
Open Systems and the Corresponding Interfaces

for Automotive Electronics

The OSEK group retains the right to make changes to this document without notice and does not accept any liability for errors.
All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in writing

from the OSEK/VDX steering committee.

OS Test Procedure 1.0  by OSEK Document: os_testprocedure10.doc

OSEK/VDX

OS Test Procedure

Version 1.0

April, 24th, 1998

OS Test Procedure 1.0  by OSEK Page 2

What is OSEK/VDX?
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an open-
ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and network
management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means ”Vehicle Distributed eXecutive”. The functionality of OSEK operating system
was harmonized with VDX. For simplicity OSEK will be used instead of OSEK/VDX in this
document.

OSEK partners:
Adam Opel AG, BMW AG, Daimler-Benz AG, IIIT University of Karlsruhe, Mercedes-Benz AG,
Robert Bosch GmbH, Siemens AG, Volkswagen AG., GIE.RE. PSA-Renault.

Motivation:

• High, recurring expenses in the development and variant management of non-application
related aspects of control unit software.

• Incompatibility of control units made by different manufacturers due to different interfaces and
protocols.

 Goal:
 Support of the portability and reusability of the application software by:

• Specification of interfaces which are abstract and as application-independent as possible, in the
following areas: real-time operating system, communication and network management.

• Specification of a user interface independent of hardware and network.

• Efficient design of architecture: The functionality shall be configurable and scaleable, to enable
optimal adjustment of the architecture to the application in question.

• Verification of functionality and implementation of prototypes in selected pilot projects.

 Advantages:

• Clear savings in costs and development time.

• Enhanced quality of the control units software of various companies.

• Standardized interfacing features for control units with different architectural designs.

• Sequenced utilization of the intelligence (existing resources) distributed in the vehicle, to
enhance the performance of the overall system without requiring additional hardware.

• Provides absolute independence with regards to individual implementation, as the specification
does not prescribe implementational aspects.

OS Test Procedure 1.0  by OSEK Page 3

OSEK conformance testing
OSEK conformance testing aims at checking conformance of products to OSEK specifications. Test
suites are thus specified for implementations of OSEK operating system, communication and
network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored by
the Commission of European Communities. The term MODISTARC means ”Methods and tools for
the validation of OSEK/VDX based DISTributed ARChitectures”.

This document has been drafted by the MODISTARC members of the OS-Workgroup:

Bernd Büchs Adam Opel AG

Wolfgang Kremer BMW AG

Stefan Schmerler FZI

Franz Adis FZI

Yves Sorel INRIA

Robert France Motorola

Barbara Ziker Motorola

Jean-Emmanuel Hanne Peugeot Citroën S.A.

Eric Brodin Sagem SA

Gerhard Goeser Siemens Automotive SA

Patrick Palmieri Siemens Automotive SA

OS Test Procedure 1.0  by OSEK Page 4

Table of Contents

1 Introduction..5

2 Test cases..6

2.1 Classification Tree Method ...6

2.1.1 Introduction ..6

2.1.2 Test case Trees for OSEK OS..6

2.2 Task management ...8

2.3 Interrupt processing ...11

2.4 Event mechanism..13

2.5 Resource management..16

2.6 Alarms ...17

2.7 Error handling, hook routines and OS execution control...21

3 Test sequences ..22

3.1 Task management ...22

3.2 Interrupt processing ...30

3.3 Event mechanism..33

3.4 Resource management..37

3.5 Alarms ...40

3.6 Error handling, hook routines and OS execution control...47

4 Abbreviations..51

5 References ..52

OS Test Procedure 1.0  by OSEK Page 5

1 Introduction

This document describes the test procedure for the conformance test of the operating system. The
test procedure contains the definition of test cases and test sequences.

The test cases determine what will be tested. They are developed on the basis of the test assertions
described in document [2] supported by the classification tree method. The classification trees are
described in chapter 2and the corresponding test cases in chapter 2.

The test sequences determine how the test cases will be tested. This contains the sequence of actions
that must be taken by the test program, and their expected reactions. The test sequences are
described in chapter 3.

OS Test Procedure 1.0  by OSEK Page 6

2 Test cases

This chapter contains the test cases which will be used to test an implementation of an operating
system to be OSEK conform. Thus, they are developed on the basis of the OSEK OS specification.

2.1 Classification Tree Method

2.1.1 Introduction

The Classification Tree Method supports in a systematic and methodical way the determination of
test cases. It helps to realize the test object and its mostly unclear input data range, in order to get
structured test cases.

The input data range of a test object is classified by the Classification-Tree Method into test relevant
aspects. These classifications divide the data range disjunctively and completely into a finite number
of classes.

Using the Classification-Tree Method it is possible to identify exactly the input parameters relevant
for testing by combining classes of different classifications. In doing so, exactly one class from each
classification must be considered. For complex systems, it is necessary to check the combinations for
logical compatibility.

If the concept of classification is used recursive on classes, then these classes are further refined.

2.1.2 Test case Trees for OSEK OS

The aim of classifying the OSEK OS in the classification trees was to describe every possible system
state and its reactions to a call of an API service or an internal event like expiring of an alarm or
occurring of an interrupt. This ensures that every situation that may occur during execution of an
application is covered by the conformance tests.

The OSEK OS was divided into eight test groups which are handled separately. These groups are

• Task Management,

• Interrupt processing,

• Event mechanism,

• Resource management,

• Alarms, and

• Error handling, hook routines and OS execution control.

A test case is defined by a call to a OS service within a special system state and the reactions and
answers performed by the system. The test trees ensure that each possible state is taken into account.

To keep the test trees simple the following conventions have been reached.

• The test trees don’t contain the static properties of the OS (conformance class, scheduling policy,
return status). This information is redundant and can be recovered from the test cases itself and is
attached to the textual description of the test cases.

OS Test Procedure 1.0  by OSEK Page 7

• Only the system environment (runtime properties) that influences the performed OS call is
modelled in the test trees (execution level, running task’s type, etc.).

• The reaction (answer) of the executed is not contained in the test trees (except for the return
status). This can again be recovered from the test case itself and is attached to the textual
description.

The test cases are chosen in that way that the OS service are called that often that each situation
which is described in the specification is provoked at least once.

Each test case is defined by one line of a classification tree and the corresponding textual description
which is printed below the classification tree. The textual description is presented in a table of the
following structure:

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() from task-
level with invalid task ID (task does
not exist)

Service returns E_OS_ID

The specification of OSEK OS in its current version (2.0 rev 1) is at some points ambiguous. This
leads to wholes, which allow ambiguous interpretation of the specification. In order to do
conformance tests this wholes had to be filled. Thus, some assumption had to be made, what is the
correct interpretation in the "spirit" of OSEK. In the introduction to each of the following tables
those assumption are expressed.

A general assumption that had to be taken is about the minimum number of task supported by the OS
for applications. The specification doesn’t provide this number. Therefore it is assumed that there are
at least 8 tasks available in BCC1/BCC2 and at least 16 tasks in ECC1/ECC2. This numbers conform
to fig. 12-1 of the specification.

