
Open Systems and the Corresponding Interfaces

for Automotive Electronics

The OSEK group retains the right to make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in writing

from the OSEK/VDX steering committee.

OS Test Plan 1.0  by OSEK Document: os_testplan10.doc

OSEK/VDX

OS Test Plan

Version 1.0

March 11th, 1998

Page 2  by OSEK OS Test Plan 1.0

What is OSEK/VDX?
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an open-
ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and network
management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means „Vehicle Distributed eXecutive“. The functionality of OSEK operating system
was harmonized with VDX. For simplicity OSEK will be used instead of OSEK/VDX in this
document.

OSEK partners:
Adam Opel AG, BMW AG, Daimler-Benz AG, IIIT University of Karlsruhe, Mercedes-Benz AG,
Robert Bosch GmbH, Siemens AG, Volkswagen AG., GIE.RE. PSA-Renault.

Motivation:
• High, recurring expenses in the development and variant management of non-application

related aspects of control unit software.
• Incompatibility of control units made by different manufacturers due to different interfaces and

protocols.

Goal:
Support of the portability and reusability of the application software by:
• Specification of interfaces which are abstract and as application-independent as possible, in the

following areas: real-time operating system, communication and network management.
• Specification of a user interface independent of hardware and network.
• Efficient design of architecture: The functionality shall be configurable and scaleable, to enable

optimal adjustment of the architecture to the application in question.
• Verification of functionality and implementation of prototypes in selected pilot projects.

Advantages:
• Clear savings in costs and development time.
• Enhanced quality of the control units software of various companies.
• Standardized interfacing features for control units with different architectural designs.
• Sequenced utilization of the intelligence (existing resources) distributed in the vehicle, to

enhance the performance of the overall system without requiring additional hardware.
• Provides absolute independence with regards to individual implementation, as the specification

does not prescribe implementational aspects.

OS Test Plan 1.0  by OSEK Page 3

OSEK conformance testing
OSEK conformance testing aims at checking conformance of products to OSEK specifications. Test
suites are thus specified for implementations of OSEK operating system, communication and
network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored by
the Commission of European Communities. The term MODISTARC means ”Methods and tools for
the validation of OSEK/VDX based DISTributed ARChitectures”.

This document has been drafted by the MODISTARC members of the OS-Workgroup:

Bernd Büchs Adam Opel AG

Wolfgang Kremer BMW AG

Stefan Schmerler FZI

Franz Adis FZI

Yves Sorel INRIA

Robert France Motorola

Barbara Ziker Motorola

Jean-Emmanuel Hanne Peugeot Citroën S.A.

Eric Brodin Sagem SA

Gerhard Goeser Siemens Automotive SA

Patrick Palmieri Siemens Automotive SA

Page 4  by OSEK OS Test Plan 1.0

Table of Contents

1 Introduction ... 5

2 Test suite structure ... 6

2.1 Description.. 6

2.2 Test purposes structure.. 6

3 Test purposes ... 8

3.1 Implementation specific parameters ... 8

3.2 Task management .. 9

3.3 Interrupt processing..10

3.4 Event mechanism..11

3.5 Resource management ..11

3.6 Alarms..12

3.7 Error handling, hook routines and OS execution control ...12

4 Appendix I ..14

5 Abbreviations ..15

6 References ..16

OS Test Plan 1.0  by OSEK Page 5

1 Introduction
This document contains the test plan for the conformance test of the operating system. It is therefore
the basis for the definition of the test cases, which are used to certify conformance of an OS
implementation.

According to the Conformance Testing Methodology [1], definition of the conformance test is a
two-stage process. In the first stage, the OS specification is analysed and the test purposes are
extracted from it. The assembly of the test purposes makes up the test plan. In the second stage test
cases are defined, which specify the sequence of the interactions between the test application and the
implementation to verify one or more test purposes. The assembly of the test cases makes up the test
suite. Together with all information needed to implement and execute the conformance tests make up
the test procedure.

According to the different functionalities of the operating system (task management, resource
management, ...) it is reasonable to structure and group the test purposes. This structure is explained
in chapter 2.

Page 6  by OSEK OS Test Plan 1.0

2 Test suite structure

2.1 Description

As agreed in the Conformance Testing Methodology [1] the implementation to be tested is seen as a
black box whose external interfaces – the OS API – are accessible only. Implementation-specific
details will not be taken into account and only that parts of the specification which are accessible and
observable by the operating system's service routines, can be tested for conformance. Therefore,
executing the conformance test means that a test application is generated and executed together with
the implementation to be tested. The actions and verifications this application has to perform are
defined by a test suite. The definition of the conformance test suite is done in two steps:

• definition of the test purposes,

• definition of the test cases.

