
2SHQ�6\VWHPV�DQG�WKH�&RUUHVSRQGLQJ�,QWHUIDFHV

IRU�$XWRPRWLYH�(OHFWURQLFV

This document is an official release and replaces all previously distributed documents. The OSEK group retains
the right to make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without
permission in writing from the OSEK/VDX steering committee.

COM test procedure 1.0  by 26(. Document: Comtpr10.doc

26(.�9';

&20�WHVW�SURFHGXUH

Version 1.0

October, 2nd, 1998

Page 2  by 26(. COM test procedure 1.0

:KDW�LV�26(.�9';"
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and
network management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means „Vehicle Distributed eXecutive“. The functionality of OSEK operating
system was harmonized with VDX. For simplicity OSEK will be used instead of OSEK/VDX
in the document.

26(.�SDUWQHUV�
Adam Opel AG, BMW AG, Daimler-Benz AG, IIIT University of Karlsruhe, Mercedes-
Benz AG, Robert Bosch GmbH, Siemens AG, Volkswagen AG.
GIE.RE. PSA-Renault (Groupement d’intérêt Economique de Recherches et d’Etudes PSA-
Renault).

0RWLYDWLRQ�

• High, recurring expenses in the development and variant management of non-
application related aspects of control unit software.

• Incompatibility of control units made by different manufacturers due to different inter-
faces and protocols.

*RDO�
Support of the portability and reusability of the application software by:

• Specification of interfaces which are abstract and as application-independent as
possible, in the following areas: real-time operating system, communication and
network management.

• Specification of a user interface independent of hardware and network.

• Efficient design of architecture: The functionality shall be configurable and scaleable, to
enable optimal adjustment of the architecture to the application in question.

• Verification of functionality and implementation of prototypes in selected pilot projects.

$GYDQWDJHV�

• Clear savings in costs and development time.

• Enhanced quality of the control units software of various companies.

• Standardized interfacing features for control units with different architectural designs.

• Sequenced utilization of the intelligence (existing resources) distributed in the vehicle,
to enhance the performance of the overall system without requiring additional hardware.

• Provides absolute independence with regards to individual implementation, as the speci-
fication does not prescribe implementation aspects.

COM test procedure 1.0  by 26(. Page 3

26(.�FRQIRUPDQFH�WHVWLQJ
OSEK conformance testing aims at checking conformance of products to OSEK
specifications. Test suites are thus specified for implementations of OSEK operating system,
communication and network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored
by the Commission of European Communities. The term MODISTARC means ”Methods and
tools for the validation of OSEK/VDX based DISTributed ARChitectures”.

This document has been drafted by MODISTARC members:

Harald Heinecke BMW AG

Wolfgang Kremer BMW AG

Didier Stunault Dassault Electronique

Benoit Caillaud INRIA

Dirk John IIIT, Karlsruhe University

Yevgeny Shakuro Motorola GmbH

Barbara Ziker Motorola GmbH

Jean-Paul Cloup Peugeot Citroën S.A.

Jean-Emmanuel Hanne Peugeot Citroën S.A.

Samuel Boutin Renault S.A.

Patrick Palmieri Siemens Automotive SA

Page 4  by 26(. COM test procedure 1.0

7$%/(�2)�&217(176

���,1752'8&7,21 �

�����6FRSH �

�����5HIHUHQFHV �

�����$EEUHYLDWLRQV �

���7(67�(19,5210(17 �

�����7HVW�DUFKLWHFWXUH �

�����5HTXLUHPHQWV �
2.2.1. Communication requirements 8
2.2.2. OS requirements 8
2.2.3. Network perturbations 8

���)($785(6�$1'�3$5$0(7(56 ��

�����)RUPDW�RI�WKH�TXHVWLRQQDLUHV ��

�����4XHVWLRQQDLUHV ��
3.2.1. PICS 12
3.2.2. PIXIT 16

���7(67�0$1$*(0(17�35272&2/ ��

�����7HVW�VFHQDULRV ��

�����'DWD�7\SHV ��

�����703�PHVVDJHV�IURP�/7�WR�87 ��

�����703�PHVVDJHV�IURP�87�WR�/7 ��

�����703�PHVVDJHV�IURP�/7�WR�1HWZRUN�,QWHUIDFH ��

�����(QFRGLQJ�UXOHV�IRU�XVHU�GDWD ��

�77&+0(17����&20�7(67�68,7(

COM test procedure 1.0  by 26(. Page 5

1. Introduction

1.1. Scope

This document specifies a test procedure for services and protocols of the OSEK COM as
defined in specification document [4].

This document applies to conformance test suites for testing implementations which claim
conformance to the OSEK COM specification. The test procedure consists of a list of test
cases building the OSEK COM test suite. A test case consists of a sequence of statements
corresponding to one or more test purposes specified in document [2].

1.2. References

[1] OSEK/VDX Conformance Testing Methodology - Version 1.0. - 19 December
1997.

[2] OSEK/VDX - COM test plan - Version 1.0. - July 24th, 1998.

[3] OSEK/VDX Operating System - Version 2.0 - revision 1 - 15 October 1997.

[4] OSEK/VDX Communication - Version 2.1 - revision 1 - 17th June 1998.

[5] OSEK Network Management - Concept and Application Programming Interface-
Version 2.50 - 31st of May 1998.

[6] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection,
Conformance testing methodology and framework, SDUW� ���� *HQHUDO� &RQFHSWV,
1992.

[7] ISO/IEC 9646-3 - Information technology, Open Systems Interconnection,
Conformance testing, methodology and framework, SDUW�����7KH�7UHH�DQG�7DEXODU
&RPELQHG�1RWDWLRQ��77&1�� 1992.