Scheduling policy of OS
n: non-preemptive
m: mixed-preemptive
f: full preemptive

Actions that must be executed
for this test case

Conformance class of OS
B1: BCC1
B2: BCC2
E1: ECC1
E2: ECC2

OS status of OS services
s: standard
e: extended

Expected result of this test case

OS Test Procedure 1.0  by OSEK Page 8

2.2 Task management

E_OK

E_OS_ID

E_OS_RESOURCE

E_OS_CALLEVEL

E_OS_LIMIT

return
status

equal to
running task

lower than
running task

higher than
running task

priority

not
reached

reached

max.
activations

extended

basic

type

waiting

ready

running

suspended

state

invalid

valid

task ID

affected task

GetTaskState

GetTaskID

Schedule

ChainTask

TerminateTask

ActivateTask

called
OS service

ISR of
category 3

ISR of
category 2

noyes

occupying
resource

noyes

preemptive

yes

no
constraints

task

execution
level

OSEK Task Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() from task-
level with invalid task ID (task does
not exist)

Service returns E_OS_ID

2 n, m
B1, B2, E1, E2
s, e

Call ActivateTask() from non-
preemptive task on suspended basic
task

No preemption of running task.
Activated task becomes ready.
Service returns E_OK

3 m, f
B1, B2, E1, E2
s, e

Call ActivateTask() from
preemptive task on suspended basic
task which has higher priority than
running task.

Running task is preempted.
Activated task becomes running.
Service returns E_OK

4 m, f
B1, B2, E1, E2
s, e

Call ActivateTask() from
preemptive task on suspended basic
task which has lower priority than
running task.

No preemption of running task.
Activated task becomes ready.
Service returns E_OK

5 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on suspended basic
task which has equal priority as
running task.

No preemption of running task.
Activated task becomes ready.
Service returns E_OK

OS Test Procedure 1.0  by OSEK Page 9

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

6 n, m
E1, E2
s, e

Call ActivateTask() from non-
preemptive task on suspended
extended task

No preemption of running task.
Activated task becomes ready and its
events are cleared. Service returns
E_OK

7 m, f
E1, E2
s, e

Call ActivateTask() from
preemptive task on suspended
extended task which has higher
priority than running task.

Running task is preempted.
Activated task becomes running and
its events are cleared. Service returns
E_OK

8 m, f
E1, E2
s, e

Call ActivateTask() from
preemptive task on suspended
extended task which has lower
priority than running task.

No preemption of running task.
Activated task becomes ready and its
events are cleared. Service returns
E_OK

9 m, f
E2
s, e

Call ActivateTask() from
preemptive task on suspended
extended task which has equal
priority as running task.

No preemption of running task.
Activated task becomes ready and its
events are cleared. Service returns
E_OK

10 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() on ready
basic task which has reached max.
number of activations

Service returns E_OS_LIMIT

11 n, m, f
E1, E2
e

Call ActivateTask() on ready
extended task

Service returns E_OS_LIMIT

12 n, m
B2, E2
s, e

Call ActivateTask() from non-
preemptive task on ready basic task
which has not reached max. number
of activations

No preemption of running task.
Activation request is queued in ready
list. Service returns E_OK

13 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on ready basic task
which has not reached max. number
of activations and has lower than
running task1

No preemption of running task.
Activation request is queued in ready
list. Service returns E_OK

14 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on ready basic task
which has not reached max. number
of activations and has equal priority
as running task

No preemption of running task.
Activation request is queued in ready
list. Service returns E_OK

15 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() on running
basic task which has reached max.
number of activations

Service returns E_OS_LIMIT

16 n, m, f
E1, E2
e

Call ActivateTask() on running
extended task

Service returns E_OS_LIMIT

1 Activating a higher priority task which is already ready from a preemptive task is not possible as the higher priority
task would be running.

OS Test Procedure 1.0  by OSEK Page 10

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

17 n, m
B2, E2
s, e

Call ActivateTask() from non-
preemptive task on running basic
task which has not reached max.
number of activations

No preemption of running task.
Activation request is queued in ready
list. Service returns E_OK

18 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on running basic
task which has not reached max.
number of activations

No preemption of running task.
Activation request is queued in ready
list. Service returns E_OK

19 n, m, f
E1, E2
e

Call ActivateTask() on waiting
extended task

Service returns E_OS_LIMIT

20 n, m, f
B1, B2, E1, E2
e

Call TerminateTask() from ISR
category 2

Service returns E_OS_CALLEVEL

21 n, m, f
B1, B2, E1, E2
e

Call TerminateTask() from ISR
category 3

Service returns E_OS_CALLEVEL

22 n, m, f
B1, B2, E1, E2
e

Call TerminateTask() while still
occupying a resource

Running task is not terminated.
Service returns E_OS_RESOURCE

23 n, m, f
B1, B2, E1, E2
s, e

Call TerminateTask() Running task is terminated and ready
task with highest priority is executed

24 n, m, f
B1, B2, E1, E2
e

Call ChainTask() from task-level.
Task-ID is invalid (does not exist).

Service returns E_OS_ID

25 n, m, f
B1, B2, E1, E2
e

Call ChainTask() from ISR
category 2

Service returns E_OS_CALLEVEL

26 n, m, f
B1, B2, E1, E2
e

Call ChainTask() from ISR
category 3

Service returns E_OS_CALLEVEL

27 n, m, f
B1, B2, E1, E2
e

Call ChainTask() while still
occupying a resource

Running task is not terminated.
Service returns E_OS_RESOURCE

28 n, m, f
B1, B2, E1, E2
s, e

Call ChainTask() on suspended
task

Running task is terminated, chained
task becomes ready and ready task
with highest priority is executed

29 n, m, f
B1, B2, E1, E2
s, e

Call ChainTask() on running
task

Running task is terminated, chained
task becomes ready and ready task
with highest priority is executed

30 n, m, f
B1, B2, E1, E2
e

Call ChainTask() on ready basic
task which has reached max. number
of activations

Running task is not terminated.
Service returns E_OS_LIMIT

OS Test Procedure 1.0  by OSEK Page 11

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

31 n, m, f
E1, E2
e

Call ChainTask() on ready
extended task

Running task is not terminated.
Service returns E_OS_LIMIT

32 n, m
B2, E2
s, e

Call ChainTask() from non-
preemptive task on ready basic task
which has not reached max. number
of activations

Running task is terminated,
activation request is queued in ready
list and ready task with highest
priority is executed

33 n, m, f
E1, E2
e

Call ChainTask() on waiting
extended task

Service returns E_OS_LIMIT

34 n, m, f
B1, B2, E1, E2
s, e

Call Schedule() from task. Ready task with highest priority is
executed. Service returns E_OK

35 n, m, f
B1, B2, E1, E2
e

Call Schedule() from ISR
category 2

Service returns E_OS_CALLEVEL

36 n, m, f
B1, B2, E1, E2
e

Call Schedule() from ISR
category 3

Service returns E_OS_CALLEVEL

37 n, m, f
B1, B2, E1, E2
e

Call GetTaskID() from ISR
category 2

Service returns E_OS_CALLEVEL

38 n, m, f
B1, B2, E1, E2
e

Call GetTaskID() from ISR
category 3

Service returns E_OS_CALLEVEL

39 n, m, f
B1, B2, E1, E2
s, e

Call GetTaskID() from task Return task ID of currently running
task. Service returns E_OK

40 n, m, f
B1, B2, E1, E2
e

Call GetTaskState() with
invalid task ID (task does not exist)

Service returns E_OS_ID

41 n, m, f
B1, B2, E1, E2
s, e

Call GetTaskState() Return state of queried task. Service
returns E_OK

2.3 Interrupt processing

No conformance tests will be made for interrupt service routines (ISR) of category 1 because they
do not run under the control of the OS. Thus, there is no possibility to check if an ISR1 is active or
not. The same holds true for ISRs of category 3 outside the ISR frame build by the calls to
Enter/LeaveISR().