The test purposes are developed by analysing the specification and extracting checkable assertions.
The assertions determine what can and what must be tested. Testable assertions are, on the one hand
observable actions (task switches, interrupts, etc.) performed by the operating system, on the other
hand the correctness of the return status of OS services. Thus, during the conformance test each OS
service routine has to be called at least once for each specified return status.

In order to define the test cases it is necessary to further refine the assertions developed before.
Refinement means that it is necessary to analyse the assertions and detect all situations and states of
the system which may have an influence on the behaviour of a special assertion. This task will be
done by means of the classification-tree method which provides a systematic way for generating test
cases. A classification tree describes a complete decomposition of all possible situations and states of
the system. On this basis, test sequences have to be evolved which execute and verify these test
cases.

To apply the conformance tests on an OS implementation several adjustments will be necessary.
Parameters for the conformance test are, among others, the maximum number of tasks, the maximum
number of priorities, etc. Furthermore, special routines are required for system dependant functions
like logging of variable values, trigger interrupts by software, etc. This extensions may be made
available by the vendor of the operating system in form of a library, or they have to be created during
the test integration.

This document describes the test purposes and assertions which are derived from the specification of
the operating system. First, the structure of the assertions will be shown. This includes the grouping
of assertions according to the OS's service groups as well as determining to which variants of the
operating system they rely on. In the second part the assertions themselves will be presented.

2.2 Test purposes structure

It is reasonable to group the assertions derived from the specification according to the service groups
and functionalities of the operating system. They will be classified according to the following service
groups:

• Task management,

• Interrupt processing,

OS Test Plan 1.0  by OSEK Page 7

• Event mechanism,

• Resource management,

• Alarms,

• Error handling, hook routines and OS execution control (including start-up/shutdown of OS).

To deal with various requirements of the application software for the system and various capabilities
of a specific system (e.g. processor, memory) the OSEK OS offers the possibility to generate several
variants of a system. The variants apply to the following categories:

• Conformance class:

− BCC1 (only basic tasks, limited to one request per task and one task per priority, while all
tasks have different priorities)

− BCC2 (like BCC1, plus more than one task per priority possible and multiple requesting of
task activation allowed)

− ECC1 (like BCC1, plus extended tasks)

− ECC2 (like BCC2, plus extended tasks without multiple requesting admissible)

• Scheduling policy:

− non-preemptive

− mixed-preemptive

− full-preemptive

• Return status:

− standard (return values of system services provided in the standard version)

− extended (return values of system services provided in the extended version for debugging
purposes)

For each assertion has to be checked for which variants it is relevant, because some assertions are
not checkable under certain circumstances. E.g. the assertions about the event mechanism are not
relevant for the conformance classes BCC1 and BCC2, as they don't support events.

Page 8  by OSEK OS Test Plan 1.0

3 Test purposes
This chapter describes the test purposes relevant to the functionality and behaviour of the operating
system. They were established by reading the specification and extracting checkable assertions. The
assertions were analysed to remove redundancies. These assertions build the basis on which the test
cases and the test suite are developed. Therefore, it is necessary to further refine these assertions.
According to the Conformance Testing Methodology [1] this refinement will be done by means of
the classification-tree method. This method was developed at Daimler-Benz AG and is supported by
the commercial tool CTE by ATS Automated Testing Solution GmbH [6]. The resulting test cases
and the sequences used to evaluate them will be described in the test procedure.

As mentioned in the previous chapter, the assertions are grouped according to several aspects of the
operating system. Each of the following chapters represents one group of test purposes. The test
purposes are listed in a table which contains for each assertion:

• a sequence number used as a reference for test suite traceability,

• the description of the test purpose extracted from the specification,

• the variants of the specification to which the purpose applies,

• a reference to the paragraph in the specification allowing traceability to be provided against the
specification.

3.1 Implementation specific parameters

In accordance with the specification 2.0 of the OSEK operating system, the vendor has to provide a
list of parameters specifying the implementation. This list gives detailed information concerning the
functionality, performance and memory demand, as well as the basic conditions to reproduce the
measurement of those parameters.

In order to test the conformance of a specific implementation to the OSEK OS specification, one has
to ensure that the list with implementation-specific parameters provided by the vendor exists, and
contains all prescribed parameters. It is important to point out that the conformance test neither
includes a test for the correctness of these parameters, nor does it specify any limit for hardware
requirements or performance figures that must be kept. To achieve conformance it is sufficient for
the operating system vendor to provide a list of parameters specifying the implementation's
behaviour. To allow their verifications, this list must include a sufficient description of the methods
used to collect the presented informations.

