Open Systems and the Corresponding I nterfaces
for Automotive Electronics

OSEK/VDX

OS Test Procedure

Version 1.0

April, 24", 1998

The OSEK group retains the right to make changes to this document without notice and does not accept any liability for errors.
All rightsreserved. No part of this document may be reproduced, in any form or by any means, without permission in writing
from the OSEK/VDX steering committee.

OS Test Procedure 1.0 O by OSEK Document: os_testprocedurel0.doc

What isOSEK/VDX?

OSEK/VDX isajoint project of the automotive industry. It aims at an industry standard for an open-

ended architecture for distributed control unitsin vehicles.

A red-time operating system, software interfaces and functions for communication and network
management tasks are thus jointly specified.

The term OSEK means “Offene Systeme und deren Schnittstellen fir die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).

The term VDX means "Vehicle Distributed eXecutive”. The functionality of OSEK operating system
was harmonized with VDX. For simplicity OSEKilwbe used instead of OSEXDX in this
document.

OSEK partners:

Adam Opel AG, BMW AG, Daimler-Benz AGJIIT University of Karlsruhe, Mercedes-Benz AG,
Robert Bosch GmbH, Siemens AG, Volkswagen AG., GIE.RE. PSA-Renault.

M otivation:

. High, recurring expenses in the development and variant management of non-application
related aspects of control unit software.

. Incompatibility of control units made by different manufacturers due to differentaioésrand
protocols.

Goal:
Support of the portally and reusability of the application software by:

. Specification of interfaces which are abstract and as application-independent as possible, in the
following areas: real-time operating system, communication and network management.

. Specification of a user interface independent of hardware and network.

. Efficient design of architecture: The functionality shall be configurable and scaleable, to enable
optimal adjustment of the architecture to the application in question.

. Verification of functionality and implementation of prototypes in selected pilot projects.

Advantages.

. Clear savings in costs and development time.

. Enhanced quality of the control units software of various companies.

. Standardized interfacing features for control units with different architectural designs.

. Sequenced utilization of the intelligence (existing resources) distributed in the vehicle, to
enhance the performance of the overall system without requiring additional hardware.

. Provides absolute independence with regards to individual implementation, as the specification
does not prescribe implementational aspects.

OS Test Procedure 1.0 O by OSEK Page 2

OSEK conformance testing

OSEK conformance testing aims at checking conformance of products to OSEK specifications. Test
suites are thus specified for implementations of OSEK operating system, communication and
network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored by
the Commission of European Communities. The term MODISTARC means "Methods and tools for
the validation of OSEK/VDX based DI$ibuted ARGitectures”.

This document has been drafted by the MODISTARC members of the OS-Workgroup:

Bernd Bichs Adam Opel AG
Wolfgang Kremer BMW AG
Stefan Schmerler FZI

Franz Adis FZI

Yves Sorel INRIA

Robert France Motorola
Barbara Ziker Motorola

Jean-Emmanuel Hanne
Eric Brodin

Gerhard Goeser
Patrick Palmieri

Peugeot Citroén S.A.
Sagem SA

Siemens Automotive SA
Siemens Automotive SA

OS Test Procedure 1.0

0 by OSEK

Page 3

Table of Contents

I 1 0140 To [T 1 oo S 5
P s 0 s < PO SUPRRPPPRRP 6
2.1 Classification Tree MELNOMooiiiieiiie e e et e et e e sbee e sneeearaneeens 6
P28 1 R 0T T o ISR 6
2.1.2 Test case TreeSTOr OSEK OS........ociiiiiieciiie et sitee e saee e e e e e e sneeesneeeas 6

2.2 TASK MBNAGEMENT ...ttt e st e e et e e ssb e e be e e b e e s se e et e e snbeenbeeenbeeenneas 8
2.3 INEEITUPE PrOCESSINGeveeuteeeuteesitiesteeateesiteesseesbeesaeeesbeeabeesaneesbeeaabeesaseesbeeenbeessneesaeeanbeennneens 11
P Y 01 7= 0 RS 13
2.5 RESOUICE MBNBGEIMIENTL.........eeeeiieee ettt et e e e e e e e e s e e e st e e e s b e e e saneeesnneeesnneesnnee s 16

JZ O = 1 5SS 17
2.7 Error handling, hook routines and OS execution CONtIOlcccuevrieeriieeeiiee e e eeee e 21

3 TS SEQUEICES ...ttt ettt s et e et e e bt e e s e e e s et e e ne e e e s e e e e n e e e nn b e e nn e e s ne s 22
3.1 TASK MBNAGEIMIENT ...ttt ettt ettt ettt b et esae e be e eabeesbe e e beesabeesaneebeenaneens 22
3.2 INEEITUPL PrOCESSING ...cuvveeueeeiueiesieeeteeauteesseeesbeessseesaeeasbeesaseesseeasseessseesseeanbeesnneenbeeaseessneenneens 30
G I Y B 0= 1 RSO 33
3.4 RESOUICE MENBGEIMENTceiiiieieitiee et et ee et e e e e e s e sn e e s s e e s snr e e e ann e e e nnne e e nnneeenanes 37
G - 1 1 RSO 40
3.6 Error handling, hook routines and OS execution CONIOcocvveiieeerreeeeneee e 47

N o0 =Y = 4 [0] = SRS 51
ST = 1= =00 OSSR 52

OS Test Procedure 1.0 O by OSEK Page 4

1 Introduction

This document describes the test procedure for the conformance test of the operating system. The
test procedure contains the definition of test cases and test sequences.

The test cases determine what will be tested. They are developed on the basis of the test assertions
described in document [2] supported by the classification tree method. The classification trees are
described in chapter 2and the corresponding test cases in chapter 2.

The test sequences determine how the test cases will be tested. This contains the sequence of actions
that must be taken by the test program, and their expected reactions. The test sequences are
described in chapter 3.

OS Test Procedure 1.0 O by OSEK Page 5

2 Test cases

This chapter contains the test cases which will be used to test an implementation of an operating
system to be OSEK conform. Thus, they are developed on the basis of the OSEK OS specification.

2.1 Classification Tree Method

2.1.1 Introduction

The Classification Tree Method supports in a systematic and methodical way the determination of
test cases. It helps to redlize the test object and its mostly unclear input data range, in order to get
structured test cases.

The input data range of atest object is classified by the Classification-Tree Method into test relevant
aspects. These classifications divide the data range digunctively and completely into a finite number
of classes.

Using the Classification-Tree Method it is possible to identify exactly the input parameters relevant
for testing by combining classes of different classifications. In doing so, exactly one class from each
classification must be considered. For complex systems, it is necessary to check the combinations for
logical compatibility.

If the concept of classification is used recursive on classes, then these classes are further refined.

2.1.2 Test case Trees for OSEK OS

The aim of classifying the OSEK OS in the classification trees was to describe every possible system
state and its reactions to a call of an API service or an internal event like expiring of an alarm or
occurring of an interrupt. This ensures that every situation that may occur during execution of an
application is covered by the conformance tests.

The OSEK OS was divided into eight test groups which are handled separately. These groups are
» Task Management,

* Interrupt processing,

» Event mechanism,

* Resource management,

* Alarms, and

» Error handling, hook routines and OS execution control.

A test case is defined by a call to a OS service within a special system state and the reactions and
answers performed by the system. The test trees ensure that each possible state is taken into account.

To keep the test trees simple the following conventions have been reached.

» Thetest trees don't contain the static properties of the OS (conformance class, scheduling policy,
return status). This information is redundant and can be recovered from the test cases itself and is
attached to the textual description of the test cases.

OS Test Procedure 1.0 O by OSEK Page 6

e Only the system environment (runtime properties) that influences the performed OS cal is
modelled in the test trees (execution level, running task’s type, etc.).

» The reaction (answer) of the executed is not contained in the test trees (except for the return
status). This can again be recovered from the test case itself and is attached to the textual
description.

The test cases are chosen in that way that the OS service are called that often that each situation
which is described in the specification is provoked at least once.

Each test case is defined by one line of a classification tree and the corresponding textual description
which is printed below the classification tree. The textual description is presented in a table of the
following structure:

Test | Sched. policy | Action Expected Result
case | Conf. class
No. |Status

1 n, m, f Cal Act i vat eTask() fromtask- | ServicereturnsE_OS_ID
B1, B2, E1 E2 |level withinvalid task ID (task does
e not exist)

A

L Scheduling policy of OS L Actions that must be executed
n: non-preemptive for thistest case

m: mixed-preemptive
f: full preemptive \Expected result of thistest case |~

L__|Conformance class of OS
B1l: BCC1
B2: BCC2
El. ECC1
E2: ECC2

L |OS statusof OS services
s. standard
e extended

The specification of OSEK OS in its current version (2.0 rev 1) is a some points ambiguous. This
leads to wholes, which alow ambiguous interpretation of the specification. In order to do
conformance tests this wholes had to be filled. Thus, some assumption had to be made, what is the
correct interpretation in the "spirit" of OSEK. In the introduction to each of the following tables
those assumption are expressed.

A general assumption that had to be taken is about the minimum number of task supported by the OS
for applications. The specification doesn't provide this number. Therefore it is assumed that there are
at least 8 tasks available in BCC1/BCC2 and at least 16 tasks in ECCL/ECC2. This numbers conform
to fig. 12-1 of the specification.

OS Test Procedure 1.0 O by OSEK Page 7

2.2 Task management

b
= // \\\
I T /\ / / /TN e, oo
AN v | fhimj“““'e — |
Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
1 n, m, f Call Acti vat eTask() fromtask- | ServicereturnsE_OS 1D
B1, B2, E1, E2 |level withinvalid task ID (task does
e not exist)
2 n, m Call Acti vat eTask() fromnon- | No preemption of running task.
B1, B2, E1, E2 | preemptive task on suspended basic | Activated task becomes ready.
S e task Servicereturns E_OK
3 m, f Call Acti vat eTask() from Running task is preempted.
B1, B2, E1, E2 | preemptive task on suspended basic | Activated task becomes running.
S e task which has higher priority than | Service returns E_OK
running task.
4 m, f Call Acti vat eTask() from No preemption of running task.
B1, B2, E1, E2 | preemptive task on suspended basic | Activated task becomes ready.
S e task which has lower priority than Service returns E_OK
running task.
5 m, f Call Act i vat eTask() from No preemption of running task.
B2, E2 preemptive task on suspended basic | Activated task becomes ready.
S e task which has equal priority as Service returns E_OK
running task.