OS Test Procedure 1.0  by OSEK Page 12

E_OS_NOFUNCE_OK

return
status

non-preemptive
task

preemptive
task

interrupted task

return from interrupt

trigger interrupt

GetInterruptDescriptor

DisableInterrupt

EnableInterrupt

called
OS service

ISR of
category 2

task

execution
level

OSEK Interrupt Processing

ISR of
category 3

1
2
3
4
5
6
7
8
9
10
11
12

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
s, e

Call EnableInterrupt(). All
requested interrupts are disabled

Enable interrupts. Service returns
E_OK

2 n, m, f
B1, B2, E1, E2
e

Call EnableInterrupt(). At
least one of the requested interrupts
is already enabled

Enable interrupts. Service returns
E_OS_NOFUNC

3 n, m, f
B1, B2, E1, E2
s, e

Call DisableInterrupt(). All
requested interrupts are enabled

Disable interrupts. Service returns
E_OK

4 n, m, f
B1, B2, E1, E2
e

Call DisableInterrupt(). At
least one of the requested interrupts
is already disabled

Disable interrupts. Service returns
E_OS_NOFUNC

5 n, m, f
B1, B2, E1, E2
s, e

Call
GetInterruptDescriptor()

Returns current interrupt descriptor.
Service returns E_OK

6 n, m, f
B1, B2, E1, E2
s, e

Interruption of running task Interrupt is executed

7 n, m, f
B1, B2, E1, E2
s, e

Interruption of ISR2 Interrupt is executed

8 n, m, f
B1, B2, E1, E2
s, e

Interruption of ISR3 Interrupt is executed

9 n, m
B1, B2, E1, E2
s, e

Return from ISR2. Interrupted task
is non-preemptive

Execution of interrupted task is
continued

10 n, m
B1, B2, E1, E2
s, e

Return from ISR3. Interrupted task
is non-preemptive

Execution of interrupted task is
continued

OS Test Procedure 1.0  by OSEK Page 13

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

11 m, f
B1, B2, E1, E2
s, e

Return from ISR2. Interrupted task
is preemptive

Ready task with highest priority is
executed (Rescheduling)

12 m, f
B1, B2, E1, E2
s, e

Return from ISR3. Interrupted task
is preemptive

Ready task with highest priority is
executed (Rescheduling)

2.4 Event mechanism

Events are not queued. I.e. if an event is set twice before it could be cleared, then the task owning
this event is notified only once. Therefore one event gets lost. This behaviour is not clearly expressed
by the specification and is therefore not object of conformance testing.

E_OK

E_OS_ID

E_OS_STATE

E_OS_CALLEVEL

E_OS_ACCESS

E_OS_RESOURCE

return
status

lower than
running task

higher than
running task

priority

extended

basic

type

suspended

running

ready

requested
event

other
event

waiting for..

waiting

state

invalidvalid

task ID

affected task

cleared

set

event

WaitEvent

GetEvent

ClearEvent

SetEvent

called
OS service

ISR of
category 3

ISR of
category 2

noyes

owner of
event

noyes

occupying
resource

extended

basic

type

noyes

preemptive

yes

no
constraints

task

execution
level

OSEK Event Mechanism

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
E1, E2
e

Call SetEvent() with invalid Task
ID

Service returns E_OS_ID

2 n, m, f
E1, E2
e

Call SetEvent() for basic task Service returns E_OS_ACCESS

3 n, m, f
E1, E2
e

Call SetEvent() for suspended
extended task

Service returns E_OS_STATE

OS Test Procedure 1.0  by OSEK Page 14

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

4 n, m
E1, E2
s, e

Call SetEvent() from non-
preemptive task on waiting extended
task which is waiting for at least one
of the requested events

Requested events are set. Running
task is not preempted. Waiting task
becomes ready. Service returns
E_OK

5 n, m
E1, E2
s, e

Call SetEvent() from non-
preemptive task on waiting extended
task which is not waiting for any of
the requested events

Requested events are set. Running
task is not preempted. Waiting task
doesn’t become ready. Service
returns E_OK

6 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on waiting extended
task which is waiting for at least one
of the requested events and has
higher priority than running task

Requested events are set. Running
task becomes ready (is preempted).
Waiting task becomes running.
Service returns E_OK

7 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on waiting extended
task which is waiting for at least one
of the requested events and has equal
or lower priority than running task

Requested events are set. Running
task is not preempted. Waiting task
becomes ready. Service returns
E_OK

8 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on waiting extended
task which is not waiting for any of
the requested events

Requested events are set. Running
task is not preempted. Waiting task
doesn’t become ready. Service
returns E_OK

9 n, m
E1, E2
s, e

Call SetEvent() from non-
preemptive task on ready extended
task

Requested events are set. Running
task is not preempted. Service
returns E_OK

10 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on ready extended
task

Requested events are set. Running
task is not preempted. Service
returns E_OK

11 n, m, f
E1, E2
e

Call ClearEvent() from basic
task

Service returns E_OS_ACCESS

12 n, m, f
E1, E2
e

Call ClearEvent() from ISR2 Service returns E_OS_CALLEVEL

13 n, m, f
E1, E2
e

Call ClearEvent() from ISR3 Service returns E_OS_CALLEVEL

14 n, m, f
E1, E2
s, e

Call ClearEvent() from
extended task

Requested events are cleared.
Service returns E_OK

15 n, m, f
E1, E2
e

Call GetEvent() with invalid Task
ID

Service returns E_OS_ID

16 n, m, f
E1, E2
e

Call GetEvent() for basic task Service returns E_OS_ACCESS

OS Test Procedure 1.0  by OSEK Page 15

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

17 n, m, f
E1, E2
e

Call GetEvent() for suspended
extended task

Service returns E_OS_STATE

18 n, m, f
E1, E2
s, e

Call GetEvent() for running
extended task

Return current state of all event bits.
Service returns E_OK

19 n, m, f
E1, E2
s, e

Call GetEvent() for ready
extended task

Return current state of all event bits.
Service returns E_OK

20 n, m, f
E1, E2
s, e

Call GetEvent() for waiting
extended task

Return current state of all event bits.
Service returns E_OK

21 n, m, f
E1, E2
e

Call WaitEvent() from basic task Service returns E_OS_ACCESS

22 n, m, f
E1, E2
e

Call WaitEvent() from extended
task which occupies a resource

Service returns E_OS_RESOURCE

23 n, m, f
E1, E2
e

Call WaitEvent() from ISR2 Service returns E_OS_CALLEVEL

24 n, m, f
E1, E2
e

Call WaitEvent() from ISR3 Service returns E_OS_CALLEVEL

25 n, m, f
E1, E2
s, e

Call WaitEvent() from extended
task. None of the events waited for is
set

Running task becomes waiting and
ready task with highest priority is
executed. Service returns E_OK

