FC(wait) reception
− a CF is transmitted after FC(CTS,BS>=1) reception.

4.2.4 +
SDL

CCC2

4 End of message transmission in DZDLWBQ[WBIFBIUP state
(2*MUDBPF <= data length < 3*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS=1) reception
− a CF is transmitted after FC frame reception

(BS>=1)

4.2.4 +
SDL

CCC2

5 End of message transmission in DZDLWBQ[WBIFBIUP state
after wait (2*MUDBPF <= data length < 3*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS=1) reception
− nothing is transmitted after a FC(wait) reception
− a CF is transmitted after FC(CTS,BS>=1) reception

4.2.4 +
SDL

CCC2

6 End of message transmission in DZDLWBVWBWLP state
(2*MUDBPF <= data length < 3*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS>=2) reception
− a CF is transmitted after ST time-out (triggered in

DZDLWBIUVWBIFBIUP state�

4.2.4 +
SDL

CCC2

7 End of message transmission in DZDLWBVWBWLP state
(3*MUDBPF <= data length < 4*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS>=3) reception
− a CF is transmitted after ST time-out (triggered in

DZDLWBIUVWBIFBIUP state�

− a CF is transmitted after ST time-out (triggered in
DZDLWBVWBWLP state�

4.2.4 +
SDL

CCC2

8 End of message transmission in DZDLWBQ[WBIFBIUP state.
TB2 triggered in DZDLWBVWBWLP state (3*MUDBPF <=
data length < 4*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS=2) reception
− a CF is transmitted after ST time-out
− a CF is transmitted after FC(CTS,BS>=1) reception

4.2.4 +
SDL

CCC2

COM test plan 1.0  by 26(. Page 23

9 End of message transmission in DZDLWBQ[WBIFBIUP state.
TB2 triggered in DZDLWBQ[WBIFBIUP state (3*MUDBPF
<= data length < 4*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS=1) reception
− a CF is transmitted after FC(CTS,BS=1) reception
− a CF is transmitted after FC(CTS,BS>=1) reception

4.2.4 +
SDL

CCC2

10 End of message transmission in DZDLWBVWBWLP state. ST
triggered in DZDLWBQ[WBIFBIUP state (3*MUDBPF <=
data length < 4*MUDBPF).
− a FF is transmitted
− a CF is transmitted after FC(CTS,BS=1) reception
− a CF is transmitted after FC(CTS,BS>=1) reception
− a CF is transmitted after ST time-out

4.2.4 +
SDL

CCC2

Unexpected frames

11 FC frames received�in LGOH state are ignored SDL CCC2

Error cases

12 TA expiration in LGOH state due to bad SF transmission 4.4 +
SDL

CCC2

13 TA expiration in LGOH state due to bad FF transmission 4.4 +
SDL

CCC2

14 TA expiration in DZDLWBIUVWBIFBIUP state due to bad CF
transmission

4.4 +
SDL

CCC2

15 TA expiration in DZDLWBQ[WBIFBIUP state due to bad CF
transmission

4.4 +
SDL

CCC2

16 TA expiration in DZDLWBVWBWLP state due to bad CF
transmission

4.4 +
SDL

CCC2

17 TB1 expiration in DZDLWBIUVWBIFBIUP state due to no FC
frame reception after FF transmission

4.4 +
SDL

CCC2

18 TB2 expiration in DZDLWBQ[WBIFBIUP state due to no FC
frame reception after CF transmission in
DZDLWBIUVWBIFBIUP�state

4.4 +
SDL

CCC2

19 TB2 expiration in DZDLWBQ[WBIFBIUP state due to no FC
frame reception after CF transmission in
DZDLWBQ[WBIFBIUP state

4.4 +
SDL

CCC2

20 TB2 expiration in DZDLWBQ[WBIFBIUP state due to no FC
frame reception after CF transmission in DZDLWBVWBWLP
state

4.4 +
SDL

CCC2

21 TD2 expiration in DZDLWBIUVWBQ[WBIUP state after FC
frame reception with Flow Status set to WaiT in
DZDLWBIUVWBIFBIUP state

4.4 +
SDL

CCC2

Page 24  by 26(. COM test plan 1.0

22 TD2 expiration in DZDLWBIUVWBQ[WBIUP state after FC
frame reception with Flow Status set to WaiT in
DZDLWBQ[WBIFBIUP state

4.4 +
SDL

CCC2

23 FC frame reception�in DZDLWBVWBWLP state SDL CCC2

24 SF with data length > MUDBPF SDL CCC2

3.1.3.3. USDT receiving state machine

Test purposes have been established from the SDL diagrams of the specification, according to
the Conformance Methodology described in document [1]. The receiving protocol consists of
three SDL states, as follows:

• LGOH: no transfer of message is pending,

• DZDLWBIUVWBFIBIUP: awaiting first CF of next block after sending of FC frame until
timeout C,

• DZDLWBQ[WBFIBIUP: awaiting next CF of current block after receipt of previous until
timeout D.