OS Test Procedure 1.0

0 by OSEK

Page 8

Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
6 n, m Call Acti vat eTask() fromnon- | No preemption of running task.
El, E2 preemptive task on suspended Activated task becomes ready and its
S e extended task events are cleared. Service returns
E OK
7 m, f Call Acti vat eTask() from Running task is preempted.
El, E2 preemptive task on suspended Activated task becomes running and
s e extended task which has higher its events are cleared. Service returns
priority than running task. E OK
8 m, f Call Acti vat eTask() from No preemption of running task.
El, E2 preemptive task on suspended Activated task becomes ready and its
S e extended task which has lower events are cleared. Service returns
priority than running task. E OK
9 m, f Call Act i vat eTask() from No preemption of running task.
E2 preemptive task on suspended Activated task becomes ready and its
s e extended task which has equal events are cleared. Service returns
priority as running task. E OK
10 |n,m,f Call Acti vat eTask() onready |Servicereturns_OS LIMIT
B1, B2, E1, E2 | basic task which has reached max.
e number of activations
11 |nm,f Call Acti vat eTask() onready |Servicereturns_OS LIMIT
El, E2 extended task
e
12 |nm Call Acti vat eTask() fromnon- | No preemption of running task.
B2, E2 preemptive task on ready basic task | Activation request is queued in ready
S e which has not reached max. number | list. Service returns E_OK
of activations
13 |m,f Call Act i vat eTask() from No preemption of running task.
B2, E2 preemptive task on ready basic task | Activation request is queued in ready
S e which has not reached max. number | list. Service returns E_OK
of activations and has lower than
running task’
14 |m,f Call Acti vat eTask() from No preemption of running task.
B2, E2 preemptive task on ready basic task | Activation request is queued in ready
S e which has not reached max. number | list. Service returns E_OK
of activations and has equal priority
as running task
15 |nm,f Call Act i vat eTask() onrunning| ServicereturnsE_OS _LIMIT
B1, B2, E1, E2 | basic task which has reached max.
e number of activations
16 |n,m,f Call Act i vat eTask() onrunning| ServicereturnsE_OS _LIMIT
El, E2 extended task
e

! Activating a higher priority task which is aready ready from a preemptive task is not possible as the higher priority
task would be running.

OS Test Procedure 1.0

0 by OSEK

Page 9

Test | Sched. policy | Action Expected Result

case | Conf. class

No. | Status

17 |n;m Call Acti vat eTask() fromnon- | No preemption of running task.
B2, E2 preemptive task on running basic Activation request is queued in ready
S e task which has not reached max. list. Servicereturns E_OK

number of activations

18 |m,f Call Acti vat eTask() from No preemption of running task.
B2, E2 preemptive task on running basic Activation request is queued in ready
S e task which has not reached max. list. Servicereturns E_OK

number of activations

19 |nm,f Call Act i vat eTask() onwaiting | ServicereturnsE_OS_LIMIT
El, E2 extended task
e

20 (n,m,f Call Ter m nat eTask() fromISR | ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 2
e

21 |(n,m,f Cal Ter mi nat eTask() fromISR | ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 3
e

22 |nm,f Call Ter m nat eTask() whilestill | Running task is not terminated.
B1, B2, E1, E2 | occupying aresource Service returns E_OS_RESOURCE
e

23 [nm,f Call Ter m nat eTask() Running task is terminated and ready
B1, B2, E1, E2 task with highest priority is executed
S e

24 |n,m,f Call Chai nTask() fromtask-level. | ServicereturnsE_OS 1D
B1, B2, E1, E2 | Task-ID isinvalid (does not exist).
e

25 |nm,f Call Chai nTask() fromISR ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 2
e

26 |n,m,f Call Chai nTask() fromISR ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 3
e

27 |nm,f Call Chai nTask() whilestill Running task is not terminated.
B1, B2, E1, E2 | occupying aresource Service returns E_OS_RESOURCE
e

28 |(n,m,f Call Chai nTask() onsuspended | Running task isterminated, chained
B1, B2, E1, E2 |task task becomes ready and ready task
S e with highest priority is executed

29 [nm,f Call Chai nTask() onrunning Running task is terminated, chained
B1, B2, E1, E2 |task task becomes ready and ready task
S e with highest priority is executed

30 |n,m,f Call Chai nTask() onready basic | Running task is not terminated.
B1, B2, E1, E2 |task which has reached max. number | ServicereturnsE_OS LIMIT
e of activations

OS Test Procedure 1.0

0 by OSEK

Page 10

Test | Sched. policy | Action Expected Result

case | Conf. class

No. | Status

31 |n,m,f Call Chai nTask() onready Running task is not terminated.
El, E2 extended task ServicereturnsE_OS LIMIT
e

32 |nm Call Chai nTask() from non- Running task is terminated,
B2, E2 preemptive task on ready basic task | activation request is queued in ready
S e which has not reached max. number | list and ready task with highest

of activations priority is executed

33 |nm,f Call Chai nTask() onwaiting Servicereturnse_OS LIMIT
El, E2 extended task
e

34 |nm,f Call Schedul e() fromtask. Ready task with highest priority is
B1, B2, E1, E2 executed. Servicereturns E_OK
S e

35 |nm,f Call Schedul e() fromISR ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 2
e

36 |nm,f Call Schedul e() fromISR ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 3
e

37 |nm,f Call Get Taskl D() fromISR ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 2
e

38 |nm,f Call Get Taskl D() fromISR ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2 | category 3
e

39 |nm,f Call Get Taskl D() from task Return task 1D of currently running
B1, B2, E1, E2 task. Servicereturns E_OK
S e

40 (n,m,f Call Get TaskSt at e() with ServicereturnsE_OS ID
B1, B2, E1, E2 |invalid task ID (task does not exist)
e

41 |(n,m,f Call Get TaskSt at e() Return state of queried task. Service
B1, B2, E1, E2 returns E_OK
S e

2.3 Interrupt processing

No conformance tests will be made for interrupt service routines (ISR) of category 1 because they
do not run under the control of the OS. Thus, there is no possibility to check if an ISR1 is active or
not. The same holds true for ISRs of category 3 outside the ISR frame build by the cals to
Ent er/ Leavel SR() .

OS Test Procedure 1.0

0 by OSEK

Page 11

_—

OSEK Interrupt Processing

A

R

Test | Sched. policy | Action Expected Result

case | Conf. class

No. | Status

1 n, m, f Call Enabl el nterrupt () . All Enable interrupts. Service returns
B1, B2, E1, E2 |requested interrupts are disabled E_OK
S e

2 n, m, f Call Enabl el nterrupt () . At Enable interrupts. Service returns
B1, B2, E1, E2 |least one of the requested interrupts | E_OS_NOFUNC
e is already enabled

3 n, m, f Call Di sabl el nterrupt ().All |Disableinterrupts. Service returns
B1, B2, E1, E2 |requested interrupts are enabled E_OK
S e

4 n, m, f Call Di sabl el nterrupt ().At |Disableinterrupts. Service returns
B1, B2, E1, E2 |least one of the requested interrupts | E_OS_NOFUNC
e is already disabled

5 n, m, f Call Returns current interrupt descriptor.
B1,B2, E1,E2 |GetInterruptDescriptor() |ServicereturnsE_OK
S e

6 n, m, f Interruption of running task Interrupt is executed
B1, B2, E1, E2
S e

7 n, m, f Interruption of 1SR2 Interrupt is executed
B1, B2, E1, E2
S e

8 n, m, f Interruption of ISR3 Interrupt is executed
B1, B2, E1, E2
S e

9 n, m Return from ISR2. Interrupted task | Execution of interrupted task is
B1, B2, E1, E2 |isnon-preemptive continued
S e

10 |n,m Return from ISR3. Interrupted task | Execution of interrupted task is
B1, B2, E1, E2 |isnon-preemptive continued
S e

OS Test Procedure 1.0

0 by OSEK

Page 12

Test | Sched. policy | Action Expected Result

case | Conf. class

No. | Status

11 |m,f Return from ISR2. Interrupted task | Ready task with highest priority is
B1, B2, E1, E2 |ispreemptive executed (Rescheduling)
S e

12 |m,f Return from ISR3. Interrupted task | Ready task with highest priority is

B1, B2, E1, E2
S €

IS preemptive

executed (Rescheduling)

2.4 Event mechanism

Events are not queued. |.e. if an event is set twice before it could be cleared, then the task owning
this event is notified only once. Therefore one event gets lost. This behaviour is not clearly expressed
by the specification and is therefore not object of conformance testing.