1.3. Abbreviations

API Application Programming Interface

CF Consecutive Frame

ECU Electronic Control Unit

EUT Equipment Under Test

FC Flow Control

FF First Frame

ISO International Standard Organization

IUT Implementation Under Test

LSB Low Significant Bit

LT Lower Tester

MSB Most Significant Bit

CAN Car Area Network

Page 6  by 26(. COM test procedure 1.0

COM COMmunication

COM PDU COMmunication - Protocol Data Unit

OS Operating System

PDU Protocol Data Unit

PICS Protocol Implementation Conformance Statement

PIXIT Protocol Implementation eXtra Information for Testing

SDL Specification and Description Language

SF Single Frame

TE Test Equipment

TMP Test Management Protocol

TM_PDU Test Management - Protocol Data Unit

TTCN Tree and Tabular Combined Notation

UT Upper Tester

USDT Unacknowledged and Segmented Data Transfer

UUDT Unacknowledged and Unsegmented Data Transfer

COM test procedure 1.0  by 26(. Page 7

2. Test environment

2.1. Test architecture

According to the methodology described in document [1], the test architecture for COM
conformance is split into two parts:

• the Equipment Under Test (EUT) which encompasses the COM implementation to be
tested, also called Implementation Under Test (IUT),

• the Test Equipment (TE) which implements the test suite and is connected to the
Equipment Under Test by the network data bus.

The test suite makes up the Lower Tester (LT) which communicates through the Test
Management Protocol (TMP) with its counterpart of the EUT called Upper Tester (UT). UT’s
role is on one hand to perform all actions requested by the LT and on the other hand to send
back the information collected at the COM API.

To exchange information with the LT, the UT makes use of the services offered by the COM
API. TMP information is encapsulated in the OSEK/COM protocol and occupies the data
field of OSEK/COM data frames. It is expressed in terms of application messages called
TM_PDUs (Test Management - Protocol Data Units).

During tests execution, the IUT will therefore send and receive two types of PDUs:

• COM PDUs allowing to achieve the test objectives and test IUT’s behaviour. User data
are not interpreted by the UT or the LT.

• COM PDUs supporting TM_PDUs. User data are meaningful for UT or LT.

During tests execution, TMP_PDUs are exchanged is either direction between LT and UT:

• TM_PDUs are sent by the LT in order to simulate the COM activity of the other
network nodes,

• TM_PDUs are received by the LT and analysed in order to determine whether or not
the IUT behaviour conforms to the COM specification.

UT

OSEK COM
(IUT)

TM_PDU

COM API /7

7(67
(48,30(17

�7(�

(48,30(17�81'(5�7(67
�(87�

COM PDU (data)

'7�%86

COM PDU(TM_PDU)

data

Figure 1 Test architecture for COM conformance

Page 8  by 26(. COM test procedure 1.0

Special TM_PDUs are specified to simulate network errors. They are not transmitted to the
UT but interpreted by the lower communication layers which shall perform the requested
actions. A possible approach is described in the next section.

2.2. Requirements

2.2.1. Communication requirements

To enable execution of the test cases, the IUT shall be capable of conveying TM_PDUs
between the UT and the LT in either direction. Therefore the IUT must at least contain two
messages which will respectively support the transmission and the reception of TMP data. The
UT implementor has to choose them in the available set of messages implemented in the IUT.
The minimum requirements regarding the associated communication parameters are the
following:

• direct transmission mode (mandatory),
• unqueued,
• static,
• UUDT protocol.

Queued or dynamic messages can also be used to support the TMP. It should be pointed out
the test suite specification assumes that a TMP message can be transported in a single bus
frame. Therefore, messages mapped on USDT protocol cannot be selected, except dynamic
messages (because size of data is not fixed but explicitly specified in the Send/Receive calls).

2.2.2. OS requirements

The test architecture for COM conformance includes a test application called UT and
implemented in the same equipment as the IUT. UT implementation does not require special
OS functionality. The UT can be integrated in the same environment as the COM module.
Like the COM, it only needs task and alarm management services and it can be based on a
non-OSEK OS providing equivalent functionality.

The configuration of the UT can vary according to the COM module configuration itself. For
instance, one or more tasks need to be implemented depending on the number of tasks that can
be activated by the COM implementation. The configuration will also depend on the OS
conformance class, the scheduling mechanisms and the inter-task communication (task
activation or event setting).

Therefore, this document does not specify a configuration for the UT. It describes the
operation of UT when it receives commands from the LT or information from the COM
implementation, independently of the type and distribution of tasks and events.

2.2.3. Network perturbations

To verify conformance of a COM implementation, the test environment needs to simulate two
types of events:

• no reception of a frame expected by the OSEK/COM module,

• no transmission of a frame sent by the OSEK/COM module.

COM test procedure 1.0  by 26(. Page 9

Simulation of no reception is quite easy. The LT must simply no to send the expected frame.
Simulation of no transmission is more difficult. A special TM_PDU has been defined and
must be sent by the LT to trigger the simulation. It not transmitted to the UT. It can be
interpreted either inside the EUT or in the TE.

• In the local option, the PDU is analysed by special test software implemented at the
network driver interface inside the EUT. This software shall be able to notify the IUT of
transmission errors.

• In the remote option, the PDU is processed by special test software inside the TE. This
software is in charge of controlling a bus-specific equipment called "Bus Manipulator"
and able to generate the requested perturbations on the Data Bus.

The picture below illustrates these two options. It shows the location of the added "test
software" and the path of error simulation TM_PDUs in both configurations.

DATA BUS

DATA BUS

/2&$/�237,21

5(027(�237,21

87

OSEK COM (IUT)

7(67�(48,30(17
�7(�

Software Driver

Interface Controller

Hardware Driver

Test Software

Software Driver

Interface Controller

Hardware Driver

87

OSEK COM (IUT)

/7

(48,30(17�81'(5
7(67��(87�

Test Software

Software Driver

Interface Controller

Hardware Driver

Software Driver

Interface Controller

Hardware Driver

Bus
Manipulator

/7

7(67�(48,30(17
�7(�

(UURU
VLPXODWLRQ
70 3'8

(UURU
VLPXODWLRQ
70 3'8

(48,30(17�81'(5
7(67��(87�

Figure 2 Architectures for error simulation

The local option is the more flexible but it requires modifications of the EUT software and it
is therefore generally not applicable to conformance of ECU embedded implementations. The
remote option requires additional hardware means and it may be more difficult to implement.

Page 10  by 26(. COM test procedure 1.0

If actual implementation of the test architecture does not enable error simulation, a reduced
test suite can be executed. But the COM functionality will not be completely checked.

COM test procedure 1.0  by 26(. Page 11

3. Features and parameters

The COM specification defines optional features and allows different configurations of the
specification parameters. Prior to any test suite execution, it is necessary to get a precise
knowledge of what features and functions are supported and what parameter values or range
of values are permissible. Such information has to be supplied by implementors in standard
questionnaires defined hereafter. It will be then used to configure the test environment and to
determine which tests can be executed.