26 n, m, f
E1, E2
s, e

Call WaitEvent() from extended
task. At least one event waited for is
already set

No preemption of running task.
Service returns E_OK

OS Test Procedure 1.0  by OSEK Page 16

2.5 Resource management

E_OS_NOFUNC

E_OS_ACCESS

E_OS_CALLEVEL

E_OS_LIMIT

E_OS_ID

E_OK

return
status

RES_SCHEDULER

not definedany

name

occupiedfree

state

not
allowed

allowed

access

resource

GetResource

ReleaseResource

called
OS service

ISR of
category 3

ISR of
category 2

noyes

max. No. of
nested resources

reached

noyes

preemptive

yes

no
constraints

task

execution
level

OSEK Resource Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call GetResource() from task
which has no access to this resource

Service returns E_OS_ACCESS

2 n, m, f
B1, B2, E1, E2
e

Call GetResource() from task
with invalid resource ID

Service returns E_OS_ID

3 n, m, f
B1, B2, E1, E2
e

Call GetResource() from ISR2 Service returns E_OS_CALLEVEL

4 n, m, f
B1, B2, E1, E2
e

Call GetResource() from ISR3 Service returns E_OS_CALLEVEL

5 n, m, f
B1, B2, E1, E2
e

Call GetResource() from task
with too many resources occupied in
parallel

Service returns E_OS_LIMIT

6 n, m
B1, B2, E1, E2
s, e

Test Priority Ceiling Protocol:
Call GetResource() from non-
preemptive task, activate task with
priority higher than running task but
lower than ceiling priority, and force
rescheduling

Resource is occupied and running
task’s priority is set to resource’s
ceiling priority. Service returns
E_OK. No preemption occurs after
activating the task with higher
priority and rescheduling

7 m, f
B1, B2, E1, E2
s, e

Test Priority Ceiling Protocol:
Call GetResource()from
preemptive task, and activate task
with priority higher than running task
but lower than ceiling priority

Resource is occupied and running
task’s priority is set to resource’s
ceiling priority. Service returns
E_OK. No preemption occurs after
activating the task with higher
priority

OS Test Procedure 1.0  by OSEK Page 17

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

8 n, m, f
B1, B2, E1, E2
s, e

Call GetResource() for resource
RES_SCHEDULER

Resource is occupied and running
task’s priority is set to resource’s
ceiling priority. Service returns
E_OK

9 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
task with invalid resource ID

Service returns E_OS_ID

10 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
ISR2

Service returns E_OS_CALLEVEL

11 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
ISR3

Service returns E_OS_CALLEVEL

12 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
task with resource which is not
occupied

Service returns E_OS_NOFUNC

13 n, m
B1, B2, E1, E2
s, e

Call ReleaseResource() from
non-preemptive task

Resource is released and running
task’s priority is reset. No
preemption of running task. Service
returns E_OK

14 m, f
B1, B2, E1, E2
s, e

Call ReleaseResource() from
preemptive task

Resource is released and running
task’s priority is reset. Ready task
with highest priority is executed
(Rescheduling). Service returns
E_OK

15 n, m
B1, B2, E1, E2
s, e

Call ReleaseResource()from
non-preemptive task for resource
RES_SCHEDULER

Resource is released and running
task’s priority is reset. No
preemption of running task. Service
returns E_OK

16 m, f
B1, B2, E1, E2
s, e

Call ReleaseResource()from
preemptive task for resource
RES_SCHEDULER

Resource is released and running
task’s priority is reset. Ready task
with highest priority is executed
(Rescheduling). Service returns
E_OK

2.6 Alarms

The behaviour of the OS is not defined by the specification if the action assigned to the expiration of
an alarm can not be performed, because

• it would lead to multiple task activation, which is not allowed in the used conformance class or
the max. number of activated tasks is already reached, or

• it would set an event for a task which is currently suspended.

The expected behaviour is, that at least the error hook is called. But as this situation is not covered
by the specification, it is not part of conformance testing.

OS Test Procedure 1.0  by OSEK Page 18

E_OS_VALUE

E_OS_STATE

E_OS_NOFUNC

E_OS_ID

E_OK

return
status

not waiting
on event

waiting
on event

task

too great

suitable

too low

cycle
value

too great

suitable

too low

increment
value

set
event

activate
task

action

unsetset

state

noyes

defined

alarm

alarm expires

CancelAlarm

SetAbsAlarm

SetRelAlarm

GetAlarm

GetAlarmBase

called
OS service

non-
preemptive

preemptive

running task

OSEK Alarms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call GetAlarmBase() with
invalid alarm ID

Service returns E_OS_ID

2 n, m, f
B1, B2, E1, E2
s, e

Call GetAlarmBase() Return alarm base characteristics.
Service returns E_OK

3 n, m, f
B1, B2, E1, E2
e

Call GetAlarm() with invalid
alarm ID

Service returns E_OS_ID

4 n, m, f
B1, B2, E1, E2
s, e

Call GetAlarm() for alarm which
is currently not in use

Service returns E_OS_NOFUNC

5 n, m, f
B1, B2, E1, E2
s, e

Call GetAlarm() for alarm which
will activate a task on expiration

Returns number of ticks until
expiration. Service returns E_OK

6 n, m, f
E1, E2
s, e

Call GetAlarm() for alarm which
will set an event on expiration

Returns number of ticks until
expiration. Service returns E_OK

7 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with invalid
alarm ID

Service returns E_OS_ID

OS Test Procedure 1.0  by OSEK Page 19

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

8 n, m, f
B1, B2, E1, E2
s, e

Call SetRelAlarm() for already
activated alarm which will activate a
task on expiration

Service returns E_OS_STATE

9 n, m, f
E1, E2
s, e

Call SetRelAlarm() for already
activated alarm which will set an
event on expiration

Service returns E_OS_STATE

10 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with
increment value lower than zero

Service returns E_OS_VALUE

11 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with
increment value greater than
maxallowedvalue

Service returns E_OS_VALUE

12 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with cycle
value lower than mincycle

Service returns E_OS_VALUE

13 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with cycle
value greater than
maxallowedvalue

Service returns E_OS_VALUE

14 n, m, f
B1, B2, E1, E2
s, e

Call SetRelAlarm() for alarm
which will activate a task on
expiration

Alarm is activated. Service returns
E_OK

15 n, m, f
E1, E2
s, e

Call SetRelAlarm() for alarm
which will set an event on expiration

Alarm is activated. Service returns
E_OK

16 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with invalid
alarm ID

Service returns E_OS_ID

17 n, m, f
B1, B2, E1, E2
s, e

Call SetAbsAlarm() for already
activated alarm which will activate a
task on expiration

Service returns E_OS_STATE

18 n, m, f
E1, E2
s, e

Call SetAbsAlarm() for already
activated alarm which will set an
event on expiration

Service returns E_OS_STATE

19 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with
increment value lower than zero

Service returns E_OS_VALUE

20 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with
increment value greater than
maxallowedvalue

Service returns E_OS_VALUE

21 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with cycle
value lower than mincycle

Service returns E_OS_VALUE

22 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with cycle
value greater than
maxallowedvalue