OSEK Even tMscha nism

//N

task ISR of set / tvue priority
/ catedorv 3 Wa\tEven(cleared / /
ISR of SetEvent GetEvent valid nvalid basic
/ \\ cateaorv 2 ClearEvent wamng / \ extended E_OK
straints ready higher than E 0S ID
-reem 1 type occupyint ownero _wamn or. runnin unnina task
ves N m g‘ sispended \ower‘ than E OS CAL?E?/SEﬁTATE
/ / \ / other \ runnina sk g o ACCESS
yes no basic /s N0 yes no event g 0S RESOURCE
extended requested
. event
2 L] ® [[[
3
5
6 [2 ® [2 [2 [2 » [d
’
9 [L] [> [L]
10 [] [] [] 7 [] [
©
13 [] [] [
14
10
17 [4 [4 [4 [] []
18
19
20
21
22 L 2
23 L 4
24 [L] ®
25 L 4
26 L 4
27
Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
1 n, m, f Call Set Event () withinvalid Task | Service returnsE_OS 1D
El, E2 ID
e
2 n, m, f Call Set Event () for basic task ServicereturnsE_OS ACCESS
El, E2
e
3 n, m, f Call Set Event () for suspended Servicereturns E_OS STATE
El, E2 extended task
e

OS Test Procedure 1.0

0 by OSEK

Page 13

Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
4 n, m Call Set Event () from non- Requested events are set. Running
El, E2 preemptive task on waiting extended | task is not preempted. Waiting task
S e task which is waiting for at least one | becomes ready. Service returns
of the requested events E OK
5 n, m Call Set Event () from non- Requested events are set. Running
El, E2 preemptive task on waiting extended | task is not preempted. Waiting task
S e task which is not waiting for any of | doesn't become ready. Service
the requested events returns E_OK
6 m, f Call Set Event () from Requested events are set. Running
El, E2 preemptive task on waiting extended | task becomes ready (is preempted).
S e task which iswaiting for at least one | Waiting task becomes running.
of the requested events and has Servicereturns E_OK
higher priority than running task
7 m, f Call Set Event () from Requested events are set. Running
El, E2 preemptive task on waiting extended | task is not preempted. Waiting task
S e task which is waiting for at least one | becomes ready. Service returns
of the requested events and has equal | E_OK
or lower priority than running task
8 m, f Call Set Event () from Requested events are set. Running
El, E2 preemptive task on waiting extended | task is not preempted. Waiting task
S e task which is not waiting for any of | doesn't become ready. Service
the requested events returns E_OK
9 n, m Call Set Event () from non- Requested events are set. Running
El, E2 preemptive task on ready extended | task is not preempted. Service
s e task returns E_OK
10 |m,f Call Set Event () from Requested events are set. Running
El, E2 preemptive task on ready extended | task is not preempted. Service
s e task returns E_OK
11 |nm,f Call d ear Event () frombasic Service returnsE_OS_ACCESS
El, E2 task
e
12 |n,m,f Cal C ear Event () fromISR2 ServicereturnsE_ OS CALLEVEL
El, E2
e
13 |n,m,f Cal C ear Event () fromISR3 ServicereturnsE_OS CALLEVEL
El, E2
e
14 |nm,f Cal d ear Event () from Requested events are cleared.
El, E2 extended task Servicereturns E_OK
S e
15 |nm,f Call Get Event () withinvalid Task | ServicereturnsE_OS _|1D
El, E2 ID
e
16 |n,m,f Call Get Event () for basic task Service returnsE_OS_ACCESS
El, E2
e

OS Test Procedure 1.0

0 by OSEK

Page 14

Test | Sched. policy | Action Expected Result

case | Conf. class

No. | Status

17 |n,m,f Call Get Event () for suspended Servicereturns E_OS STATE
El, E2 extended task
e

18 |n,m,f Call Get Event () for running Return current state of all event hits.
El, E2 extended task Servicereturns E_OK
S e

19 |nm,f Call Get Event () for ready Return current state of all event hits.
El, E2 extended task Servicereturns E_OK
S e

20 (n,m,f Call Get Event () for waiting Return current state of all event hits.
El, E2 extended task Servicereturns E_OK
S e

21 (nm,f Call Wai t Event () frombasic task | Service returns E_OS_ACCESS
El, E2
e

22 (nm,f Call Wai t Event () fromextended | Servicereturns E_OS_RESOURCE
El, E2 task which occupies a resource
e

23 [nm,f Call Wai t Event () fromISR2 Servicereturnse_OS_CALLEVEL
El, E2
e

24 |nm,f Call Wai t Event () fromISR3 Servicereturnse_OS_CALLEVEL
El, E2
e

25 |(nm,f Call Wai t Event () fromextended | Running task becomes waiting and
El, E2 task. None of the events waited for is | ready task with highest priority is
s e set executed. Servicereturns E_OK

26 (nm,f Call Wai t Event () fromextended | No preemption of running task.
El, E2 task. At least one event waited for is | Service returns E_OK
S e already set

OS Test Procedure 1.0

0 by OSEK

Page 15

2.5 Resource management

X

OSEK Resource Management

SN T

) 7N
S o X5 VAN R (FADN=
NN\
Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
1 n, m, f Call Get Resour ce() fromtask ServicereturnsE_OS_ACCESS
B1, B2, E1, E2 | which has no access to this resource
e
2 n, m, f Call Get Resour ce() fromtask ServicereturnsE_OS ID
B1, B2, E1, E2 |withinvalid resource ID
e
3 n, m, f Call Get Resource() fromISR2 | ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2
e
4 n, m, f Call Get Resource() fromISR3 | ServicereturnsE_OS CALLEVEL
B1, B2, E1, E2
e
5 n, m, f Call Get Resour ce() fromtask Servicereturnse_OS LIMIT
B1, B2, E1, E2 | with too many resources occupied in
e paralel
6 n, m Test Priority Ceiling Protocol: Resource is occupied and running
B1, B2, E1, E2 | Call Get Resour ce() fromnon- |task’s priority is set to resource’s
S e preemptive task, activate task with | ceiling priority. Service returns
priority higher than running task but | E_OK. No preemption occurs after
lower than ceiling priority, and force | activating the task with higher
rescheduling priority and rescheduling
7 m, f Test Priority Ceiling Protocol: Resource is occupied anghning
B1, B2, E1, E2|CallGet Resour ce() from task’s priority is set to resource’s
S, e preemptive task, and activate task| ceiling priority. Service returns

with priority higher than running tas
but lower than ceiling priority

lE_OK. No preemption occurs aftef
activating the task with higher
priority

OS Test Procedure 1.0

0 by OSEK

Page 16

Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
8 n, m, f Call Get Resour ce() for resource | Resource is occupied and running
B1, B2, E1, E2 |RES SCHEDULER task’s priority is set to resource’s
S e ceiling priority. Service returns
E_OK
9 n, m, f CallRel easeResource() from |Service returns E_OS_ID
B1, B2, E1, E2|task with invalid resource 1D
e
10 |n,m,f CallRel easeResour ce() from |Service returns E_OS_CALLEVEL
B1, B2, E1, E2|ISR2
e
11 n, m, f CallRel easeResource() from |Service returns E_OS CALLEVEL
B1, B2, E1, E2|ISR3
e
12 |n,m,f CallRel easeResource() from |Service returns E_OS _NOFUNC
B1, B2, E1, E2|task with resource which is not
e occupied
13 |n,m CallRel easeResource() from |Resource is released anshning
B1, B2, E1, E2| non-preemptive task task’s priority is reset. No
S, e preemption ofunning task. Service
returns E_OK
14 |m,f CallRel easeResource() from |Resource is released anshning
B1, B2, E1, E2| preemptive task task’s priority is reset. Ready task
S, e with highest priority is executed
(Rescheduling). Service returns
E_OK
15 |n,m CallRel easeResour ce()from |Resource is released anshning
B1, B2, E1, E2| non-preemptive task for resource |task’s priority is reset. No
S, e RES_SCHEDULER preemption ofunning task. Service
returns E_ OK
16 |m,f CallRel easeResour ce()from |Resource is released anshning
B1, B2, E1, E2| preemptive task for resource task’s priority is reset. Ready task
S, e RES_SCHEDULER with highest priority is executed
(Rescheduling). Service returns
E_OK
2.6 Alarms

The behaviour of the OS is not defined by the specification if the action assigned to the expiration of

an alarm can not be performed, because

* it would lead to multiple task activation, which is not allowed in the used conformance class or

the max. number of activated tasks is already reached, or

* it would set an event for a task which is currently suspended.

The expected behaviour is, that at least the error hook is called. But as this situation is not covered

by the specification, it is not part of conformance testing.

OS Test Procedure 1.0

0 by OSEK

Page 17

OSEK Alarms

N T

called retum
status

[\ A
Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
1 n, m, f Call Get Al ar nBase() with ServicereturnsE_OS ID
B1, B2, E1, E2 |invalid darmID
e
2 n, m, f Call Get Al ar nBase() Return alarm base characterigtics.
B1, B2, E1, E2 Servicereturns E_OK
S e
3 n, m, f Call Get Al ar m() with invalid ServicereturnsE_OS ID
B1, B2, E1, E2 |alamID
e
4 n, m, f Call Get Al ar m() for darmwhich | Servicereturns E_OS NOFUNC
B1, B2, E1, E2 |iscurrently not in use
S e
5 n, m, f Call Get Al ar m() for darmwhich | Returns number of ticks until
B1, B2, E1, E2 |will activate atask on expiration expiration. Service returns E_OK
S e
6 n, m, f Call Get Al ar m() for darmwhich | Returns number of ticks until
El, E2 will set an event on expiration expiration. Service returns E_OK
S e
7 n, m, f Call Set Rel Al ar m() withinvalid | ServicereturnsE_OS 1D
B1, B2, E1, E2 |alamID
e

OS Test Procedure 1.0 O by OSEK Page 18

Test | Sched. policy | Action Expected Result

case | Conf. class

No. | Status

8 n, m, f Call Set Rel Al arn() for already | Servicereturns E_OS_STATE
B1, B2, E1, E2 | activated alarm which will activate a
S e task on expiration

9 n, m, f Call Set Rel Al ar () for already | ServicereturnsE_OS_STATE
El, E2 activated alarm which will set an
S e event on expiration

10 |n,m,f Call Set Rel Al ar m() with Service returnsE_OS_VALUE
B1, B2, E1, E2 |increment value lower than zero
e

11 |nm,f Call Set Rel Al ar m() with Service returnsE_OS_VALUE
B1, B2, E1, E2 |increment value greater than
e maxal | owedval ue

12 |n,m,f Call Set Rel Al ar m() withcycle | ServicereturnsE_OS VALUE
B1, B2, E1, E2 |vauelower than i ncycl e
e

13 |n,m,f Call Set Rel Al ar m() withcycle | ServicereturnsE_OS VALUE
B1, B2, E1, E2 |vaue greater than
e maxal | owedval ue

14 |n,m,f Call Set Rel Al ar n() for alarm Alarmis activated. Service returns
B1, B2, E1, E2 | which will activate atask on E OK
S e expiration

15 |nm,f Call Set Rel Al ar n() for alarm Alarmis activated. Service returns
El, E2 which will set an event on expiration | E_OK
S e