Two questionnaires are to be provided. The first one is called PICS. It contains a statement of
the capabilities and options which have been implemented. Each question pertains to one of
the specification requirements, mandatory or optional. The PICS helps to determine whether
all the mandatory features have been implemented and hence it allows a static evaluation of
IUT conformance before test suite execution. The PICS is a fixed-format questionnaire in
which the questions are simply answered Yes or No.

The second questionnaire is called PIXIT. It provides with additional information required to
run the conformance tests. PIXIT questions ask for parameter values pertaining to the IUT and
to the testing environment such as time-out values or addressing information. Answers are
used to parameterize the test suite and configure the LT and the UT.

3.1. Format of the questionnaires

The questionnaire tables consists of four columns for the PICS and five for the PIXIT:

• Item: specifies an identifier which can be used as a reference in other questions

• Service / protocol features or parameters: specifies the nature of the requested
information

• Status: gives a status of the feature/parameter in the specification (Mandatory,
Optional)

• Support: indicates whether the feature/parameter has been implemented or not. This
column is to be filled in by IUT implementers.

• Value: specifies the related parameter value (PIXIT only). This column is to be filled
in by IUT implementers.

The questionnaires make use of the following symbols or abbreviations:

• Status column:
 M Mandatory
 O Optional
 Oi Exclusive option. Support of one and only one 2L item (i = option reference

number) is mandatory.
 SUHG� Conditional expression where SUHG refers to the item that needs to be supported

for the condition to apply. Conditions may contain logical expressions using
the following symbols:

 | logical OR,
 . (dot) logical AND.

Page 12  by 26(. COM test procedure 1.0

• Support column:
 Yes feature/parameter supported
 No feature/parameter not supported
 N/A Not Applicable due to not matched condition

The support column does only propose answers meeting compliance requirements. For
instance, if the feature or parameter is mandatory only a Yes answer is presented. Answering
No means non-compliance. Doing that, static conformance analysis becomes straightforward.

Whenever a condition is specified in the status column, a "N/A" answer is proposed and
should be ticked if the IUT does not match the condition. The condition defines what should
be answered to some previous questions in order to keep the present statement meaningful. No
condition is expressed when the statement is depending on previous answers relating to
mandatory features (since such answers should normally be Yes).

3.2. Questionnaires

3.2.1. PICS

The following questionnaires intend to provide a comprehensive list of COM features and
options in order to determine the IUT capabilities with great accuracy. Protocol capabilities
are listed before services features since the latter are directly connected to protocol
implementation.

3.2.1.1. Overall capabilities

Item Protocol Feature Status Support

Maximum conformance class supported (select only one
option):

Cc0 − CCC0 O1 _Yes
Cc1 − CCC1 O1 _Yes
Cc2 − CCC2 O1 _Yes
Cc3 − CCC3 O1 _Yes

Network protocols supported:
− UUDT

Uus • as data sender M _Yes
Uur • as data receiver M _Yes

− USDT
Uss • as data sender Cc2|Cc3:M _Yes N/A
Usr • as data receiver Cc2|Cc3:M _Yes N/A

Is local (inter-task) communication supported ? M _Yes

Transmission concepts supported:
Dtr − Direct M _Yes
Ptr − Periodical ¬Cc0:M _Yes N/A
Mtr − Mixed ¬Cc0:M _Yes N/A

COM test procedure 1.0  by 26(. Page 13

Support of deadline monitoring:
Dmd − as data sender, direct transmission ¬Cc0:M _Yes N/A
Dmp − as data sender, periodic transmission ¬Cc0:M _Yes N/A
Dmm − as data sender, mixed transmission ¬Cc0:M _Yes N/A
Dmr − as data receiver ¬Cc0:M _Yes N/A

Message types supported:
Uqm − Unqueued M _Yes
Qum − Queued Cc3:M _Yes N/A

Message configurations supported:
Sts − Static, as sender M _Yes
Str − Static, as receiver M _Yes
Dys − Dynamic, as sender Cc2|Cc3:M _Yes N/A
Dyr − Dynamic, as receiver Cc2|Cc3:M _Yes N/A

3.2.1.2. Protocol events

Item Protocol Feature Status Support

Support of UUDT PDUs:
Ufs − as sender M _Yes
Ufr − as receiver M _Yes

USDT PDUs supported:
− SF

Sfs • as sender Uss:M _Yes _N/A
Sfr • as receiver Usr:M _Yes _N/A

− FF
Ffs • as sender Uss:M _Yes _N/A
Ffr • as receiver Usr:M _Yes _N/A

− CF
Cfs • as sender Uss:M _Yes _N/A
Cfr • as receiver Usr:M _Yes _N/A

− FC frame
Fcs • as sender Usr:M _Yes _N/A
Fcr • as receiver Uss:M _Yes _N/A

3.2.1.3. COM PDU fields

Item Protocol Feature Status Support

Addressing modes supported (at least one option must be
supported)

Am1 − normal O _Yes _No
Am2 − extended O _Yes _No

UUDT PDU fields supported
Uf1 − User data Uss|Usr:M _Yes _N/A

Page 14  by 26(. COM test procedure 1.0

SF PDU fields supported
Sf1 − PCI-opcode Uss|Usr:M _Yes _NA
Sf2 − DL Uss|Usr:M _Yes _N/A
Sf3 − User data Uss|Usr:M _Yes _N/A

FF PDU fields supported
Ff1 − PCI-opcode Uss|Usr:M _Yes _NA
Ff2 − XDL Uss|Usr:M _Yes _NA
Ff3 − DL Uss|Usr:M _Yes _N/A
Ff4 − User data Uss|Usr:M _Yes _N/A

CF PDU fields supported
Cf1 − PCI-opcode Uss|Usr:M _Yes _NA
Cf2 − SN Uss|Usr:M _Yes _N/A
Cf3 − User data Uss|Usr:M _Yes _N/A

FC PDU fields supported
Fc1 − PCI-opcode Uss|Usr:M _Yes _NA
Fc2 − FS Uss|Usr:M _Yes _NA
Fc3 − BSmax Uss|Usr:M _Yes _NA
Fc4 − STmin Uss|Usr:M _Yes _N/A