In the table below, tests of “successful receptions” are expected to end with a message
reception notification by the interaction layer. Successful reception is notified by setting the
message status and possibly activating a task or setting an event depending on the selected
mechanism at system generation time. The value of BSmax sent by the implementation in the
first FC may influence the test description. In that case, the tests associated to different
BSmax values are numbered by the same number followed by a letter, e.g. 3a, 3b. The
corresponding BSmax values are specified in the “Affected variants” column.

“Error cases” lead to abort message reception. The interaction layer shall not send any
notification.

Nr Assertion Paragraph
in spec.

Affected
variants

Successful receptions

1 End of message reception in LGOH state resulting from SF
reception (data length < MUDBPF).

4.2.3 +
SDL

CCC2

2 End of message reception in DZDLWBIUVWBFIBIUP� state
(MUDBPF <= data length < 2*MUDBPF)
− a FF is received
− a FC(CTS) is transmitted
− a CF is received.

4.2.4 +
SDL

CCC2

3a End of message reception in DZDLWBQ[WBFIBIUP� state
(2*MUDBPF <= data length < 3* MUDBPF)
− a FF is received
− a FC(CTS,BSmax,STmin) is transmitted
− two CFs are received (time separation STmin).

4.2.4 +
SDL

CCC2 +
BSmax > 1 or
BSmax = 0

COM test plan 1.0  by 26(. Page 25

3b End of message reception in DZDLWBIUVWBFIBIUP� state
(BSmax*(MUDBPF+1) <= data length < BSmax*
(MUDBPF+2))
− a FF is received
− a FC(CTS,BSmax,STmin) is transmitted
− a CF is received
− a FC(CTS,BSmax,STmin) is transmitted
− a CF is received.

4.2.4 +
SDL

CCC2 +
BSmax = 1

4a End of message reception in DZDLWBQ[WBFIBIUP� state
(BSmax*(MUDBPF+1) <= data length < BSmax*
(MUDBPF+2))
− a FF is received
− a FC(CTS,BSmax,STmin) is transmitted
− BSmax CFs are received (time separation STmin).

4.2.4 +
SDL

CCC2 +
BSmax > 1

4b End of message reception in DZDLWBQ[WBFIBIUP� state
(3*MUDBPF <= data length < 4*MUDBPF)
− a FF is received
− a FC(CTS,BSmax,STmin) is transmitted
− three CFs are received (time separation STmin).

4.2.4 +
SDL

CCC2 +
BSmax = 0

5 End of message reception in DZDLWBIUVWBFIBIUP� state
(BSmax*(MUDBPF+2) <= data length < BSmax*
(MUDBPF+3))
− a FF is received
− a FC(CTS,BSmax,STmin) is transmitted
− BSmax CFs are received (time separation STmin)
− a FC(CTS,BSmax,STmin) is transmitted
− a CF is received.

4.2.4 +
SDL

CCC2 +
BSmax > 1

6 End of message reception in DZDLWBQ[WBFIBIUP� state
after wait for buffer resources
− a FF is received
− a FC(CTS,BSmax,STmin) is transmitted
− BSmax CFs are received (time separation STmin)
− a FC(WaiT) is transmitted
− a FC(CTS,BSmax,STmin) is transmitted once

resources are again available
− a CF is received.

4.2.4 +
SDL

CCC2 +
BSmax > 0

Unexpected frames

7 CFs received�in LGOH state are ignored SDL CCC2

8 SFs received�in DZDLWBIUVWBFIBIUP state are ignored SDL CCC2

9 FFs received�in DZDLWBIUVWBFIBIUP state are ignored SDL CCC2

10 SFs received�in DZDLWBQ[WBFIBIUP�state are ignored SDL CCC2

11 FFs received�in DZDLWBQ[WBFIBIUP�state are ignored SDL CCC2

Error cases

Page 26  by 26(. COM test plan 1.0

12 Unexpected Sequence Number received in CF in
DZDLWBIUVWBFIBIUP state

4.3.2.2.3
+ SDL

CCC2

13 Unexpected Sequence Number received in CF in
DZDLWBQ[WBFIBIUP state

4.3.2.2.3
+ SDL

CCC2

14 TA expiration due to bad FC(CTS) transmission after
FF reception in LGOH�state

4.4 +
SDL

CCC2

15 TA expiration due to bad FC(CTS) transmission after
CF reception in DZDLWBIUVWBFIBIUP state.

4.4 +
SDL

CCC2

16 TA expiration due to bad FC(CTS) transmission after
CF reception in DZDLWBQ[WBFIBIUP state.

4.4 +
SDL

CCC2

17 TA expiration due to bad FC(WaiT) transmission after
CF reception.

4.4 +
SDL

CCC2

18 TE expiration due to lack of resources after WFTmax
transmissions of FC(WaiT).

4.4 +
SDL

CCC2

19 TC expiration due to no CF reception in
DZDLWBIUVWBFIBIUP�state (TC triggered in LGOH�state)

4.4 +
SDL

CCC2

20 TC expiration due to no CF reception in
DZDLWBIUVWBFIBIUP� state (TC triggered in
DZDLWBQ[WBFIBIUP state)

4.4 +
SDL

CCC2

21 TD1 expiration due to no CF reception in
DZDLWBQ[WBFIBIUP�state

4.4 +
SDL

CCC2