16 |n,m,f Call Set AbsAl ar m() withinvalid | Servicereturns_OS _|ID
B1, B2, E1, E2 |alamID
e

17 |n,m,f Call Set AbsAl ar n() for aready | ServicereturnsE_OS STATE
B1, B2, E1, E2 | activated alarm which will activate a
S e task on expiration

18 |n,m,f Call Set AbsAl ar n() for aready | ServicereturnsE_OS STATE
El, E2 activated alarm which will set an
S e event on expiration

19 |nm,f Call Set AbsAl ar n() with ServicereturnsE_OS _VALUE
B1, B2, E1, E2 |increment value lower than zero
e

20 (n,m,f Call Set AbsAl ar n() with ServicereturnsE_OS_VALUE
B1, B2, E1, E2 |increment value greater than
e maxal | owedval ue

21 (nm,f Call Set AbsAl ar m() withcycle |ServicereturnsE_OS VALUE
B1, B2, E1, E2 |vauelower than i ncycl e
e

22 (nm,f Call Set AbsAl ar m() withcycle |ServicereturnsE_OS VALUE
B1, B2, E1, E2 |vaue greater than
e maxal | owedval ue

OS Test Procedure 1.0

0 by OSEK

Page 19

Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
23 [nm,f Call Set AbsAl ar n() for alarm Alarmis activated. Service returns
B1, B2, E1, E2 | which will activate atask on E OK
S e expiration
24 |nm,f Call Set AbsAl ar n() for alarm Alarmis activated. Service returns
El, E2 which will set an event on expiration | E_OK
S e
25 |nm,f Call Cancel Al ar m() withinvalid | ServicereturnsE_OS 1D
B1, B2, E1, E2 |alamID
e
26 |n,m,f Call Cancel Al ar n() for alarm ServicereturnsE_OS NOFUNC
B1, B2, E1, E2 |whichiscurrently not in use
S e
27 |nm,f Call Cancel Al arm() for already | Alarmiscancelled. Service returns
B1, B2, E1, E2 | activated alarm which will activatea | E_OK
S e task on expiration
28 |(n,m,f Call Cancel Al arm() for already | Alarmiscancelled. Service returns
El, E2 activated dlarm which will set an E OK
S e event on expiration
29 [nm,f Expiration of alarm which activates a | Task is activated
B1, B2, E1, E2 |task while no tasks are currently
S e running
30 |n,m Expiration of aarm which activates a | Task is activated. No preemption of
B1, B2, E1, E2 |task while running task is non- running task
S e preemptive
31 |m,f Expiration of alarm which activates a | Task is activated. Task with highest
B1, B2, E1, E2 |task with higher priority than priority is executed
S e running task while running task is
preemptive
32 |m,f Expiration of alarm which activates a | Task is activated. No preemption of
B1, B2, E1, E2 |task with lower priority than running | running task.
S e task while running task is preemptive
33 |nm Expiration of alarm which sets an Event is set
El, E2 event while running task is non-
S e preemptive. Task which owns the
event is not waiting for this event
and not suspended
34 |nm Expiration of alarm which sets an Event is set. Task which is owner of
El, E2 event while running task is non- the event becomes ready. No
S e preemptive. Task which owns the preemption of running task
event iswaiting for this event
35 |mf Expiration of alarm which sets an Event is set
El, E2 event while running task is
S e preemptive. Task which owns the

event is not waiting for this event
and not suspended

OS Test Procedure 1.0

0 by OSEK

Page 20

Test | Sched. policy | Action Expected Result

case | Conf. class

No. | Status

36 |m,f Expiration of alarm which sets an Event is set. Task which is owner of
El, E2 event while running task is the event becomes ready. Task with
S e preemptive. Task which owns the highest priority is executed

event iswaiting for this event

(Rescheduling)

2.7 Error handling, hook routines and OS execution control

The specification doesn't provide an error status when calling an OS service which is not allowed on
hook level from inside a hook routine. It is assumed that the correct behaviour would be to return
E_OS CALLEVEL. Asthisis not prescribed by the specification, this will not be used as a criteria
for the conformance of the implementation. Anyway, the conformance tests will check that restricted
OS services return a value not equal E_OK.

Test | Sched. policy | Action Expected Result
case | Conf. class
No. | Status
1 n, m, f Cdl Return current application mode
B1, B2, E1, E2 |Get Acti veAppl i cati onMde
s e 0)
2 n, m, f Cal Start OS() Start operating system
B1, B2, E1, E2
S e
3 n, m, f Call Shut downOs() Shutdown operating system
B1, B2, E1, E2
S e
4 n, m, f Check PreTaskHook/PostTaskHook: | PreTaskHook is called before
B1, B2, E1, E2 | Force rescheduling executing the new task, but after the
S e trangition to running state.
PostTaskHook is called after exiting
the current task but before leaving
the task’s running state
5 n, m, f Check ErrorHook: ErrorHook is called at the end of a
B1, B2, E1, E2 |Force error system service which has areturn
S e value not equal E OK
6 n, m, f Check StartupHook: StartupHook is called after
B1, B2, E1, E2 | Start OS initialisation of OS
S e
7 n, m, f Check ShutdownHook: ShutdownHook is called after the OS
B1, B2, E1, E2 | Shutdown OS shut down
S e
8 n, m, f Check availability of OS services OS services which must not be called
B1, B2, E1, E2 |inside hook routines according to fig. | from hook routines return status not
e 9-1 of OS spec. equal E OK

OS Test Procedure 1.0

0 by OSEK

Page 21

3 Test sequences

This chapter contains the specification of the test sequences that will be run during the conformance
tests. The test sequences define the sequence of actions that will be done during the execution of the
test program, i. e. the sequence of instructions executed by each task. Each test sequence fulfils the
test for one ore more of the test cases defined in the previous chapter.

In order to check during the execution of the conformance tests if the sequences are passed
correctly, it is necessary to make the observable system state traceable. This requires that the system
state must be coded in alogable format. where it can by bit patterns. Each bit of a pattern represents
the state of an OS element (task, event, ...). Thus, the system state can be traced by logging this
patterns, which can be done by writing them into a specia part of the RAM where it can be read out
later, or by writing them to some pins of the test platform where it can be observed by a logic
analyzer.

The logging of the patterns requires an additionally library which contains functions to write out the
patterns. This library must be provided by the vendor of the OS implementation and the
manufacturer of the test platform respectively. The specification of the API of this library will be
done later.

Conformance testing contains the following steps:
1. Transfer the test sequences into a executable test program.
2. Execution of the test program on the test platform. Thereby, the patterns are generated.

3. Comparison of the generated pattern sequence with the expected sequence. If the pattern
sequences match the test is passed, otherwise it failed.

3.1 Task management

Test Sequence 1:
Test Cases: 1, 10, 15, 20, 21, 22, 24, 25, 26, 27, 30, 35, 36, 37, 38, 40
Scheduling policy: ~ non-, mixed-, full-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2
Return status: extended
Parameters: N = max. number of multiple activations (1 for BCC1/ECC1)
Tasks: Taskl

type = basic

priority = 1

activation=1

autostart = true

resource = R1

Task?2

type = basic

priority = 2

activation=1

autostart = false

Task3
type = basic
priority = 3

OS Test Procedure 1.0 O by OSEK Page 22

activation=1
autostart = false

ISR: ISR2

category = 2

ISR3

category = 3
Resources: R1
Running | Called OS service Return status
task
Taskl Act i vat eTask(Taskb) E OS ID
Taskl Get TaskSt at e(Taskb) E OS ID
Taskl | Chai nTask(Taskb) E OS ID
Taskl | Activat eTask(Task2) E OK
Task1 | Schedul e() E OK
Task2 | Activat eTask(Task1) E OS LIMIT
Task2 | Activat eTask(Task2) E OS LIMIT
Task? Ter m nat eTask() -
Taskl Get Resour ce(R1) E OK
Taskl Term nat e() E OS RESOURCE
Taskl Chai nTask(Task3) E_OS RESOURCE
Taskl Rel easeResour ce(R1) E OK
Taskl | Activat eTask(Task3) E OK
Task1 | Schedul e() E OK
Task3 | Chai nTask(Task1) E OS LIMIT
Task3 Ter m nat eTask() -
Taskl Triggerlnterrupt (I SR2)
ISR2 Ter m nat eTask() E OS CALLEVEL
ISR2 Chai nTaskTask(Task3) E OS CALLEVEL
ISR2 Schedul e() E OS CALLEVEL
ISR2 Get Taskl D() E OS CALLEVEL
ISR2 Ret ur nFrom nt errupt ()
Taskl Triggerlnterrupt (I SR3)
ISR3 Ent er I SR()
ISR3 Ter m nat eTask() E OS CALLEVEL
ISR3 Chai nTaskTask(Task3) E OS CALLEVEL
ISR3 Schedul e() E OS CALLEVEL
ISR3 Get Taskl D() E OS CALLEVEL
ISR3 Leavel SR()
ISR3 Ret ur nFrom nt errupt ()
Taskl Ter m nat eTask()
Test Sequence 2
Test Cases: 2,34
Scheduling policy: ~ non-, mixed-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended

OS Test Procedure 1.0 O by OSEK Page 23

Tasks: Taskl

type = basic
schedule = non
priority = 1
autostart = true
Task2
type = basic
schedule = non
priority = 2
autostart = false
Task3
type = basic
schedule = non
priority = 3
autostart = false
Running | Called OS service Return status
task
Taskl Acti vat eTask(Task?2) E_OK
Taskl Acti vat eTask(Task3) E OK
Task1 Schedul e() E OK
Task3 Ter m nat eTask()
Task?2 Ter m nat eTask()
Taskl Ter m nat eTask()
Test Sequence 3:
Test Cases: 3,4
Scheduling policy: ~ mixed-, full-preemptive
Conformance class. BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
schedule = full
priority = 1
autostart = true
Task2
type = basic
schedule = full
priority = 2
autostart = false
Task3
type = basic
schedule = full
priority = 3
autostart = false
Running | Called OS service Return status
task
Taskl Acti vat eTask(Task3) E_OK
OS Test Procedure 1.0 O by OSEK Page 24