3.2.1.4. COM API capabilities

Item Service Feature Status Support

COM API calls supported:
Sv0 − StartCOM M _Yes
Sv1 − SendMessage M _Yes
Sv2 − ReceiveMessage M _Yes
Sv3 − GetMessageResource M _Yes
Sv4 − ReleaseMessageResource M _Yes
Sv5 − GetMessageStatus M _Yes
Sv6 − SendMessageTo Dys:M _Yes _N/A
Sv7 − ReceiveMessageFrom Dyr:M _Yes _N/A

COM indication capabilities
− Indication of end of transmission

Iett • by task activation O _Yes _No
Iete • by event setting ¬Iett:O _Yes _No _N/A

− Indication of end of reception
Iert • by task activation O _Yes _No
Iere • by event setting ¬Iert:O _Yes _No _N/A

− Deadline indication on periodic/mixed transmission
Idtt • by task activation Dms:O2 _Yes _No _N/A
Idte • by event setting Dms:O2 _Yes _No _N/A

− Deadline indication on periodic reception
Idrt • by task activation Dmr:O3 _Yes _No _N/A
Idre • by event setting Dmr:O3 _Yes _No _N/A

COM test procedure 1.0  by 26(. Page 15

3.2.1.5. COM API parameters

Item Service Feature Status Support

SendMessage parameters:
Sm1 − Message (SymbolicName) M _Yes
Sm2 − Data M _Yes

ReceiveMessage parameters:
Rm1 − Message (SymbolicName) M _Yes
Rm2 − Data M _Yes

GetMessageResource parameters:
Gr1 − Message (SymbolicName) M _Yes

ReleaseMessageResource parameters:
Rr1 − Message (SymbolicName) M _Yes

GetMessageStatus parameters:
Gs1 − Message (SymbolicName) M _Yes

SendMessageTo parameters:
Smt1 − Message (SymbolicName) Sv6:M _Yes _N/A
Smt2 − Data Sv6:M _Yes _N/A
Smt3 − DataLength Sv6:M _Yes _N/A
Smt4 − Recipient Sv6:M _Yes _N/A

ReceiveMessageFrom parameters:
Rmf1 − Message (SymbolicName) Sv7:M _Yes _N/A
Rmf2 − Data Sv7:M _Yes _N/A
Rmf3 − DataLength Sv7:M _Yes _N/A
Rmf4 − Sender Sv7:M _Yes _N/A

3.2.1.6. COM API return codes

Note that E_COM_LOCKED return code is not verified in the test suite (see document [2]).
So, no information is requested about this value in the PICS.

Item Service Feature Status Support

Is E_OK return code supported by:
Eok0 − StartCOM M _Yes
Eok1 − SendMessage M _Yes
Eok2 − ReceiveMessage M _Yes
Eok3 − GetMessageResource M _Yes
Eok4 − ReleaseMessageResource M _Yes
Eok5 − GetMessageStatus M _Yes
Eok6 − SendMessageTo Sv6:M _Yes _N/A
Eok7 − ReceiveMessageFrom Sv7:M _Yes _N/A

Is E_COM_BUSY return code supported by:
Ebu3 − GetMessageResource M _Yes
Ebu5 − GetMessageStatus M _Yes

Page 16  by 26(. COM test procedure 1.0

Is E_COM_ID return code supported by:
Eid1 − SendMessage O _Yes _No
Ed2 − ReceiveMessage O _Yes _No
Eid3 − GetMessageResource O _Yes _No
Eid4 − ReleaseMessageResource O _Yes _No
Eid5 − GetMessageStatus O _Yes _No
Eid6 − SendMessageTo Sv6:O _Yes _No _N/A
Eid7 − ReceiveMessageFrom Sv7:O _Yes _No _N/A

Is E_COM_LIMIT return code supported by:
Ecl2 − ReceiveMessage M _Yes
Ecl5 − GetMessageStatus M _Yes

Is E_ COM_NOMSG return code supported by:
Ecn2 − ReceiveMessage M _Yes
Ecn5 − GetMessageStatus M _Yes
Ecn7 − ReceiveMessageFrom Sv7:M _Yes _N/A

3.2.2. PIXIT

The following questionnaires intend to provide actual values for implementation-dependent
parameters stated in the COM specification. They also ask for some test parameters required
to run the test cases. The values supplied by the IUT designer will be picked up to
parameterize the test suite.

3.2.2.1. Protocol parameters

• MUDBPF (Maximum User Data Bytes Per Frame)

 This value represents the size of user data field in a USDT/SF using normal addressing
format. For CAN, MUDBPF = 7 (8 - PCI byte).

 The resulting size of user data in the various OSEK/COM frames is given in the
following table:

Type of frame normal addressing extended addressing

UUDT frame MUDBPF + 1 MUDBPF

SF MUDBPF MUDBPF - 1

FF MUDBPF - 1 MUDBPF - 2

CF MUDBPF MUDBPF - 1

• WFTmax (WaitFrameTransmissions max.)

 This parameter represents the maximum number of FC(Wait) accepted by the tester
before declaring the IUT blocked off.

• BSmax (Block Size max)

 This parameter represents the expected block size parameter transmitted by the IUT in a
FC frame after reception of the First Frame (FF) of a long message.

COM test procedure 1.0  by 26(. Page 17

Item Protocol parameter Status Support Value

Pp1 MUDBPF M _Yes

Pp2 WFTmax Uss|Usr:M _Yes _N/A
Pp3 BSmax Usr:M _Yes _N/A

Protocol timers on the sender side:
Ts1 TAs Uss:M _Yes _N/A
Ts2 TB1 Uss:M _Yes _N/A
Ts3 TB2 Uss:M _Yes _N/A
Ts4 TD2 Uss:M _Yes _N/A
Ts5 ST Uss:M _Yes _N/A

Protocol timers on the receiver side:
Tr1 TAr Usr:M _Yes _N/A
Tr2 TC Usr:M _Yes _N/A
Tr3 TE Usr:M _Yes _N/A

3.2.2.2. Message information

The test user shall provide general information on the user messages that will be used in the
test suite to check IUT conformance. Such data make up a message information table. Each
element of the table describes the characteristics of a given message and contains the
following items:

Name Message information

mesg_id Message identifier (Symbolic name identifier)
mesg_len Message length (max length if dynamic)
conf Configuration (dynamic/static)
nwprot Network protocol (uudt/usdt)
addr_md Addressing mode (normal/extended)
daddr Data link address
eaddr Extended address (if extended addressing)
endpt Logical address of remote end point (if dynamic)

In case of local transmission, only mesg_id and mesg_len must be specified.