This chapter refers to those parameters which describe basic functionalities of the OS
implementation. Therefore, they are needed in order to build and execute the test applications. It is
reasonable to provide additional parameters, like required hardware resources and performance
issues. They are listed in appendix I which may be changed in the future. Indeed it is not obvious,
from today's point, which parameters are relevant for customers to evaluate an OS implementation.

The following table lists each parameter which must be contained in the list of parameters as one
assertion.

OS Test Plan 1.0  by OSEK Page 9

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Maximum number of tasks 63 12.2.1 All
2 Maximum number of active tasks (running/ ready/

waiting) (≥8 for BCC1/BCC2, ≥16 for ECC1/ECC2)
63 12.2.1 All

3 Maximum number of priorities (≥8) 63 12.2.1 All
4 Number of tasks per priority (>1) 63 12.2.1 BCC2, ECC2
5 Upper limit for number of task activations 63 12.2.1 BCC2, ECC2
6 Maximum number of events per task (≥8) 63 12.2.1 ECC1, ECC2
7 Limits for the number of alarm objects (per system/ per

task)
63 12.2.1 All

8 Limits for the number of nested resources (per system/
per task)

63 12.2.1 All

9 Lowest priority level used internally by the OS 63 12.2.1 All
10 Timer units reserved for the OS 63 12.2.2 All
11 Interrupts, traps and other hardware resources occupied

by the OS
63 12.2.2 All

3.2 Task management

Task management concerns the activation and scheduling of tasks. The behaviour of the scheduler
depends on the conformance class and the scheduling policy.

Several attributes are assigned to each task:

• task type: basic, extended

• priority

• scheduling type: full-, non-preemptive

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Interrupts and OS have higher priority than tasks. 14 3.1 All
2 OS has to provide at least 8 levels of task priorities. 63 12.2 All
4 States for EXTENDED tasks are: running, ready,

suspended, waiting.
EXTENDED tasks release the processor, if
• they terminate
• they are preemptive and OS is executing a higher

priority task
• an Interrupt is executed
• they go to waiting state
• a transition from running to waiting state occurs, if the

task waits for an event.

17 4.2.1 ECC1, ECC2

5 Tasks in ready state wait for allocation of the processor.
When no task with higher priority is in ready or running
state, this task is put to running state, if no interrupt is
processed.

17 4.2.1 All

Page 10  by OSEK OS Test Plan 1.0

No. Assertion Page Paragraph
in spec.

Affected
variants

6 A task in suspended state is not active. Task activation
puts it to ready state.

17 4.2.1 All

7 A task in waiting state waits at least for one event. With
the occurrence the task is set to ready state.

17 4.2.1 ECC1, ECC2

8 Pre-empted task is treated as the first task in the ready list
of its priority.

17 4.2.1 All

9 States for BASIC tasks are: running, ready, suspended.
BASIC tasks release the processor, if
• they terminate
• they are preemtive and OS is executing a higher

priority task
• an Interrupt is executed

18 4.2.2 All

10 The OS ensures that after a task has been activated its
execution will start with the task's first instruction.

20 4.3 All

11 Multiple activation is supported in BCC2/ECC2 for basic
tasks, a task attribute limits the number of multiple
activation.

20 4.3 BCC2, ECC2

12 Multiple task activations are stored in a FIFO structure in
order to preserve activation order

20 4.3 BCC2, ECC2

13 Bigger Numbers refer to higher priorities. (0 is lowest) 20 4.5 All
14 In BCC2 and ECC2 tasks with same priority are possible.

Processing of the tasks with same priority depends on
their order of activation.

20 4.5 BCC2, ECC2

15 A task being released from waiting state is treated like the
newest task in the ready queue of its priority.

21 4.5 ECC2

16 Points of rescheduling (possible task switch) with non-
preemptive scheduling:
• A task terminates itself via TerminateTask or

ChainTask
• An explicit call of the scheduler (Schedule)
• The task waits for an event

21 4.6.1 Non-preemptive

17 Within full-preemptive scheduling a task switch occurs,
whenever a task with higher priority is set to ready state.

22 4.6.2 Full-preemptive

18 Scheduling policies can be mixed. A task can be defined
non-preemptive in a mixed-preemptive OS, i.e. no
preemption can occur as long as this non-preemptive task
is running.

23 4.6.3 Mixed-
preemptive

3.3 Interrupt processing

The OSEK OS provides several services to handle interrupts. They can be used to enable and disable
interrupts and to allow the use of OS services within an interrupt service routine. But the handling of
interrupts is very hardware specific.