Running | Called OS service Return status
task
Task3 Acti vat eTask(Task?2) E_OK
Task3 Ter m nat eTask()
Task?2 Ter m nat eTask()
Taskl Ter m nat eTask()
Test Sequence 4:
Test Cases: 6
Scheduling policy: ~ non-, mixed-preemptive
Conformanceclass. ECCL, ECC2
Return status: standard, extended
Tasks: Taskl
type = extended
schedule = non
priority = 1
autostart = true
Task2
type = extended
schedule = non
priority = 2
autostart = false
Running | Called OS service Return status
task
Taskl Acti vat eTask(Task?2) E_OK
Taskl Get Event (Taskl) E_OK, all events must be cleared
Taskl Get Event (Task2) E_OK, all events must be cleared
Taskl Schedul e() E_OK
Task?2 Ter m nat eTask()
Taskl Ter m nat eTask()
Test Sequence 5:
Test Cases: 7,8
Scheduling policy: ~ mixed-, full-preemptive
Conformanceclass. ECCL, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
schedule = full
priority = 1
autostart = true
Task2
type = extended
schedule = full
priority = 2
autostart = false
Task3
type = extended

OS Test Procedure 1.0

0 by OSEK

Page 25

schedule = full
priority = 3
autostart = false

Running | Called OS service Return status
task
Task1 Acti vat eTask(Task3) E OK
Task3 Cet Event (Task3) E OK, all events must be cleared
Task3 Acti vat eTask(Task?2) E OK
Task3 Ter m nat eTask()
Task2 Get Event (Task2) E_OK, all events must be cleared
Task? Ter m nat eTask()
Taskl Ter m nat eTask()
Test Sequence 6:
Test Cases: 11, 16, 19, 31, 33,41
Scheduling policy: non-, mixed-, full-preemptive
Conformance class. ECCL, ECC2
Return status: extended
Tasks: Taskl

type = extended

schedule = full

priority = 1

autostart = true

Task2

type = extended

schedule = full

priority = 2

autostart = false

event = E1
Events. El
Running | Called OS service Return status
task
Task1 Acti vat eTask(Task?2) E OK
Task1 Schedul e() E OK
Task? Acti vat eTask(Taskl) E OS LIMIT
Task2 Act i vat eTask(Task2) E OS LIMIT
Task2 Wi t Event (E1) E OK
Task1 Get TaskSt at e(Task?2) E_OK, waiting
Task1 Act i vat eTask(Task2) E OS LIMIT
Taskl Chai nTask(Task2) E OS LIMIT
Taskl Set Event (Task2, E1) E OK
Taskl Schedul e() E OK
Task?2 Chai nTask(Task1l) E OS LIMIT
Task1 Ter m nat eTask()
Test Sequence 7:
Test Cases: 12,17, 32

OS Test Procedure 1.0

0 by OSEK

Scheduling policy: ~ non-, mixed-preemptive
Conformance class. BCC2, ECC2
Return status: standard, extended
Tasks: Task1
type = basic
schedule = non
priority = 1
activation =2
autostart = true
Task2
type = basic
schedule = non
priority = 2
activation =2
autostart = false
Task3
type = basic
schedule = non
priority = 3
activation =2
autostart = false

Running | Called OS service Return status
task

Taskl Acti vat eTask(Task?2) E_OK

Taskl Acti vat eTask(Task?2) E_OK

Taskl Schedul e() E_OK

Task?2 Ter m nat eTask()

Task?2 Ter m nat eTask()

Taskl Acti vat eTask(Task3) E OK

Taskl Chai nTask(Task3)

Task3 Ter m nat eTask()

Task3 Ter m nat eTask()

Taskl Acti vat eTask(Taskl) E_OK

Taskl Ter m nat eTask()

Test Sequence 8:

Test Cases: 5,13, 14, 18

Scheduling policy: ~ mixed-, full-preemptive

Conformance class: BCC2, ECC2

Return status: extended

Parameters: max. number of multiple activations (1 for BCC1 and ECC1)

Tasks: Taskl
type = basic
schedule = full
priority = 1
activation =2
autostart = true

Task2

OS Test Procedure 1.0 O by OSEK Page 27

type = basic

schedule = full

priority = 2

activation=2
autostart = false

Task3
type = basic

schedule = full

priority = 2

activation=1
autostart = false

Running | Called OS service Return status
task

Taskl Acti vat eTask(Task?2) E_OK

Task?2 Acti vat eTask(Taskl) E_OK

Task?2 Acti vat eTask(Task3) E OK

Task?2 Ter m nat eTask()

Task3 Ter m nat eTask()

Taskl Acti vat eTask(Taskl) E_OK

Taskl Ter m nat eTask()

Test Sequence 9:
Test Cases: 20, 25, 26, 36, 38

Scheduling policy: ~ non-, mixed-, full-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2

Return status; standard, extended
Tasks: Task1
type = basic

schedule = non

priority = 1

activation=2
autostart = true

Task2
type = basic

schedule = non

priority = 2

activation=2
autostart = false

Task3
type = basic

schedule = non

priority = 2

activation=2
autostart = false

Running | Called OS service Return status
task
Task1 Get Taskl () E OK, Taskl

OS Test Procedure 1.0

0 by OSEK

Page 28

Running | Called OS service Return status

task

Taskl Get TaskSt at e(Task1l) E_OK, running
Taskl Get TaskSt at e(Task?2) E_OK, suspended
Task1 Acti vat eTask(Task?2) E OK

Taskl Schedul e() E OK

Task2 Get TaskSt at e(Task1) E _OK, ready

Task?2 Ter m nat eTask()

Taskl Chai nTask(Task3)

Task3 Chai nTask(Task3)

Task3 Ter m nat eTask()

Test Sequence 10:

Test Cases: 9

Scheduling policy: mixed-, full-preemptive
Conformance class. ECC2

Return status: standard, extended
Tasks: Taskl

type = basic

schedule = full

priority = 1

autostart = true

Task2

type = extended

schedule = full

priority = 2

autostart = false

Task3

type = extended

schedule = full

priority = 2

autostart = false
Running | Called OS service Return status
task
Taskl Acti vat eTask(Task?2) E_OK
Task2 Cet Event (Task2) E_OK, all events must be cleared
Task?2 Acti vat eTask(Task3) E OK
Task?2 Ter m nat eTask()
Task3 Get Event (Task2) E_OK, all events must be cleared
Task3 Ter m nat eTask()
Taskl Ter m nat eTask()

Test Sequence 11:

Extended Task returns from waiting-state to ready-list, where ready task with same priority waits.
Extended Task is treated as oldest task initslist of priority.

Scheduling policy: ~ non-, mixed-, full-preemptive

Conformance class: ECC2

Return status: standard, extended

OS Test Procedure 1.0 O by OSEK Page 29

Tasks: Taskl
type = basic
priority = 1
activation=1
autostart = false
Task2
type = extended
priority = 2
autostart = true
event = Event2
Task3
type = basic
priority = 2
activation=1
autostart = false
Task4
type = basic
priority = 3
activation=1
autostart = false

Running | Called OS service Return status
task

Task?2 Acti vat eTask(Taskl) E_OK
Task2 Wai t Event (Event 2) E OK
Taskl Acti vat eTask(Task3) E OK
Task1 Schedul e() E OK
Task3 Acti vat eTask(Task4) E_OK
Task3 Schedul e() E OK
Task4 Set Event (Task2, Event 2) E OK
Task4 Ter m nat eTask()

Task?2 Ter m nat eTask()

Task3 Ter m nat eTask()

Taskl Ter m nat eTask()

3.2 Interrupt processing

The test cases 7 and 8 can not be tested, because more than one ISR is necessary. This leads to
priority issues which are not covered by the OSEK OS specification.

The test cases 9, 14 and 15 can not be tested, because it is not possible to trigger an interrupt while
no task is running.

Test Sequence 1:

Test Cases: 1,356,7,8

Scheduling policy: ~ non-, mixed-, full-preemptive
Conformance class. BCC1, BCC2, ECC1, ECC2
Return status: standard, extended

OS Test Procedure 1.0 O by OSEK Page 30

Tasks: Taskl
type = basic
priority = 1
activation=1
autostart = true
ISR: ISR1
category = 1
ISR2
category = 2
ISR3
category = 3
IntMask-Interrupts are disabled, setsISR1, ISR2, ISR3.
Running | Called OS service Return status
task
Taskl Enabl el nt er rupt (I nt Mask) E_OK
Taskl Get I nterruptDescriptor(lnt |E OK, IntRef=IntMask
Ref)
Taskl Triggerlnterrupt (I SR2)
ISR2 Triggerlnterrupt (I SR3)
ISR3 Triggerlnterrupt (I SR1)
ISR1 Ret ur nFrom nt errupt ()
ISR3 Ret ur nFrom nt errupt ()
|SR2 Ret ur nFrom nt errupt ()
Taskl Di sabl el nterrupt (I nt Mask) E_OK
Taskl Triggerlnterrupt (I SR2)
Taskl Ter m nat eTask()
Test Sequence 2:
Test Cases: 2,4
Scheduling policy: ~ non-, mixed-, full-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2
Return status: extended
Tasks: Taskl
type = basic
priority = 1
activation=1
autostart = true
ISR: ISR2
category = 2
IntMask-Interrupts are enabled.
Running | Called OS service Return status
task
Taskl Enabl el nt errupt (I nt Mask) E_OS NOFUNC
Taskl Di sabl el nterrupt (I nt Mask) E_OK
Taskl Di sabl el nterrupt (I nt Mask) E_OS NOFUNC
Taskl Ter m nat eTask()

OS Test Procedure 1.0 O by OSEK

Page 31

Test Sequence 3:
Test Cases: 9,10
Scheduling policy: ~ non-, mixed-preemptive
Conformance class. BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
priority = 1
schedule = non
activation=1
autostart = true
Task2
type = basic
priority = 2
activation=1
autostart = false

Task3

type = basic

priority = 3

activation=1

autostart = false
ISR: ISR2

category = 2

ISR3

category = 3
Running | Called OS service Return status
task
Taskl Triggerlnterrupt (I SR2)
|SR2 Acti vat eTask(Task?2) E_OK