In the test suites a message is always identified by an index to the message information table,
called from now on message handle. The first two handles are assigned to the messages
supporting the TMP, handle 0 for TMP reception by the UT and handle 1 for TMP
transmission.

The test user shall specify the messages handles to be used for checking each particular
functionnality of the IUT. If required, he has also to provide additional parameters needed to
test the functionnality. A given handle can be referenced as many times as necessary. TMP
message handles can also be referenced. They can be used to verify IUT conformance while
supporting the TMP at the same time.

Page 18  by 26(. COM test procedure 1.0

Item Message information Status Support Value

Handles for testing the COM protocols:
Ph1 − UUDT receiver M _Yes
Ph2 − UUDT sender M _Yes
Ph3 − USDT/SF receiver Uss:M _Yes _N/A
Ph4 − USDT/SF sender Usr:M _Yes _N/A
Ph5 − USDT receiver / FF + one CF Uss:M _Yes _N/A
Ph6 − USDT sender / FF + one CF Usr:M _Yes _N/A
Ph7 − USDT receiver / FF + at least 2 blocks Uss:M _Yes _N/A
Ph8 − USDT sender / FF+at least 3 CFs Usr:M _Yes _N/A
Ph9 − USDT receiver / maximum length Uss:M _Yes _N/A
Ph10 − USDT sender / maximum length Usr:M _Yes _N/A

Handles for testing send/receive static:
Sh1 − SendMessage without copy M _Yes
Sh2 − SendMessage with copy M _Yes
Sh3 − ReceiveMessage without copy M _Yes
Sh4 − ReceiveMessage with copy M _Yes
Sh5 − Send/Receive inter-task without copy M _Yes
Sh6 − Send/Receive inter-task with copy M _Yes

Data for testing periodic transmission::
Sp1a − Message handle Ptr:M _Yes _N/A
Sp1b − Transmission period Ptr:M _Yes _N/A

Data for testing mixed transmission (*):
Sp2a − Message handle Mtr:M _Yes _N/A
Sp2b − Transmission period Mtr:M _Yes _N/A
Sp2c − Relevant value (to be transmitted) Mtr:M _Yes _N/A
Sp2d − No relevant value (not transmitted) Mtr:M _Yes _N/A

Data for direct transmission deadline:
Sp3a − Message handle Dmd:M _Yes _N/A
Sp3b − Transmission deadline Dmd:M _Yes _N/A

Data for periodic transmission deadline:
Sp4a − Message handle Dmp:M _Yes _N/A
Sp4b − Transmission period Dmp:M _Yes _N/A
Sp4c − Transmission deadline Dmp:M _Yes _N/A

Data for mixed transmission deadline (*):
Sp5a − Message handle Dmm:M _Yes _N/A
Sp5b − Transmission period Dmm:M _Yes _N/A
Sp5c − Transmission deadline Dmm:M _Yes _N/A
Sp5d − Relevant value (to be transmitted) Dmm:M _Yes _N/A
Sp5e − No relevant value (not transmitted) Dmm:M _Yes _N/A

Data for reception deadline:
Sp6a − Message handle Dmr:M _Yes _N/A
Sp6b − First deadline Dmr:M _Yes _N/A
Sp6c − Other deadlines Dmr:M _Yes _N/A

(*) relevance/no relevance of message change is estimated from the initial value set in
MessageInit ().

COM test procedure 1.0  by 26(. Page 19

Item Message information Status Support Value

Handles for testing send/receive dynamic:
Sd1a − SendMessageTo without copy Dys:M _Yes _N/A
Sd2a − SendMessageTo with copy Dys:M _Yes _N/A
Sd3a − ReceiveMessageFrom without copy Dyr:M _Yes _N/A
Sd4a − ReceiveMessageFrom with copy Dyr:M _Yes _N/A

Additional information on Sd1 to Sd4:
Sd.b − logical address of 2nd remote end point
Sd.c − data link address of 2nd end point
Sd.d − extended address of 2nd end point (if

extended addressing mode)

Data for testing queued transfers
Sq1a − Handle for network reception Qum:M _Yes _N/A
Sq1b − Size of network message queue Qum:M _Yes _N/A
Sq2a − Handle for local transfer Qum:M _Yes _N/A
Sq2b − Size of local message queue Qum:M _Yes _N/A

3.2.2.3. API parameters

Item Service parameter Status Support Value

API return status:
Rs1 − E_OK M _Yes
Rs2 − E_COM_BUSY M _Yes
Rs3 − E_COM_ID Eid1/7:M _Yes _N/A
Rs4 − E_COM_LIMIT M _Yes
Rs5 − E_COM_NOMSG M _Yes
Rs6 − Error status returned by MessageInit() M _Yes

Miscelleanous:
Ap1 − Bad identifier (to test E_COM_ID) M _Yes

3.2.2.4. Network parameters

Network data associated with user messages are already supplied in the message information
table. The following table provides with additional information required to test the
OSEK/COM protocols.

Item Data bus parameter Status Support Value

Np1 bad address information M _Yes
Np2 bad extended address Am2:M _Yes _N/A

Page 20  by 26(. COM test procedure 1.0

3.2.2.5. Test suite parameters

• Test execution timers

 The following timers are defined to manage the test execution:

 Tresp: this timer is started when the LT is waiting for a PDU from the EUT. If it
expires, the test will conclude that no response is forthcoming.

 Twait: this timer is started when the LT must wait for a certain amount of time before
sending the next PDU. This can happen when the LT has to send two PDUs
consecutively and the IUT needs to terminate the first action before being able
or entitled to accept the second PDU. The latter is sent after Twait expiry.

 Tlat: to check protocol timer implementation, a time latency has to be defined
for IUT outputs triggered by timer expiry. For instance, to check an assertion
such as "a CF is transmitted after ST time-out", the LT will firstly verify that
nothing has been received within the ST period, then verify that a CF has been
received within the subsequent Tlat period.