Service returns E_OS_VALUE

OS Test Procedure 1.0  by OSEK Page 20

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

23 n, m, f
B1, B2, E1, E2
s, e

Call SetAbsAlarm() for alarm
which will activate a task on
expiration

Alarm is activated. Service returns
E_OK

24 n, m, f
E1, E2
s, e

Call SetAbsAlarm() for alarm
which will set an event on expiration

Alarm is activated. Service returns
E_OK

25 n, m, f
B1, B2, E1, E2
e

Call CancelAlarm() with invalid
alarm ID

Service returns E_OS_ID

26 n, m, f
B1, B2, E1, E2
s, e

Call CancelAlarm() for alarm
which is currently not in use

Service returns E_OS_NOFUNC

27 n, m, f
B1, B2, E1, E2
s, e

Call CancelAlarm() for already
activated alarm which will activate a
task on expiration

Alarm is cancelled. Service returns
E_OK

28 n, m, f
E1, E2
s, e

Call CancelAlarm() for already
activated alarm which will set an
event on expiration

Alarm is cancelled. Service returns
E_OK

29 n, m, f
B1, B2, E1, E2
s, e

Expiration of alarm which activates a
task while no tasks are currently
running

Task is activated

30 n, m
B1, B2, E1, E2
s, e

Expiration of alarm which activates a
task while running task is non-
preemptive

Task is activated. No preemption of
running task

31 m, f
B1, B2, E1, E2
s, e

Expiration of alarm which activates a
task with higher priority than
running task while running task is
preemptive

Task is activated. Task with highest
priority is executed

32 m, f
B1, B2, E1, E2
s, e

Expiration of alarm which activates a
task with lower priority than running
task while running task is preemptive

Task is activated. No preemption of
running task.

33 n, m
E1, E2
s, e

Expiration of alarm which sets an
event while running task is non-
preemptive. Task which owns the
event is not waiting for this event
and not suspended

Event is set

34 n, m
E1, E2
s, e

Expiration of alarm which sets an
event while running task is non-
preemptive. Task which owns the
event is waiting for this event

Event is set. Task which is owner of
the event becomes ready. No
preemption of running task

35 m, f
E1, E2
s, e

Expiration of alarm which sets an
event while running task is
preemptive. Task which owns the
event is not waiting for this event
and not suspended

Event is set

OS Test Procedure 1.0  by OSEK Page 21

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

36 m, f
E1, E2
s, e

Expiration of alarm which sets an
event while running task is
preemptive. Task which owns the
event is waiting for this event

Event is set. Task which is owner of
the event becomes ready. Task with
highest priority is executed
(Rescheduling)

2.7 Error handling, hook routines and OS execution control

The specification doesn’t provide an error status when calling an OS service which is not allowed on
hook level from inside a hook routine. It is assumed that the correct behaviour would be to return
E_OS_CALLEVEL. As this is not prescribed by the specification, this will not be used as a criteria
for the conformance of the implementation. Anyway, the conformance tests will check that restricted
OS services return a value not equal E_OK.

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
s, e

Call
GetActiveApplicationMode
()

Return current application mode

2 n, m, f
B1, B2, E1, E2
s, e

Call StartOS() Start operating system

3 n, m, f
B1, B2, E1, E2
s, e

Call ShutdownOS() Shutdown operating system

4 n, m, f
B1, B2, E1, E2
s, e

Check PreTaskHook/PostTaskHook:
Force rescheduling

PreTaskHook is called before
executing the new task, but after the
transition to running state.
PostTaskHook is called after exiting
the current task but before leaving
the task’s running state

5 n, m, f
B1, B2, E1, E2
s, e

Check ErrorHook:
Force error

ErrorHook is called at the end of a
system service which has a return
value not equal E_OK

6 n, m, f
B1, B2, E1, E2
s, e

Check StartupHook:
Start OS

StartupHook is called after
initialisation of OS

7 n, m, f
B1, B2, E1, E2
s, e

Check ShutdownHook:
Shutdown OS

ShutdownHook is called after the OS
shut down

8 n, m, f
B1, B2, E1, E2
e

Check availability of OS services
inside hook routines according to fig.
9-1 of OS spec.

OS services which must not be called
from hook routines return status not
equal E_OK

OS Test Procedure 1.0  by OSEK Page 22

3 Test sequences

This chapter contains the specification of the test sequences that will be run during the conformance
tests. The test sequences define the sequence of actions that will be done during the execution of the
test program, i. e. the sequence of instructions executed by each task. Each test sequence fulfils the
test for one ore more of the test cases defined in the previous chapter.

In order to check during the execution of the conformance tests if the sequences are passed
correctly, it is necessary to make the observable system state traceable. This requires that the system
state must be coded in a logable format. where it can by bit patterns. Each bit of a pattern represents
the state of an OS element (task, event, ...). Thus, the system state can be traced by logging this
patterns, which can be done by writing them into a special part of the RAM where it can be read out
later, or by writing them to some pins of the test platform where it can be observed by a logic
analyzer.

The logging of the patterns requires an additionally library which contains functions to write out the
patterns. This library must be provided by the vendor of the OS implementation and the
manufacturer of the test platform respectively. The specification of the API of this library will be
done later.

Conformance testing contains the following steps:

1. Transfer the test sequences into a executable test program.

2. Execution of the test program on the test platform. Thereby, the patterns are generated.

3. Comparison of the generated pattern sequence with the expected sequence. If the pattern
sequences match the test is passed, otherwise it failed.

3.1 Task management

Test Sequence 1:
Test Cases: 1, 10, 15, 20, 21, 22, 24, 25, 26, 27, 30, 35, 36, 37, 38, 40
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: extended
Parameters: N = max. number of multiple activations (1 for BCC1/ECC1)
Tasks: Task1

type = basic
priority = 1
activation = 1
autostart = true
resource = R1

Task2
type = basic
priority = 2
activation = 1
autostart = false

Task3
type = basic
priority = 3

OS Test Procedure 1.0  by OSEK Page 23

activation = 1
autostart = false

ISR: ISR2
category = 2

ISR3
category = 3

Resources: R1

Running
task

Called OS service Return status

Task1 ActivateTask(Task5) E_OS_ID
Task1 GetTaskState(Task5) E_OS_ID
Task1 ChainTask(Task5) E_OS_ID
Task1 ActivateTask(Task2) E_OK
Task1 Schedule() E_OK
Task2 ActivateTask(Task1) E_OS_LIMIT
Task2 ActivateTask(Task2) E_OS_LIMIT
Task2 TerminateTask()

Task1 GetResource(R1) E_OK
Task1 Terminate() E_OS_RESOURCE
Task1 ChainTask(Task3) E_OS_RESOURCE
Task1 ReleaseResource(R1) E_OK
Task1 ActivateTask(Task3) E_OK
Task1 Schedule() E_OK
Task3 ChainTask(Task1) E_OS_LIMIT
Task3 TerminateTask()

Task1 TriggerInterrupt(ISR2)

ISR2 TerminateTask() E_OS_CALLEVEL
ISR2 ChainTaskTask(Task3) E_OS_CALLEVEL
ISR2 Schedule() E_OS_CALLEVEL
ISR2 GetTaskID() E_OS_CALLEVEL
ISR2 ReturnFromInterrupt()