ISR2 Ret ur nFrom nt errupt ()

Taskl Ter m nat eTask()

Task?2 Triggerlnterrupt (I SR3)

ISR3 Enterl SR() E OK

|SR3 Acti vat eTask(Task?2) E_OK

ISR3 Leavel SR()

ISR3 Ret ur nFrom nt errupt ()

Task?2 Ter m nat eTask()

Task3 Ter m nat eTask()

Test Sequence 4:
Test Cases 11, 12
Scheduling policy: ~ mixed-, full-preemptive
Conformance class. BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic

OS Test Procedure 1.0 O by OSEK Page 32

priority = 1

schedule = full

activation=1

autostart = true

Task2

type = basic

priority = 2

activation=1

autostart = false
ISR: ISR2

category = 2

ISR3

category = 3
Running | Called OS service Return status
task
Task1 Triggerlnterrupt (I SR2)
|SR2 Acti vat eTask(Task?2) E OK
ISR2 Ret ur nFrom nt errupt ()
Task?2 Ter m nat eTask()
Task1 Triggerlnterrupt (I SR2)
ISR3 Enterl SR() E OK
|SR3 Acti vat eTask(Task?2) E OK
ISR3 Leavel SR()
ISR3 Ret ur nFrom nt errupt ()
Task? Ter m nat eTask()
T1 Ter m nat eTask()

3.3 Event mechanism

Test Sequence 1:

Test Case:

1, 2, 3,11, 12, 13, 15, 16, 17, 21, 22, 23, 24:

Scheduling policy: non-, mixed-, full-preemptive
Conformance class. ECC1, ECC2
Return status: extended

Tasks:

Taskl
type = basic
priority = 1
activation=1
autostart = true
Task2
type = basic
priority = 2
activation=1
autostart = false
Task3
type = extended
priority = 3
activation=1
autostart = false

OS Test Procedure 1.0 O by OSEK

Page 33

resource = Resl
event = Eventl

ISR: ISR2

category = 2

ISR3

category = 3
Running | Called OS service Return status
task
Task1 Set Event (NoTask) E OS ID
Task1 Set Event (Task2, Event 1) E OS ACCESS
Task1 Set Event (Task2, Event1) E_OS STATE
Taskl Cl ear Event (Event 1) E OS ACCESS
Taskl Triggerlnterrupt (I SR2)
ISR2 Cl ear Event (Event 1) E OS CALLEVEL
ISR2 Wi t Event (Event 1) E OS CALLEVEL
ISR2 Ret ur nFrom nt errupt ()
Taskl Triggerlnterrupt (I SR3)
ISR3 Enter| SR() E OK
ISR3 Cl ear Event (Event 1) E OS CALLEVEL
ISR3 Wai t Event (Event 1) E OS CALLEVEL
ISR3 Leavel SR()
ISR3 Ret ur nFrom nt errupt ()
Taskl CGet Event (NoNane, EventRef) |E OS ID
Taskl Get Event (Task2, Event Ref) E_OS ACCESS
Taskl Get Event (Task2, Event Ref) E OS STATE
Taskl Wai t Event (Event 1) E_OS ACCESS
Taskl Chai nTask(Task3)
Task3 Get Resour ce(Res1) E OK
Task3 Wai t Event (Event 1) E_OS RESOURCE
Task3 Rel easeResour ce(Res1) E_OK
Task3 Ter m nat eTask()
Testsequence 2
Test Case 14, 18, 19, 20, 25, 26
Scheduling policy: non-, mixed-, full-preemptive

Conformanceclasss ECC1, ECC2

Return status: standard, extended
Tasks: Taskl
type = extended
priority = 2

autostart = true

event = Eventl
Task2

type = extended

priority = 1

autostart = false

event = Event2

OS Test Procedure 1.0

0 by OSEK

Page 34

Running | Called OS service Return status
task
Taskl Acti vat eTask(Task?2) E_OK
Taskl Wai t Event (Event 1) E_OK
Task?2 Get TaskSt at e(Task1, E_OK, StateRef = waiting
St at eRef)
Task?2 Get Event (Taskl, Event Ref) E_OK, EventRef = Ox0
Task?2 Set Event (Task2, Event 2) E OK
Task?2 Get Event (Task2, Event Ref) E_OK, EventRef = Event2
Task2 Wai t Event (Event 2) E OK
Task?2 Set Event (Task1l, Event1) E OK
Task?2 Schedul e() E_OK
Taskl Get TaskSt at e(Task2, E_OK, StateRef = ready
St at eRef)
Taskl Get Event (Task2, Event Ref) E_OK, EventRef = Eventl
Taskl Ter m nat eTask()
Testsequence 3:
Test Case 4,59
Scheduling policy: ~ non-, mixed-preemptive
Conformanceclass. ECCL, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
priority = 1
schedule = non
activation=1
autostart = false
event =
Task2
type = extended
priority = 2
autostart = true
event = Eventl, Event2, Event3
Running | Called OS service Return status
task
Task?2 Wai t Event (Event 1) E_OK
Taskl Set Event (Task1l, Event2) E OK
Taskl Get TaskSt at e(Task2, E_OK, StateRef = waiting
St at eRef)
Taskl Set Event (Task1l, Event1) E OK, StateRef = ready
Taskl Set Event (Taskl1l, Event 3) E_OK
Taskl Get Event (Taskl, EventRef) |E OK, EventRef = Eventl | Event2 |
Event3
Taskl Ter m nat eTask()
Task?2 Ter m nat eTask()

OS Test Procedure 1.0

0 by OSEK

Page 35

Testsequence 4:

Test Case

6,7,8, 10

Scheduling policy: ~ mixed-, full-preemptive
Conformanceclasss ECC1, ECC2
Return status; standard, extended

Tasks:

Taskl
type = basic
priority = 2
schedule = full
activation=1
autostart = false
Task2
type = extended
priority = 3
schedule = full
autostart = true
event = Eventl, Event2
Task3
type = extended
priority = 1
schedule = full
autostart = false
event = Event3
Task4
type = basic
priority = 4
schedule = full
autostart = false

Running | Called OS service Return status

task

Task?2 Acti vat eTask(Taskl) E_OK

Task2 Wai t Event (Event 1) E OK

Taskl Set Event (Task2, Event 2) E OK

Taskl Get TaskSt at e(Task2, E_OK, StateRef = waiting
St at eRef)

Taskl Get Event (Task2, Event Ref) E_OK, EventRef = Event2

Taskl Acti vat eTask(Task3) E OK

Taskl Get TaskSt at e(Task3, E_OK, StateRef = ready
St at eRef)

Taskl Set Event (Task3, Event 3) E_OK

Taskl Get Event (Task3, Event Ref) E_OK, EventRef = Event3

Taskl Set Event (Task2, Event1) E OK

Task2 Cl ear Event (Event 1) E OK

Task2 Wai t Event (Event 1) E OK

Taskl Acti vat eTask(Task4) E_OK

Task4 Set Event (Task2, Event1) E OK

Task4 Get TaskSt at e(Task2, E_OK, StateRef = ready
St at eRef)

Task4 Ter m nat eTask()

OS Test Procedure 1.0 O by OSEK

Page 36

Running | Called OS service Return status
task

Task?2 Term nat eTask()

Taskl Ter m nat eTask()

Task3 Ter m nat eTask()

3.4 Resource management

Testsequen
Test Case:
Scheduling

cel:
1,234,5,910,11, 12
policy: non-, mixed-, full-preemptive

Conformanceclasss BCC1, BCC2, ECC1, ECC2

Parameters: Number of max. occupied resourcesin parallel = N
Return status: extended
Tasks: Taskl
type = basic
priority = 1
activation=1
autostart = true
resource = Res0, Resl, Res2, ... , ResN
Task?2
type = basic
priority = 2
activation=1
autostart = false
resource = ResA
ISR: ISR2
category = 2
ISR3
category = 3
Running | Called OS service Return status
task
Task1 Get Resour ce(ResA) E OS ACCESS
Task1 Get Resour ce(NoResour ce) E OS ID
Task1 Get Resour ce(ResO0) E OK
Taskl C
Task1 Get Resource(Res[N-1]) E OK
Task1 Get Resource(Res[N]) E OS LIMIT
Task1 Rel easeResour ce(Res[N-1]) E OK
Task1 o
Taskl Rel easeResour ce(ResO0) E OK
Taskl Triggerlnterrupt (I SR2)
ISR2 Get Resour ce(ResO0) E OS CALLEVEL
ISR2 Rel easeResour ce(Res0) E OS CALLEVEL
|SR2 Ret urn
Taskl Triggerlnterrupt (I SR3)
ISR3 Enterl SR() E OK

OS Test Procedure 1.0 O by OSEK

Page 37

Running | Called OS service Return status

task

ISR3 Get Resour ce(ResO0) E OS CALLEVEL
ISR3 Rel easeResour ce(Res0) E OS CALLEVEL
ISR3 Leavel SR() -

ISR3 Ret ur nFrom nt errupt ()

Taskl Rel easeResour ce(Res0) E_OS NOFUNC
Taskl Rel easeResour ce(NoRes) E OS ID

Taskl Chai nTask(Task2) -

Task? Ter m nat eTask()

Testsequence 2

Test Case: 6, 8, 13, 15

Scheduling policy: ~ non-, mixed-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2

Return status: standard, extended
Tasks: Task1
type = basic
priority = 1
schedule = non
activation=1

autostart = true

resource = RES_SCHEDULER, ResD

Task2
type = basic
priority = 2
activation=1
autostart = false

resource = RES_SCHEDULER, ResD

Task3
type = basic
priority = 3
activation=1
autostart = false

resource = RES_SCHEDULER

Running | Called OS service Return status
task

Taskl Get Resour ce(RES_SCHEDULER) |E OK
Task1 Acti vat eTask(Task2) E OK
Task1 Schedul e E OK
Taskl Rel easeResour ce(RES_SCHEDU E OK