 Tstart: this timer represents the time needed by the IUT to execute the StartCOM
function.

Item Test suite parameter Status Support Value

Test execution timers:
Tt1 − Tresp M _Yes
Tt2 − Twait M _Yes
Tt3 − Tlat M _Yes
Tt4 − Tstart M _Yes

COM test procedure 1.0  by 26(. Page 21

4. Test Management Protocol

4.1. Test scenarios

Figure 2 below describes the different communication scenarios between the UT and the LT.
To simplify, protocol messages that do not carry out TM_PDUs are called COM PDUs.

UT LTTransmit request

COM PDUs

UT LT

Reception message

Scenario 1 Scenario 2

UT LTCOM PDUs

Indication

Scenario 4

UT LTConfiguration
message

Scenario 5

COM PDUs

UT LTService request

API result

Scenario 3

Error
simulator

LTError
configuration

Scenario 6

Figure 3 Test scenarios

Scenarios 1 and 2 are used to test the OSEK/COM protocol:

• Scenario 1 allows to test the data sending protocol. On 7UDQVPLW�UHTXHVW reception, the
UT issues a SendMessage(To) and the LT analyses the COM PDUs generated by the
IUT.

• Scenario 2 allows to test the data receiving protocol. The LT generates the necessary
COM PDUs leading to a message reception at the COM API. On reception, the UT
sends back a 5HFHSWLRQ�PHVVDJH to the LT.

Scenario 3 is used to request the UT to call a service of the COM API. The 6HUYLFH�UHTXHVW
message conveys a service identifier and the associated parameters. The UT then returns the
results of the service execution in the $3,�VWDWXV�message, i.e. the API status and if any, the
API’s output parameters.

Page 22  by 26(. COM test procedure 1.0

In Scenario 4, the LT sends out (or not) COM PDUs causing an indication from the IUT to the
UT (task activation or event signalling). The indication is returned to the LT in the ,QGLFDWLRQ
PHVVDJH� It may inform the LT of internal events such as end of message transmission, end of
reception or deadline expiration.

Scenario 5 aims at configuring the UT behaviour. The &RQILJXUDWLRQ�PHVVDJH specifies which
of the possible COM indications shall be returned to the LT and for which message.

Scenario 6 aims at configuring the network interface behaviour. The &RQILJXUDWLRQ�PHVVDJH
specifies whether or not the network perturbations shall be simulated.

4.2. Data Types

The test management protocol makes use of the following data types of the COM
specification:

'DWD�7\SHV 5HPDUN
StatusType Type of returned status information after a service call
SymbolicName Unique name identifying a message object
DataLength Data length of the application message to send/receive
AddressType Logical reference of a remote communication peers

Table 1 Reused data types of COM specification

Data types specific to the test management protocol are defined hereafter.

The first octet of TMP messages describes the nature of the COM service to execute. It is
coded as follows:

Format 1:

MsgType MsgDir TMPDUName

Format 2:

MsgType MsgDir 0 0Data1TypeConfBit

Figure 4 First octet of TMP messages

Name: 0VJ7\SH�(formats 1 and 2)

Description: This data type helps to determine the nature of received bus frames in the
LT. The first octet of user data in bus frames can be either the first data of
the user message (UUDT protocol) or the PCI byte of USDT frames. The
two bits coded in MsgType allow to determine whether the frame is a
UUDT one or a USDT one. As PCI values only occupy the two LSBs of the
higher nibble, non-zero values of MsgType can be used to specify the type
of message.

Values: "usdtPCI" (’00’B): always ’00’ in USDT PCI bytes
"form1" (’01’B): TMP message , format 1

COM test procedure 1.0  by 26(. Page 23

"form2" (’10’B): TMP message , format 2
"dataFrm" (’11’B): application data, do not interpret

Name: 0VJ'LU�(formats 1 and 2)

Description: This data type defines the direction of the message.

"toIUT" (’0’B): message from LT to IUT/UT
"fromIUT" (’1’B): message from UT/IUT to LT.

Name: &RQI%LW�(format 2)

Description: This data type defines the user’s message configuration.

"stBit" ('0'B): static message
"dynBit" ('1'B): dynamic message.

Name: 'DWD�7\SH�(format 2)

Description: This data type defines the format for user data encoding (see 4.6).

"encode0" ('00'B): encoding format 1
"encode1" ('01'B): encoding format 2
"encode2" ('10'B): encoding format 3
"badData" ('11'B): bad data, do not match any encoding format

Name: 703'81DPH�(format 1)

Description: This data type defines the type of TMP message. Messages regarding the
COM API can be either a "request to call" when going from LT to UT or the
"result of the API call" when going from UT to LT.

Values: "startCOM" ('00000'B): call to/result of StartCOM
"sendMsg" ('00001'B): call to/result of SendMessage
"sendTo" ('00010'B): call to/result of SendMessageTo
"rcvMsg" ('00011'B): call to/result of ReceiveMessage
"rcvFrom" ('00100'B): call to/result of ReceiveMessageFrom
"getRes" ('00101'B): call to/result of GetMessageResource
"relRes" ('00110'B): call to/result of ReleaseMessageResource
"getStat" ('00111'B): call to/result of GetMessageStatus
"UTEvent" ('01000'B): report from UT task activation or event setting
"configUT" ('01001'B): configuration of UT's behaviour
"setError" ('01111'B): configuration of network interface's behaviour

The other data types implemented in TM_PDUs are as follows:

Name: 0HVJ,G7\SH

Description: This data type defines an identifier for the message to be transmitted or
received. It may or not be equal to the message handle. In UT application, it
has to be associated with the "symbolic name" defined in the COM/API
specification.

Page 24  by 26(. COM test procedure 1.0

Name: 0L[HG9DO7\SH

Description: This data type defines the type of user message used to test the mixed
transmission mode.

Name: 6WDWXV0RGH7\SH

Description: This data type defines how the API return code must be handled by the UT.

Values: "never": the return code is never returned to the LT,
"always": the return code is always returned to the LT,
"ifError": the return code is returned if different from E_OK,

Name: $FWLRQ7\SH

Description: This data type specifies a mask defining what information collected at the
COM API must be reported to the LT. It also defines special actions to be
performed by the UT.