Task1 TriggerInterrupt(ISR3)

ISR3 EnterISR()

ISR3 TerminateTask() E_OS_CALLEVEL
ISR3 ChainTaskTask(Task3) E_OS_CALLEVEL
ISR3 Schedule() E_OS_CALLEVEL
ISR3 GetTaskID() E_OS_CALLEVEL
ISR3 LeaveISR()

ISR3 ReturnFromInterrupt()

Task1 TerminateTask()

Test Sequence 2:
Test Cases: 2, 34
Scheduling policy: non-, mixed-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended

OS Test Procedure 1.0  by OSEK Page 24

Tasks: Task1
type = basic
schedule = non
priority = 1
autostart = true

Task2
type = basic
schedule = non
priority = 2
autostart = false

Task3
type = basic
schedule = non
priority = 3
autostart = false

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task1 ActivateTask(Task3) E_OK
Task1 Schedule() E_OK
Task3 TerminateTask()

Task2 TerminateTask()

Task1 TerminateTask()

Test Sequence 3:
Test Cases: 3, 4
Scheduling policy: mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
schedule = full
priority = 1
autostart = true

Task2
type = basic
schedule = full
priority = 2
autostart = false

Task3
type = basic
schedule = full
priority = 3
autostart = false

Running
task

Called OS service Return status

Task1 ActivateTask(Task3) E_OK

OS Test Procedure 1.0  by OSEK Page 25

Running
task

Called OS service Return status

Task3 ActivateTask(Task2) E_OK
Task3 TerminateTask()

Task2 TerminateTask()

Task1 TerminateTask()

Test Sequence 4:
Test Cases: 6
Scheduling policy: non-, mixed-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = extended
schedule = non
priority = 1
autostart = true

Task2
type = extended
schedule = non
priority = 2
autostart = false

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task1 GetEvent(Task1) E_OK, all events must be cleared
Task1 GetEvent(Task2) E_OK, all events must be cleared
Task1 Schedule() E_OK
Task2 TerminateTask()

Task1 TerminateTask()

Test Sequence 5:
Test Cases: 7, 8
Scheduling policy: mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
schedule = full
priority = 1
autostart = true

Task2
type = extended
schedule = full
priority = 2
autostart = false

Task3
type = extended

OS Test Procedure 1.0  by OSEK Page 26

schedule = full
priority = 3
autostart = false

Running
task

Called OS service Return status

Task1 ActivateTask(Task3) E_OK
Task3 GetEvent(Task3) E_OK, all events must be cleared
Task3 ActivateTask(Task2) E_OK
Task3 TerminateTask()

Task2 GetEvent(Task2) E_OK, all events must be cleared
Task2 TerminateTask()

Task1 TerminateTask()

Test Sequence 6:
Test Cases: 11, 16, 19, 31, 33, 41
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: extended
Tasks: Task1

type = extended
schedule = full
priority = 1
autostart = true

Task2
type = extended
schedule = full
priority = 2
autostart = false
event = E1

Events: E1

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task1 Schedule() E_OK
Task2 ActivateTask(Task1) E_OS_LIMIT
Task2 ActivateTask(Task2) E_OS_LIMIT
Task2 WaitEvent(E1) E_OK
Task1 GetTaskState(Task2) E_OK, waiting
Task1 ActivateTask(Task2) E_OS_LIMIT
Task1 ChainTask(Task2) E_OS_LIMIT
Task1 SetEvent(Task2, E1) E_OK
Task1 Schedule() E_OK
Task2 ChainTask(Task1) E_OS_LIMIT
Task1 TerminateTask()

Test Sequence 7:
Test Cases: 12, 17, 32

OS Test Procedure 1.0  by OSEK Page 27

Scheduling policy: non-, mixed-preemptive
Conformance class: BCC2, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
schedule = non
priority = 1
activation = 2
autostart = true

Task2
type = basic
schedule = non
priority = 2
activation = 2
autostart = false

Task3
type = basic
schedule = non
priority = 3
activation = 2
autostart = false

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task1 ActivateTask(Task2) E_OK
Task1 Schedule() E_OK
Task2 TerminateTask()

Task2 TerminateTask()

Task1 ActivateTask(Task3) E_OK
Task1 ChainTask(Task3)

Task3 TerminateTask()

Task3 TerminateTask()

Task1 ActivateTask(Task1) E_OK
Task1 TerminateTask()

Test Sequence 8:
Test Cases: 5, 13, 14, 18
Scheduling policy: mixed-, full-preemptive
Conformance class: BCC2, ECC2
Return status: extended
Parameters: max. number of multiple activations (1 for BCC1 and ECC1)
Tasks: Task1

type = basic
schedule = full
priority = 1
activation = 2
autostart = true

Task2

OS Test Procedure 1.0  by OSEK Page 28

type = basic
schedule = full
priority = 2
activation = 2
autostart = false

Task3
type = basic
schedule = full
priority = 2
activation = 1
autostart = false

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task2 ActivateTask(Task1) E_OK
Task2 ActivateTask(Task3) E_OK
Task2 TerminateTask()

Task3 TerminateTask()

Task1 ActivateTask(Task1) E_OK
Task1 TerminateTask()

Test Sequence 9:
Test Cases: 20, 25, 26, 36, 38
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
schedule = non
priority = 1
activation = 2
autostart = true

Task2
type = basic
schedule = non
priority = 2
activation = 2
autostart = false

Task3
type = basic
schedule = non
priority = 2
activation = 2
autostart = false

Running
task

Called OS service Return status

Task1 GetTaskID() E_OK, Task1

OS Test Procedure 1.0  by OSEK Page 29

Running
task

Called OS service Return status

Task1 GetTaskState(Task1) E_OK, running
Task1 GetTaskState(Task2) E_OK, suspended
Task1 ActivateTask(Task2) E_OK
Task1 Schedule() E_OK
Task2 GetTaskState(Task1) E_OK, ready
Task2 TerminateTask()

Task1 ChainTask(Task3)

Task3 ChainTask(Task3)

Task3 TerminateTask()

Test Sequence 10:
Test Cases: 9
Scheduling policy: mixed-, full-preemptive
Conformance class: ECC2
Return status: standard, extended
Tasks: Task1

type = basic
schedule = full
priority = 1
autostart = true

Task2
type = extended
schedule = full
priority = 2
autostart = false

Task3
type = extended
schedule = full
priority = 2
autostart = false

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task2 GetEvent(Task2) E_OK, all events must be cleared
Task2 ActivateTask(Task3) E_OK
Task2 TerminateTask()

Task3 GetEvent(Task2) E_OK, all events must be cleared
Task3 TerminateTask()

Task1 TerminateTask()

Test Sequence 11:
Extended Task returns from waiting-state to ready-list, where ready task with same priority waits.
Extended Task is treated as oldest task in its list of priority.
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: ECC2
Return status: standard, extended

OS Test Procedure 1.0  by OSEK Page 30

Tasks: Task1
type = basic
priority = 1
activation = 1
autostart = false

Task2
type = extended
priority = 2
autostart = true
event = Event2

Task3
type = basic
priority = 2
activation = 1
autostart = false

Task4
type = basic
priority = 3
activation = 1
autostart = false

Running
task

Called OS service Return status

Task2 ActivateTask(Task1) E_OK
Task2 WaitEvent(Event2) E_OK
Task1 ActivateTask(Task3) E_OK
Task1 Schedule() E_OK
Task3 ActivateTask(Task4) E_OK
Task3 Schedule() E_OK
Task4 SetEvent(Task2, Event2) E_OK
Task4 TerminateTask()

Task2 TerminateTask()

Task3 TerminateTask()

Task1 TerminateTask()

3.2 Interrupt processing

The test cases 7 and 8 can not be tested, because more than one ISR is necessary. This leads to
priority issues which are not covered by the OSEK OS specification.
The test cases 9, 14 and 15 can not be tested, because it is not possible to trigger an interrupt while
no task is running.