LER) -

Taskl Schedul e E OK
Task2 Termi nat eTask() E OK
Task1 Get Resour ce(Res0) E OK
Task1 Acti vat eTask(Task2) E OK
Taskl | Schedul e() E OK

OS Test Procedure 1.0 O by OSEK

Page 38

Running | Called OS service Return status
task

Taskl Acti vat eTask(Task3) E OK
Task1 Schedul e() E OK
Task3 Ter m nat eTask()

Taskl Rel easeResour ce(ResO0) E OK
Task1 Schedul e() E OK
Task?2 Ter m nat eTask()

Taskl Ter m nat eTask()

Testsequence 3:

Test Case: 7,8, 14, 16

Scheduling policy: ~ mixed-, full-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2

Return status: standard, extended
Tasks: Task1
type = basic
priority = 1
schedule = full
activation=1

autostart = true

resource = RES_SCHEDULER, ResD

Task2
type = basic
priority = 2
activation=1
autostart = false

resource = RES_SCHEDULER, ResD

Task3
type = basic
priority = 3
activation=1
autostart = false

resource = RES_SCHEDULER

Running | Called OS service Return status

task

Task1 GetResource(RES SCHEDULER) E OK

Task1 ActivateTask(Task?2) E OK

Taskl ReleaseResource(RES SCHEDULER) |E OK

Task?2 Ter m nat eTask() E_OK

Taskl GetResource(Res0D) E OK

Task1 ActivateTask(Task?2) E OK

Taskl GetTaskState(Task2, StateRef) E OK, StateRef = ready
Task1 ActivateTask(Task3) E OK

Task3 Ter m nat eTask()

Taskl ReleaseResource(Res0) E OK

Task?2 Ter m nat eTask()

OS Test Procedure 1.0 0 by OSEK Page 39

Running | Called OS service Return status
task

Taskl Term nat eTask()

3.5 Alarms

Test Sequence 1

Test Case: 1,3,7,10, 11, 12, 13, 16, 19, 20, 21, 22, 25

Scheduling policy: ~ non-, mixed-, full-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2

Return status: extended

Tasks: Task1
type = basic
priority = 1
activation=1
autostart = true

Alarms: Alarml

counter = timer
action = activatetask

task = Task1
Running | Called OS service Return status
task
Taskl Get Al ar nBase(NoAl ar m E OS ID
Task1 Get Al ar n(NoAl ar m) E OS ID
Taskl Get Al ar nBase(Al ar L, E OK
Al ar nBaseRef) B
Taskl Set Rel Al ar n{ NoAl ar m E OS ID
Al ar mBaseRef . m ncycl e, -
0)
Task1 Set Rel Al ar m(Al ar n, E_OS VALUE
-1, - -
0)
Taskl Set Rel Al ar n(Al ar ntl, E_OS VALUE
Al ar rBaseRef . naxal | onedval ue| =~
+1,
0)
Task1 Set Rel Al ar n(Al ar n, E_OS VALUE
Al ar mBaseRef . m ncycl e, I
Al ar rBaseRef . m ncycl e- 1)
Task1 Set Rel Al ar n(Al ar n, E_OS VALUE
Al ar rBaseRef . naxal | onedval ue| =~
,’AI ar nBaseRef . naxal | onedval ue
+1)
Taskl Set AbsAl ar n{ NoAl ar m E OS ID
Al ar mBaseRef . mi ncycle, |
0)
Task1 Set AbsAl ar m(Al ar n, E_OS VALUE
-1, - -
0)

OS Test Procedure 1.0 O by OSEK

Page 40

Running | Called OS service Return status
task
Task1 Set AbsAl ar m(Al ar n, E_OS VALUE
Al ar nBaseRef . maxal | owedval ue|
+1,
0)
Task1 Set AbsAl ar m(Al ar nl, E_OS VALUE
Al ar mBaseRef . mi ncycle, |
Al ar nBaseRef . m ncycl e-
1)
Task1 Set AbsAl ar m(Al ar n, E_OS VALUE
Al ar nBaseRef . mincycle| ~—
Al ar nBaseRef . maxal | owedval ue
+1)
Taskl Cancel Al ar n{ NoAl ar m E OS ID
Taskl Ter m nat eTask()
Test Sequence 2:
Test Cases: 2,4,5, 8,14, 17, 23, 26, 27, 29
Scheduling policy: non-, mixed-, full-preemptive
Conformance class. BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
priority = 3
activation=1
autostart = true
Task2
type = basic
priority = 2
activation=1
autostart = false
Task3
type = basic
priority = 1
activation=1
autostart = false
Alarms: Alarml
counter = timer
action = activatetask
task = Task2
Running | Called OS service Return status
task
Task1 Get Al ar nBase(Al ar nl, E_OK, Value in AlarmBaseRef
Al ar rBaseRef)
Taskl |Cancel Al ar (Al ar i) E_OS NOFUNC
Taskl Set Rel Al ar n{ Al ar nl, E OK
Al ar nBaseRef b;raxal | owedval ue, (n7axallowed vielleicht zu groR)

OS Test Procedure 1.0

0 by OSEK

Page 41

Running | Called OS service Return status
task
Taskl Set Rel Al ar n{ Al ar nl, E_OS STATE
Al ar nrBaseRef . maxal | owedval ue,
0)
Taskl Get Alarn(Alarm Al ar nRef) E_OK,
AlarmRef <
AlarmBaseRef.maxallowedvalue
Taskl r epeat
Taskl until CGetAlarnm(Al arm) =
E OS _NOFUNC
Taskl Get TaskSt at e(Task2, StateRef) |E OK, StateRef=ready
Taskl Set Rel Al ar n{ Al ar nl, E_OK
Al ar nrBaseRef . maxal | owedval ue,
0)
Taskl Cancel Al ar n(Al ar n) E OK
Taskl Get Al arn(Al arml, Al ar nRef) E_OS NOFUNC
Taskl Chai nTask(Task3)
Task?2 Ter m nat eTask()
Task3 Set AbsAl arnm(Al arnil, 0, 0) E_OK
Task3 Ter m nat eTask()
Schedul er
Task?2 Ter m nat eTask()
Test Sequence 3
Test Cases: 6, 9, 15, 18, 24, 28
Scheduling policy: ~ non-, mixed-, full-preemptive
Conformanceclass. ECCL, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
priority = 2
activation=1
autostart = true
Task2
type = extended
priority = 1
autostart = false
event = Event2
Alarm: Alarml
counter = timer
action = setevent
task = Task2
event = Event2
Running | Called OS service Return status
task
Taskl Get Al ar nBase(Al ar i, E_OK
Al ar rBaseRef)

OS Test Procedure 1.0

0 by OSEK

Page 42

Running | Called OS service Return status
task
Taskl Acti vat eTask(Task?2) E_OK
Taskl Set Rel Al ar n{ Al ar nl, E_OK
Al ar WBaseRel(‘) j maxal | owed, | (maxallowed vielleicht zu groR)
Task1 Set Rel Al ar n(Al ar nL, E_OS _STATE
Al ar nBaseRef . naxal | owed,

0)

Task1 Get Alarn(Alarnd, AlarnRef) |E OK,
AlarmRef
AlarmBaseRef.maxallowedvalue
Taskl repeat
Task1 until GetAlarnm(Alarml) =
E OS NOFUNC

Taskl |CGet Event (Task2, EventRef) |E_OK, EventRef = Event2
Task1l Set AbsAl arn(Al arnil, 0, 0) E_OK
Taskl |GetAlarnm(Alarnd, AlarnRef) |E OK, AlarmRef > 0
Task1 Cancel Al ar n{ Al ar nl) E_OK
Task1 Ter m nat eTask()
Task?2 Ter m nat eTask()
Test Sequence 4:
Test Cases: 30

Scheduling policy:
Conformance class:
Return status:
Tasks:

non-, mixed-preemptive

standard, extended
Taskl
type = basic
priority = 1
schedule = non
activation =1
autostart = true
Task2
type = basic
priority = 2
activation =1
autostart = false
Alarml
counter = timer

Alarms:

action = activatetask

task = Task2

BCC1, BCC2, ECC1, ECC2

Running | Called OS service

task

Return status

Set Rel Al ar n{ Al ar nl,
1000,
0)

Taskl

E_OK

Taskl repeat

OS Test Procedure 1.0 O by OSEK

Page 43

Running | Called OS service Return status

task

Taskl until CGetAlarnm(Al arm) =
E_OS_NOFUNC

Task1 Get TaskSt at e(Task2, E_OK, StateRef=ready
St at eRef) B

Taskl Ter m nat eTask()

Task?2 Ter m nat eTask()

Test Sequence 5:
Test Case 31,32
Scheduling policy: ~ mixed-, full-preemptive
Conformance class. BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks. Task1
type = basic
priority = 1
schedule = full
activation=1
autostart = true
Task2
type = basic
priority = 2
activation=1
autostart = false
Task3
type = basic
priority = 3
schedule = full
activation=1
autostart = false
Alarms: Alarml
counter = timer
action = activatetask

task = Task2
Running | Called OS service Return status
task
Taskl Get Al ar nBase(Al ar L, E OK
Al ar rBaseRef) B
Taskl Set Rel Al ar n{ Al ar nl, E_OK
Al ar nBaseRef . m ncycl e,
0)
Taskl until CGetAlarn(Al arm) =
E OS _NOFUNC
Task?2 Ter m nat eTask()
Taskl Chai nTask(Task3)
Task3 Get Al ar nBase(Al ar i, E OK
Al ar rBaseRef) B

OS Test Procedure 1.0 O by OSEK Page 44

Running | Called OS service Return status
task
Task3 Set Rel Al ar n{ Al ar nl, E_OK
Al ar nBaseRef . m ncycl e,
0)
Task3 r epeat
Task3 until CGetAlarnm(Al arm) =
E _OS _NOFUNC
Task3 Get TaskSt at e(Task2, E_OK, StateRef = ready
St at eRef)
Task3 Ter m nat eTask()
Task?2 Ter m nat eTask()
Test Sequence 6:
Test Cases: 33,34
Scheduling policy: ~ non-, mixed-preemptive
Conformance class. ECCL, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
priority = 2
schedule = non
activation=1
autostart = false
Task2
type = extended
priority = 1
Schedule = non

autostart = true
event = Event2
Task3
type = basic
priority = 3
schedule = non
activation=1
autostart = false