This concerns in particular interrupts of category 1, as no ISR-frame is prepared for the operating
system. Therefore, it is not allowed to call any OS service, which prevents observation of the
behaviour of the interrupt service routine.

OS Test Plan 1.0  by OSEK Page 11

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Interrupts of category 2: Calls to OS services are
restricted. Calling a forbidden OS service produces the
error E_OS_CALLEVEL.

26 5 Extended error
status

2 Interrupts of category 3: Calls to OS services are
restricted. They are allowed if enclosed within a
Enter/LeaveISR frame. Within this frame calling a
forbidden OS service produces the error
E_OS_CALLEVEL, outside this frame the behaviour is
not defined.

26 5 Extended error
status

3.4 Event mechanism

The event mechanism is a means of synchronisation. It is provided for extended tasks only. Events
are objects managed by the operating system. Each event is assigned to an extended task. Various
system services are provided to manipulate events.

Events are supported in the extended conformance classes (ECC1, ECC2) only.

No. Assertion Page Paragraph
in spec.

Affected
variants

1 An event is assigned to an extended task. 28 6 ECC1, ECC2
2 One task can own at least 8 events. This is the minimum

value for the parameter „Number of events per task“
63 12.2 ECC1, ECC2

3 When at least one event a task is waiting for occurs, this
task is set to ready state.

28 6 ECC1, ECC2

4 An event can only be cleared by its owner by calling
ClearEvent.

28 6 ECC1, ECC2

5 When activating an extended task by calling ActivateTask,
its events are cleared by the OS.

28 6 ECC1, ECC2

6 Any task can set events. 28 6 ECC1, ECC2
7 If an extended task tries to wait for an event, which has

already occurred at least once, it remains in running state.
28 6 ECC1, ECC2

3.5 Resource management

The resource management is used to co-ordinate concurrent accesses of several tasks to shared
resources. It has to ensure that two tasks cannot occupy the same resource at the same time and that
priority inversion or deadlocks cannot occur. The specification implies to use the priority ceiling
protocol even when it is not mandatory. However, the behaviour of the system must be identical to
the priority ceiling protocol whether the implementation uses it or not.

Page 12  by OSEK OS Test Plan 1.0

No. Assertion Page Paragraph
in spec.

Affected
variants

1 A task cannot terminate or switch to waiting state, while
it occupies a resource. This can only be checked if OS
supports extended error states, otherwise the behaviour is
undefined.

30 7.2 Extended error
status

2 The scheduler is treated like a resource which is
accessible to all tasks. A standard resource with a defined
name (constant RES_SCHEDULER) is generated. It can
be occupied to prevent interruptions by other tasks.

30 7.3 All

3 OS ensures (e.g. by priority ceiling protocol) that tasks
are only transferred from the ready state to the running
state, if all resources, the task might need, are released.

30 7.1 All

4 After a task has occupied a resource any other task which
might occupy the same resource does not enter the
running state, even if its priority is higher than the
priority of the task occupying this resource. This
behaviour is equivalent to the priority ceiling protocol.

32 7.5 All

3.6 Alarms

Expiration of alarms is determined on the basis of counters. As there exists no API for counters their
functionality cannot be tested. The same holds true for non-variant alarms.

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Alarm will expire when a predefined counter value is
reached

33 8.2 All

2 Alarms are statically assigned to
• One counter
• One task
• A notation, if that task is to be activated or an event is

to be set (only in ECC1, ECC2)

33 8.2 All

ECC1, ECC2

3 Alarms can be manipulated by the user. 34 8.2 All
4 Absolute and relative alarms are supported, both may be

set to cyclic or single alarms.
34 8.2 All

5 The OS provides at least one counter which is derived
from a timer. User can assume existence of this counter.

34 8.2 All

3.7 Error handling, hook routines and OS execution control

The OSEK operating systems provides hook routines which allow user-defined actions within the OS
internal processing, e.g. at task switches. The interface of hook routines is implementation dependant
except the first parameter which is fixed.

Error handling of the OSEK operating system is limited to a status information returned by the
system services. If fatal errors occur a centralised system shutdown is called. But, as the conditions
for this shutdown are implementation dependant, this is not testable.

OS Test Plan 1.0  by OSEK Page 13

No. Assertion Page Paragraph
in spec.

Affected
variants

1 The first parameter of hook routines is fixed, additional
parameters are optional and implementation specific.

35 9.1 All

2 Hook routines are a part of the OS, but user-defined.
Therefore they are higher prior than all tasks and thus
can’t be preempted.