Test Sequence 1:
Test Cases: 1, 3, 5, 6, 7, 8
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended

OS Test Procedure 1.0  by OSEK Page 31

Tasks: Task1
type = basic
priority = 1
activation = 1
autostart = true

ISR: ISR1
category = 1
ISR2
category = 2
ISR3
category = 3

IntMask-Interrupts are disabled, sets ISR1, ISR2, ISR3.

Running
task

Called OS service Return status

Task1 EnableInterrupt(IntMask) E_OK
Task1 GetInterruptDescriptor(Int

Ref)
E_OK, IntRef=IntMask

Task1 TriggerInterrupt(ISR2)

ISR2 TriggerInterrupt(ISR3)

ISR3 TriggerInterrupt(ISR1)

ISR1 ReturnFromInterrupt()

ISR3 ReturnFromInterrupt()

ISR2 ReturnFromInterrupt()

Task1 DisableInterrupt(IntMask) E_OK
Task1 TriggerInterrupt(ISR2)

Task1 TerminateTask()

Test Sequence 2:
Test Cases: 2, 4
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: extended
Tasks: Task1

type = basic
priority = 1
activation = 1
autostart = true

ISR: ISR2
category = 2

IntMask-Interrupts are enabled.

Running
task

Called OS service Return status

Task1 EnableInterrupt(IntMask) E_OS_NOFUNC
Task1 DisableInterrupt(IntMask) E_OK
Task1 DisableInterrupt(IntMask) E_OS_NOFUNC
Task1 TerminateTask()

OS Test Procedure 1.0  by OSEK Page 32

Test Sequence 3:
Test Cases: 9, 10
Scheduling policy: non-, mixed-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 1
schedule = non
activation = 1
autostart = true

Task2
type = basic
priority = 2
activation = 1
autostart = false

Task3
type = basic
priority = 3
activation = 1
autostart = false

ISR: ISR2
category = 2
ISR3
category = 3

Running
task

Called OS service Return status

Task1 TriggerInterrupt(ISR2)

ISR2 ActivateTask(Task2) E_OK
ISR2 ReturnFromInterrupt()

Task1 TerminateTask()

Task2 TriggerInterrupt(ISR3)

ISR3 EnterISR() E_OK
ISR3 ActivateTask(Task2) E_OK
ISR3 LeaveISR()

ISR3 ReturnFromInterrupt()

Task2 TerminateTask()

Task3 TerminateTask()

Test Sequence 4:
Test Cases 11, 12
Scheduling policy: mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic

OS Test Procedure 1.0  by OSEK Page 33

priority = 1
schedule = full
activation = 1
autostart = true

Task2
type = basic
priority = 2
activation = 1
autostart = false

ISR: ISR2
category = 2
ISR3
category = 3

Running
task

Called OS service Return status

Task1 TriggerInterrupt(ISR2)

ISR2 ActivateTask(Task2) E_OK
ISR2 ReturnFromInterrupt()

Task2 TerminateTask()

Task1 TriggerInterrupt(ISR2)

ISR3 EnterISR() E_OK
ISR3 ActivateTask(Task2) E_OK
ISR3 LeaveISR()

ISR3 ReturnFromInterrupt()

Task2 TerminateTask()

T1 TerminateTask()

3.3 Event mechanism

Test Sequence 1:
Test Case: 1, 2, 3, 11, 12, 13, 15, 16, 17, 21, 22, 23, 24:
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: extended
Tasks: Task1

type = basic
priority = 1
activation = 1
autostart = true

Task2
type = basic
priority = 2
activation = 1
autostart = false

Task3
type = extended
priority = 3
activation = 1
autostart = false

OS Test Procedure 1.0  by OSEK Page 34

resource = Res1
event = Event1

ISR: ISR2
category = 2
ISR3
category = 3

Running
task

Called OS service Return status

Task1 SetEvent(NoTask) E_OS_ID
Task1 SetEvent(Task2,Event1) E_OS_ACCESS
Task1 SetEvent(Task2, Event1) E_OS_STATE
Task1 ClearEvent(Event1) E_OS_ACCESS
Task1 TriggerInterrupt(ISR2)

ISR2 ClearEvent(Event1) E_OS_CALLEVEL
ISR2 WaitEvent(Event1) E_OS_CALLEVEL
ISR2 ReturnFromInterrupt()

Task1 TriggerInterrupt(ISR3)

ISR3 EnterISR() E_OK
ISR3 ClearEvent(Event1) E_OS_CALLEVEL
ISR3 WaitEvent(Event1) E_OS_CALLEVEL
ISR3 LeaveISR()

ISR3 ReturnFromInterrupt()

Task1 GetEvent(NoName, EventRef) E_OS_ID
Task1 GetEvent(Task2, EventRef) E_OS_ACCESS
Task1 GetEvent(Task2, EventRef) E_OS_STATE
Task1 WaitEvent(Event1) E_OS_ACCESS
Task1 ChainTask(Task3)

Task3 GetResource(Res1) E_OK
Task3 WaitEvent(Event1) E_OS_RESOURCE
Task3 ReleaseResource(Res1) E_OK
Task3 TerminateTask()

Testsequence 2:
Test Case 14, 18, 19, 20, 25, 26
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = extended
priority = 2
autostart = true
event = Event1

Task2
type = extended
priority = 1
autostart = false
event = Event2

OS Test Procedure 1.0  by OSEK Page 35

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task1 WaitEvent(Event1) E_OK
Task2 GetTaskState(Task1,

StateRef)
E_OK, StateRef = waiting

Task2 GetEvent(Task1, EventRef) E_OK, EventRef = 0x0
Task2 SetEvent(Task2, Event2) E_OK
Task2 GetEvent(Task2, EventRef) E_OK, EventRef = Event2
Task2 WaitEvent(Event2) E_OK
Task2 SetEvent(Task1, Event1) E_OK
Task2 Schedule() E_OK
Task1 GetTaskState(Task2,

StateRef)
E_OK, StateRef = ready

Task1 GetEvent(Task2, EventRef) E_OK, EventRef = Event1
Task1 TerminateTask()

Testsequence 3:
Test Case 4, 5, 9
Scheduling policy: non-, mixed-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 1
schedule = non
activation = 1
autostart = false
event =

Task2
type = extended
priority = 2
autostart = true
event = Event1, Event2, Event3

Running
task

Called OS service Return status

Task2 WaitEvent(Event1) E_OK
Task1 SetEvent(Task1, Event2) E_OK
Task1 GetTaskState(Task2,