Alarms. Alarml
counter = timer
action = setevent
task = Task2
event = Event2
Running | Called OS service Return status
task
Task?2 Acti vat eTask(Taskl) E_OK
Task?2 Schedul e E OK
Taskl Get Al ar nBase(Al ar i, E_OK

Al ar rBaseRef)

OS Test Procedure 1.0 O by OSEK

Page 45

Running | Called OS service Return status

task
Taskl Set Rel Al ar n{ Al ar nl, E OK
Al ar mBaseRef . mi ncycle, |
0)

Taskl r epeat

Taskl until CGetAlarn(A arm) =
E_OS_NOFUNC

Taskl Get Event (Task2, Event Ref) E_OK, EventRef = Event2

Taskl Ter m nat eTask()

Task?2 Acti vat eTask(Task3) E OK
Task2 Cl ear Event (Event 2) E OK
Task2 Wai t Event (Event 2) E OK
Task3 Get Al ar nBase(Al ar L, E_OK
Al ar nBaseRef)
Task3 Set Rel Al ar n{ Al ar nl, E_OK
Al ar nBaseRef . m ncycl e
0)

Task3 r epeat

Task3 until GetAl arn(Al arml) =
E_OS_NOFUNC

Task3 Get TaskSt at e(Task2, E OK, StateRef = ready
St at eRef) -

Task3 Ter m nat eTask()

Task?2 Ter m nat eTask()

Test Sequence 7:
Test Cases: 35, 36
Scheduling policy: ~ mixed-, full-preemptive
Conformance class. ECC1, ECC2
Return status: standard, extended
Tasks: Taskl
type = basic
priority = 1
schedule = full
activation=1
autostart = false
Task2
type = extended
priority = 2
Schedule = full
autostart = true
event = Event2
Task3
type = basic
priority = 3
schedule = full
activation=1
autostart = false
Task4

OS Test Procedure 1.0 O by OSEK Page 46

type = basic

priority = 4
schedule = full
activation=1
autostart = false
Alarms: Alarml
counter = timer
action = setevent
task = Task2
event = Event2
Running | Called OS service Return status
task
Task?2 Acti vat eTask(Taskl) E OK
Task2 Wai t Event (Event 2) E OK
Taskl Acti vat eTask(Task3) E OK
Task3 Get Al ar nBase(Al ar L, E OK
Al ar nBaseRef) B
Task3 Set Rel Al ar n{ Al ar nl, E OK
Al ar mBaseRef . mincycle |
0)
Task3 r epeat
Task3 until CGetAlarn(Al arm) =
E _OS _NOFUNC
Task3 Get TaskSt at e(Task2, E_OK, StateRef = ready
St at eRef)
Task3 Ter m nat eTask() E OK
Task2 Cl ear Event (Event 2) E OK
Task?2 Acti vat eTask(Task4) E OK
Task4 Get Al ar nBase(Al ar L, E OK
Al ar nBaseRef) B
Task4 Set Rel Al ar n{ Al ar nl, E OK
Al ar mBaseRef . mi ncycle, |
0)
Task4 r epeat
Task4 until CGetAlarn(Al arm) =
E _OS _NOFUNC
Task4 Get Event (Task2, Event Ref) E_OK, EventRef = Event2
Task4d Ter m nat eTask()
Task? Ter m nat eTask()
Task1 Ter m nat eTask()

3.6 Error handling, hook routines and OS execution control

Test Sequence 1:

Test Cases: 1,2,3,4,56,7,8
Scheduling policy: ~ non-, mixed-, full-preemptive
Conformance class. BCC1, BCC2, ECC1, ECC2
Return status: standard, extended

OS Test Procedure 1.0

0 by OSEK

Page 47

Hook routines:

StartupHook = true
ErrorHook = false
ShutdownHook = true
PreTaskHook = true
PostTaskHook = true

Tasks: Taskl

type = basic

schedule = non

priority = 1

activation=1

autostart = false

Task?2

type = basic

schedule = non

priority = 2

activation=1

autostart = false
Running task Called OS service Return status
StartupHook Acti vat eTask(Taskl) E_OK
PreTaskHook | Get Taskl () E OK, Taskl
PreTaskHook | Get TaskSt at e(Task1) E_OK, running
PreTaskHook | Get TaskSt at e(Task?2) E_OK, suspended
Taskl Acti vat eTask(Task?2) E_OK
Taskl Schedul e() E OK
PostTaskHook | Get Taskl () E OK, Taskl
PostTaskHook |Get TaskSt at e(Task1) E_OK, running
PostTaskHook |Get TaskSt at e(Task?2) E_OK, suspended
PreTaskHook | Get Taskl () E OK, Task2
PreTaskHook | Get TaskSt at e(Task1) E_OK, ready
PreTaskHook | Get TaskSt at e(Task?2) E_OK, running
Task?2 Ter m nat eTask() E_OK
PostTaskHook | Get Taskl () E OK, Task2
PostTaskHook |Get TaskSt at e(Taskl) E_OK, ready
PostTaskHook |Get TaskSt at e(Task?2) E_OK, running
PreTaskHook | Get Taskl () E OK, Taskl
PreTaskHook | Get TaskSt at e(Task1) E_OK, running
PreTaskHook | Get TaskSt at e(Task?2) E_OK, suspended
T1 Shut downOS() E_OK
ShutdownHook
Test Sequence 2:
Test Cases: 1,23,4,5/6,7
Scheduling policy: ~ non-, mixed-, full-preemptive
Conformanceclass: ECC1, ECC2
Return status: standard, extended

Hook routines:

StartupHook = true
ErrorHook = false
ShutdownHook = true

OS Test Procedure 1.0

0 by OSEK

Page 48

PreTaskHook = true
PostTaskHook = true

Tasks: Taskl

type = basic

schedule = non

priority = 1

activation=1

autostart = false

Task2

type = basic

schedule = non

priority = 2

activation=1

autostart = false
Running task Called OS service Return status
StartupHook Acti vat eTask(Taskl) E_OK
PreTaskHook | Get Taskl () E OK, Taskl
PreTaskHook | Get TaskSt at e(Task1) E_OK, running
PreTaskHook | Get TaskSt at e(Task?2) E_OK, suspended
Taskl Acti vat eTask(Task?2) E_OK
Task1 Schedul e() E_OK
PostTaskHook | Get Taskl () E OK, Taskl
PostTaskHook |Get TaskSt at e(Task1) E_OK, running
PostTaskHook |Get TaskSt at e(Task?2) E_OK, suspended
PreTaskHook | Get Taskl () E OK, Task2
PreTaskHook | Get TaskSt at e(Task1) E_OK, ready
PreTaskHook | Get TaskSt at e(Task?2) E_OK, running
Task?2 Ter m nat eTask() E_OK
PostTaskHook | Get Taskl () E OK, Task2
PostTaskHook |Get TaskSt at e(Taskl) E_OK, ready
PostTaskHook |Get TaskSt at e(Task?2) E_OK, running
PreTaskHook | Get Taskl () E OK, Taskl
PreTaskHook | Get TaskSt at e(Task1) E_OK, running
PreTaskHook | Get TaskSt at e(Task?2) E_OK, suspended
Task1 Shut downOS() E_OK
ShutdownHook
Test Sequence 2:
Test Cases: 1,23,4,5/6,7
Scheduling policy: ~ non-, mixed-, full-preemptive
Conformanceclass: BCC1, BCC2, ECC1, ECC2
Return status: extended

Hook routines:

StartupHook = true
ErrorHook = false
ShutdownHook = true
PreTaskHook = true
PostTaskHook = true

OS Test Procedure 1.0

0 by OSEK

Page 49

Tasks:

Task1
type = basic
schedule = non
priority = 1
activation=1
autostart = false
Task2
type = basic
schedule = non
priority = 2
activation=1
autostart = false

Running task Called OS service Return status

StartupHook Acti vat eTask(Taskl)

PreTaskHook | Get Taskl () E OK, Taskl

Taskl Chai nTask(Task?2) E_OK

PostTaskHook | Get Taskl () E OK, Taskl

PreTaskHook | Get Taskl () E OK, Task2

Task2 Shut downC5() E OK

PostTaskHook | Get Taskl () E OK, Task2

ShutdownHook

OS Test Procedure 1.0 O by OSEK Page 50

4 Abbreviations

API Application Programming Interface
COM Communication
DLL DataLink Layer
ECU Electronic Control Unit
SO International Standard Organization
ISR Interrupt Service Routine
uT Implementation Under Test
LT Lower Tester
NM Network Management
OPDU OSEK Protocol Data Unit
0OS Operating System
PDU Protocol Data Unit
PCO Point of Control and Observation
SDL Specification and Description Language
TMP Test Management Protocol
TM_PDU Test Management - Protocol Data Unit
TTCN Tree and Tabular Combined Notation
uT Upper Tester
OS Test Procedure 1.0 0 by OSEK

Page 51

5 References

[1] OSEK/VDX Conformance Testing Methodology - Version 1.0 - 19" of December 1997
[2] OSEK/VDX OS Test Plan - Version 1.0 - 4" of March 1998

[3] OSEK/VDX Certification Procedure - F. Kaag, J. Minuth, K.J. Neumann, H. Kuder -
Proceedings of the 1st International Workshop on Open Systems in Automotive
Networks - October 1995.

[4] OSEK/VDX Operating System - Version 2.0 revision 1- 15" of October1997

[9] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection, Conformance
testing methodology and framework, part 1 : Genera Concepts, 1992.

[6] | SO/IEC 9646-3 - Information technology, Open Systems Interconnection, Conformance
testing, methodology and framework, part 3 : The Tree and Tabular Combined Notation
(TTCN), 1992.

[7] Benutzerdokumentation "Classification-Tree Editor - CTE fur MS-Windows",
Version 1.2 - ATS Automated Testing Solutions GmbH, Daimler-Benz AGofl
February 1998.

OS Test Procedure 1.0 O by OSEK Page 52