35 9.1 All

3 Hook routines are only allowed to use a subset of OS
services. It can not be checked if a OS service is called
which is not part of this subset.

35 9.1 All

4 Every OS call returns the status code. If the OS could not
execute the requested service correctly, status code is not
equal E_OK.

37 9.2.1 All

5 The operating system starts with a call to StartOS with
the application mode as a parameter.

38 9.3 All

6 After the OS is initialised (scheduler not running), it calls
the StartupHook before starting the first user task.

38 9.3 All

7 During execution of StartupHook, all user interrupts are
disabled.

38 9.3 All

8 After StartupHook, the interrupt mask is set according to
INITIAL_INTERRUPT_DESCRIPTOR.

38 9.3 All

9 When ShutdownOS is called with a defined error code,
the OS will shutdown and call the hook routine
ShutdownHook.

60 11.7 All

10 PostTaskHook is called after executing the current task,
but before leaving the task's running state.

60 11.7 All

11 PreTaskHook is called before executing the new task, but
after the transition of the task to the running state.

60 11.7 All

12 ErrorHook is called if a system call returns a value not
equal to E_OK.

60 11.7 All

13 Naming convention for status information:
• all errors of API services start with E_
• errors of OS start with E_OS_
• internal errors of OS (implementation specific) start

with E_OS_SYS_

43 11.1 All

14 Values of the status information API services offer:
• E_OK = 0
• E_OS_ACCESS = 1
• E_OS_CALLEVEL = 2
• E_OS_ID = 3
• E_OS_LIMIT = 4
• E_OS_NOFUNC = 5
• E_OS_RESOURCE = 6
• E_OS_STATE = 7
• E_OS_VALUE = 8

43 11.1 All

15 The application mode that is passed to the StartOS
function can be detected by the
GetActiveApplicationMode function.

59 11.6 All

Page 14  by OSEK OS Test Plan 1.0

4 Appendix I
This appendix list implementation specific parameters which are proposed by the specification to be
provided by the vendor. Anyway, as they are too dependant on the environment and the applications
running on the system, to be useful to customers, it doesn't seem to be reasonable to determine them.
Thus, the MODISTARC OS group decided not to use them as criteria for compliance and therefore
put them into this appendix.

No. Assertion Page Paragraph
in spec.

Affected
variants

1 RAM and ROM requirement for each of the OS
components

63 12.2.2 All

2 Size for each linkable module 63 12.2.2 All
3 Application dependant RAM and ROM requirements for

OS data (e.g. bytes RAM per task, RAM required per
alarm, ...)

63 12.2.2 All

4 Execution context of the OS (e.g. size of OS internal
tables)

63 12.2.2 All

5 Total execution time for each service 63 12.2.3 All
6 OS start-up time without invoking hook routines 63 12.2.3 All
7 Interrupt latency for ISR of category 1, 2 and 3 63 12.2.3 All
8 Task switching times for all types of switching 63 12.2.3 All
9 Idle CPU overhead 63 12.2.3 All

OS Test Plan 1.0  by OSEK Page 15

5 Abbreviations
API Application Programming Interface
COM Communication
DLL Data Link Layer
ECU Electronic Control Unit
ISO International Standard Organization
ISR Interrupt Service Routine
IUT Implementation Under Test
LT Lower Tester
NM Network Management
OPDU OSEK Protocol Data Unit
OS Operating System
PDU Protocol Data Unit
PCO Point of Control and Observation
SDL Specification and Description Language
TMP Test Management Protocol
TM_PDU Test Management - Protocol Data Unit
TTCN Tree and Tabular Combined Notation
UT Upper Tester

Page 16  by OSEK OS Test Plan 1.0

6 References
[1] OSEK/VDX Conformance Testing Methodology - Version 1.0 - 19th of December 1997

[2] OSEK/VDX Certification Procedure - F. Kaag, J. Minuth, K.J. Neumann, H. Kuder -
Proceedings of the 1st International Workshop on Open Systems in Automotive
Networks - October 1995.

[3] OSEK/VDX Operating System - Version 2.0 revision 1 - 15th of October1997

[4] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection, Conformance
testing methodology and framework, part 1 : General Concepts, 1992.

[5] ISO/IEC 9646-3 - Information technology, Open Systems Interconnection, Conformance
testing, methodology and framework, part 3 : The Tree and Tabular Combined Notation
(TTCN), 1992.

[6] Benutzerdokumentation "Classification-Tree Editor - CTE für MS-Windows",
Version 1.2 - ATS Automated Testing Solutions GmbH, Daimler-Benz AG, 1st of
February 1998.