Values: This data type includes one bit for each possible action:
One bit: (do not) report from end of message transmission or reception,
One bit: (do not) report from deadline expiration,
One bit: inhibit/activate reception of a queued message,
One bit: (do not) call the next COM function at ISR level,
One bit: (do not) call the next COM function from ErrorHook routine.

Name: (YHQW,G7\SH

Description: This data type defines a mask defining what information collected at the
COM API is being reported to the LT.

Values: This data type includes one bit for each possible information:
One bit reporting from end of message transmission or reception,
One bit reporting from deadline expiration.

Name: 1HW(UURU7\SH

Description: This data type specifies the network errors to be simulated.

Values: "noNetError": no error simulation,
"noTransmission": simulation of no transmission (e.g. no frame

acknowledgement at the data bus)

COM test procedure 1.0  by 26(. Page 25

4.3. TMP messages from LT to UT

TMP messages are transmitted from LT to UT to request the UT to either:

• execute a service of the COM API,

• or configure UT’s behaviour.

Message Name: &DOO60

Scenario: 1 - Transmit request

Parameters: MsgType <msg_typ>; // "form2"
MsgDir <dir>; // "toIUT"
ConfBit <conf>; // "stBit" or "dynBit"
Data1Type <encode>;
MesgIdType <message>;
DataLength <dlength>; // OPTIONAL
AddressType <recipient>; // OPTIONAL
MixedValType <mixedval>; // OPTIONAL

Purpose: This message requests the UT to execute either "status =
SendMessage(message, access)" if "conf" = stBit (static), or
"status = SendMessageTo(message, access, recipient, dlength)" if
"conf" = dynBit (dynamic).

"message" identifies the message to be transmitted.

"access" is the reference of the user data buffer. The parameter is
not transmitted. It must be known locally by the UT.

"dlength" (dynamic message) is the length of message data in
octets.

"recipient" (dynamic message) is the logical address of the
message recipient. The parameter is not transmitted. It must be
defined before UT and LT implementation.

Message data shall be initialised by the UT before transmission
according to the format defined by "encode" (see § 4.6), except in
case of mixed transmission mode. In that case the message value
is supplied by the mixedval parameter. Note that presence of
dlength/recipient and mixvalue in the TM_PDU structure are
exclusive options.

The status returned by SendMessage(To) must be saved. It can
be requested later by the LT with a CallAPI message. Only the
last status must be kept.

Message Name: &DOO6WDUW

Scenario: 3 - Service request

Parameters: MsgType <msg_typ>; // "form1"
MsgDir <dir>; // "toIUT"
TMPDUName <name>; // "startCOM"
StatusModeType <statusMode>;
StatusType <status>;

Page 26  by 26(. COM test procedure 1.0

Purpose: This message requests the UT to execute "status = StartCOM()".
Parameter status of the message represents the status code
which must be returned by the MessageInit function.

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO$3,

Scenario: 3 - Service request

Parameters: MsgType <msg_typ>; // "form1"
MsgDir <dir>; // "toIUT"
TMPDUName <name>;
MesgIdType <message>;
StatusModeType <statusMode>;

Purpose: This message can be used

1. to request the UT to execute a service of the COM API, except
StartCOM, SendMessage and SendmessageTo.

2. to get the status returned by the last call to SendMessage or
SendmessageTo

In the latter case, the parameter "name" is set to " sendMsg" or
"sendTo". The UT will send back by the status using the
APIStatus message. It does not need to test the "message" or
"status" parameter. The last status must be sent anyway.

In the first case, the service is defined by the parameter "name"
as follows:

"name" API call

rcvMsg status = ReceiveMessage(message, access)

rcvFrom status = ReceiveMessageFrom(message, access,
sender, dlength)

getRes status = GetMessageResource(message)

relRes status = ReleaseMessageResource(message)

getStat status = GetMessageStatus(message)

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done using either:

• the RMStatus message after a call to ReceiveMessage or
ReceiveMessageFrom, or

• the APIStatus message after a call to GetMessageResource,
ReleaseMessageResource or GetMessageStatus.

COM test procedure 1.0  by 26(. Page 27

Message Name: &DOO&RQILJ87

Scenario: 5 - Configuration message

Parameters: MsgType <msg_typ>; // "form1"
MsgDir <dir>; // "toIUT"
TMPDUName <name>;
MesgIdType <message>;
ActionType <action>;

Purpose: This message allows to configure UT’s behaviour according to the
value of parameter "action".

1. If information "report from message transmission/reception" or "
report from deadline expiration" is set, the UT shall transmit a
UTEvent message whenever the task or event associated to
the given "message" is activated/set.

 Default: end of transmission/reception and deadline expiration
are not reported.

2. If information "inhibit message reception" is set, the UT shall
not call ReceiveMessage or ReceiveMessageFrom when the
given "message" is received.

 Default: ReceiveMessage or ReceiveMessageFrom must be
called whenever a message reception is detected. The result is
sent using the RMStatus message.

3. If information "call at ISR level" or "call from ErrorHook routine"
is set, the next API calls must be issued at ISR level or from an
ErrorHook routine respectively. The "message" parameter is
meaningless.

 Default: all API calls are issued at the task level from a user
application routine.

Note for implementation of items 1 and 2: only one message can
be assigned a non default value. The UT need not hold an
"action" parameter for each message. It has only to know which
message is configured with a non default value.

4.4. TMP messages from UT to LT

TMP messages are transmitted from UT to LT to inform the UT of the result of a service call
or of a COM indication.

Message Name: 506WDWXV

Scenario: 2 - Reception message
3 - Service request

Parameters: MsgType <msg_typ>; // "form2"
MsgDir <dir>; // "fromIUT"
ConfBit <conf>; // "stBit" or "dynBit"
Data1Type <encode>;
MesgIdType <message>;

Page 28  by 26(. COM test procedure 1.0

StatusType <status>;
DataLength <dlength>; // OPTIONAL
AddressType <sender>; // OPTIONAL

Purpose: This message provides the LT with the status returned by the
ReceiveMessage or ReceiveMessageFrom function. A call to
either function can be triggered either explicitly or implicitly:

1. The UT shall execute the receive function when requested
explicitly by the CallAPI message with parameter name set to
"rcvMsg" or "rcvFrom".

2. The UT shall execute the receive function whenever a new
message is received by the Interaction Layer, provided
reception is not inhibited by a previous CallConfigUT regarding
this particular message.

After calling ReceiveMessage or ReceiveMessageTo, the UT shall
determine the encoding format of message data and verify data
values according to the rules specified in § 4.6

RMStatus parameters are as follows:

"encode" represents the encoding format of the received data. It
shall be set to "badData" if wrong values have been detected in
the sequence of data.

"message" is the message identifier (linked to first parameter of
ReceiveMessage/ ReceiveMessageFrom).

"status" is the status returned by ReceiveMessage/
ReceiveMessageFrom.

"sender" (dynamic message) is the logical address of the
message sender (same as sender parameter of
ReceiveMessageFrom).

"dlength" (dynamic message) is the length of message data in
octets (same as last parameter of ReceiveMessageFrom).

Message Name: $3,6WDWXV

Scenario: 3 - API result

Parameters: MsgType <msg_typ>; // "form1"
MsgDir <dir>; // "fromIUT"
TMPDUName <name>;
StatusType <status>;

Purpose: This message provides the LT with the status returned by the
COM/API service executed on reception of CallStartCOM or
CallAPI. Parameter "name" defines the name of the service and
can take one of the values "sendMsg", "sendTo", "startCOM",
"getRes", "relRes" or "getStat".

COM test procedure 1.0  by 26(. Page 29

Message Name: 87(YHQW

Scenario: 4 - Indication

Parameters: MsgType <msg_typ>; // "form1"
MsgDir <dir>; // "fromIUT"
TMPDUName <name>; // "UTEvent"
MesgIdType <message>;
EventIdType <eventId>;

Purpose: This message informs the LT that an event reception or task
activation from the COM module has just occurred. The type of
indication is defined by "eventId" and the concerned message by
"message".

This indication must be sent only when expressly authorised by
the previous CallConfigUT message.

4.5. TMP messages from LT to Network Interface

TMP messages are transmitted from LT to Network Interface to configure the network error
simulation.

Message Name: &DOO6HW(UURU

Scenario: 6 - Error configuration

Parameters: MsgType <msg_typ>; // "form1"
MsgDir <dir>; // "toIUT"
TMPDUName <name>; // "UTEvent"
NetErrorType <netError>;

Purpose: This message defines whether transmission errors shall be
simulated or not. This information is supplied by the netError
parameter.

Default: no error simulation.

If simulation of no message transmission is requested, the
network interface shall behave so that a transmission error is
returned to the COM after each transmission attempt until error
simulation is stopped by another CallConfigError message with a
different netError value.

Page 30  by 26(. COM test procedure 1.0

4.6. Encoding rules for user data

The conformance tester shall verify the validity of user data transferred from message buffers
to the network or from the network to message buffers. Simple rules have been defined to
encode user data bytes with different values. These rules shall be applied by both the LT and
the UT to generate and verify message data.

The format of data bytes consists of a fixed part (3 MSBs) and a variable part (5 LSBs)

(dataFrm)
 1 1 0

variable part

Figure 5 Encoding of user data bytes

The variable part of consecutive data bytes is incremented modulo 32.

First value = (Message identifier + Encode flag) modulo 32, where "Encode flag" is set to 0, 1
or 2 according to the following rules:

• Transmission by LT in UUDT frames and USDT/SF or FF:

 Encode flag is incremented modulo 3 whenever a new message is transmitted.

 In case of segmented data, the rule of modulo 32 incrementation of "variable part"
applies to consecutive data segments transmitted in successive data frames.

• Transmission by UT after CallSM reception:

Encode flag is supplied by the LT in the HQFRGH�parameter of CallSM. This parameter�is
incremented modulo 3 whenever a new CallSM is issued.

Remarks:

• Encode flag incrementation is performed globally for messages transmitted via CallSM
or via UUDT/USDT frames. The first value generated in test suite execution is 0.

• These rules do not apply to messages configured for mixed transmission. Data of such
messages are relevant to the Interaction Layer and special values have to be transmitted.

COM test procedure 1.0  by 26(. Page 1

Attachment 1: OSEK/COM test suite

The COM test suite is specified in TTCN language [7].

The test cases are derived from the test purposes of document [2]. But the sequence of test
cases and of test purposes are organised differently. The test purposes are listed according to
the order of chapters and sections in the COM specification. On the contrary, the test cases are
grouped in directories representing the main options of an implementation. Inside each
directory, they are sequenced in a logical order to allow a progressive test of the associated
functionnality.

The test case directories are defined in the table below:

'LUHFWRU\ 7HVW�2EMHFWLYHV
UUDTs UUDT sending protocol
UUDTr UUDT reception protocol
USDTs USDT sending protocol
USDTr USDT reception protocol
CCC0 CCC0 services of the OSEK/COM API
CCC1 CCC1 services of the OSEK/COM API
CCC2 CCC2 services of the OSEK/COM API
CCC3 CCC3 services of the OSEK/COM API

To facilitate cross-reference with the test plan, naming conventions have been defined. Test
case names are derived from the location of the corresponding assertion in the test plan.
Names consist of:

• a radix identifying the table of test assertion,

• the reference number of the assertion in the table. If the test case is linked to several
assertions, the respective numbers are separated by "_". If several tests stem from the
same assertion, the number is followed by a letter A, B, C...

Example: UUP1_2A is the first test case (final letter A) covering assertions Nr 1 and 2 of the
table "UUDT protocol".

Page 2  by 26(. COM test procedure 1.0

The correspondence between the test case names and the test plan is given in the following
table:

7HVW�SODQ�VHFWLRQ 7HVW�FDVH�QDPH
Interaction Layer services / network communication SRV...
Interaction Layer services / local (inter-task) communication LSRV...
Interaction Layer API / network communication API...
Interaction Layer API / local (inter-task) communication LAPI...
UUDT protocol UUP...
UUDT sending state machine UUS...
UUDT receiving state machine UUR...
USDT sending state machine USS...
USDT receiving state machine USR...

Table 2 Test case names

Test purposes which are covered by many other test cases are not referenced in the test suite.
For example, assertion "The OSEK COM supports communication within ECUs" is covered
by all the tests dealing with local communication.