StateRef)
E_OK, StateRef = waiting

Task1 SetEvent(Task1, Event1) E_OK, StateRef = ready
Task1 SetEvent(Task1, Event3) E_OK
Task1 GetEvent(Task1, EventRef) E_OK, EventRef = Event1 | Event2 |

Event3
Task1 TerminateTask()

Task2 TerminateTask()

OS Test Procedure 1.0  by OSEK Page 36

Testsequence 4:
Test Case 6, 7, 8, 10
Scheduling policy: mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 2
schedule = full
activation = 1
autostart = false

Task2
type = extended
priority = 3
schedule = full
autostart = true
event = Event1, Event2

Task3
type = extended
priority = 1
schedule = full
autostart = false
event = Event3

Task4
type = basic
priority = 4
schedule = full
autostart = false

Running
task

Called OS service Return status

Task2 ActivateTask(Task1) E_OK
Task2 WaitEvent(Event1) E_OK
Task1 SetEvent(Task2, Event2) E_OK
Task1 GetTaskState(Task2,

StateRef)
E_OK, StateRef = waiting

Task1 GetEvent(Task2, EventRef) E_OK, EventRef = Event2
Task1 ActivateTask(Task3) E_OK
Task1 GetTaskState(Task3,

StateRef)
E_OK, StateRef = ready

Task1 SetEvent(Task3, Event3) E_OK
Task1 GetEvent(Task3, EventRef) E_OK, EventRef = Event3
Task1 SetEvent(Task2, Event1) E_OK
Task2 ClearEvent(Event1) E_OK
Task2 WaitEvent(Event1) E_OK
Task1 ActivateTask(Task4) E_OK
Task4 SetEvent(Task2, Event1) E_OK
Task4 GetTaskState(Task2,

StateRef)
E_OK, StateRef = ready

Task4 TerminateTask()

OS Test Procedure 1.0  by OSEK Page 37

Running
task

Called OS service Return status

Task2 TerminateTask()

Task1 TerminateTask()

Task3 TerminateTask()

3.4 Resource management

Testsequence 1:
Test Case: 1, 2, 3, 4, 5, 9, 10, 11, 12
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Parameters: Number of max. occupied resources in parallel = N
Return status: extended
Tasks: Task1

type = basic
priority = 1
activation = 1
autostart = true
resource = Res0, Res1, Res2, ... , ResN

Task2
type = basic
priority = 2
activation = 1
autostart = false
resource = ResA

ISR: ISR2
category = 2
ISR3
category = 3

Running
task

Called OS service Return status

Task1 GetResource(ResA) E_OS_ACCESS
Task1 GetResource(NoResource) E_OS_ID
Task1 GetResource(Res0) E_OK
Task1 ...

Task1 GetResource(Res[N-1]) E_OK
Task1 GetResource(Res[N]) E_OS_LIMIT
Task1 ReleaseResource(Res[N-1]) E_OK
Task1 ...

Task1 ReleaseResource(Res0) E_OK
Task1 TriggerInterrupt(ISR2)

ISR2 GetResource(Res0) E_OS_CALLEVEL
ISR2 ReleaseResource(Res0) E_OS_CALLEVEL
ISR2 Return

Task1 TriggerInterrupt(ISR3)

ISR3 EnterISR() E_OK

OS Test Procedure 1.0  by OSEK Page 38

Running
task

Called OS service Return status

ISR3 GetResource(Res0) E_OS_CALLEVEL
ISR3 ReleaseResource(Res0) E_OS_CALLEVEL
ISR3 LeaveISR()

ISR3 ReturnFromInterrupt()

Task1 ReleaseResource(Res0) E_OS_NOFUNC
Task1 ReleaseResource(NoRes) E_OS_ID
Task1 ChainTask(Task2)

Task2 TerminateTask()

Testsequence 2:
Test Case: 6, 8, 13, 15
Scheduling policy: non-, mixed-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 1
schedule = non
activation = 1
autostart = true
resource = RES_SCHEDULER, Res0

Task2
type = basic
priority = 2
activation = 1
autostart = false
resource = RES_SCHEDULER, Res0

Task3
type = basic
priority = 3
activation = 1
autostart = false
resource = RES_SCHEDULER

Running
task

Called OS service Return status

Task1 GetResource(RES_SCHEDULER) E_OK
Task1 ActivateTask(Task2) E_OK
Task1 Schedule E_OK
Task1 ReleaseResource(RES_SCHEDU

LER)
E_OK

Task1 Schedule E_OK
Task2 TerminateTask() E_OK
Task1 GetResource(Res0) E_OK
Task1 ActivateTask(Task2) E_OK
Task1 Schedule() E_OK

OS Test Procedure 1.0  by OSEK Page 39

Running
task

Called OS service Return status

Task1 ActivateTask(Task3) E_OK
Task1 Schedule() E_OK
Task3 TerminateTask()

Task1 ReleaseResource(Res0) E_OK
Task1 Schedule() E_OK
Task2 TerminateTask()

Task1 TerminateTask()

Testsequence 3:
Test Case: 7, 8, 14, 16
Scheduling policy: mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 1
schedule = full
activation = 1
autostart = true
resource = RES_SCHEDULER, Res0

Task2
type = basic
priority = 2
activation = 1
autostart = false
resource = RES_SCHEDULER, Res0

Task3
type = basic
priority = 3
activation = 1
autostart = false
resource = RES_SCHEDULER

Running
task

Called OS service Return status

Task1 GetResource(RES_SCHEDULER) E_OK
Task1 ActivateTask(Task2) E_OK
Task1 ReleaseResource(RES_SCHEDULER) E_OK
Task2 TerminateTask() E_OK
Task1 GetResource(Res0) E_OK
Task1 ActivateTask(Task2) E_OK
Task1 GetTaskState(Task2, StateRef) E_OK, StateRef = ready
Task1 ActivateTask(Task3) E_OK
Task3 TerminateTask()

Task1 ReleaseResource(Res0) E_OK
Task2 TerminateTask()

OS Test Procedure 1.0  by OSEK Page 40

Running
task

Called OS service Return status

Task1 TerminateTask()

3.5 Alarms

Test Sequence 1
Test Case: 1, 3, 7, 10, 11, 12, 13, 16, 19, 20, 21, 22, 25
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: extended
Tasks: Task1

type = basic
priority = 1
activation = 1
autostart = true

Alarms: Alarm1
counter = timer
action = activatetask
task = Task1

Running
task

Called OS service Return status

Task1 GetAlarmBase(NoAlarm) E_OS_ID
Task1 GetAlarm(NoAlarm) E_OS_ID
Task1 GetAlarmBase(Alarm1,

 AlarmBaseRef)
E_OK

Task1 SetRelAlarm(NoAlarm,
AlarmBaseRef.mincycle,
 0)

E_OS_ID

Task1 SetRelAlarm(Alarm1,
 -1,
 0)

E_OS_VALUE

Task1 SetRelAlarm(Alarm1,
AlarmBaseRef.maxallowedvalue
+1,
 0)

E_OS_VALUE

Task1 SetRelAlarm(Alarm1,
 AlarmBaseRef.mincycle,
 AlarmBaseRef.mincycle-1)

E_OS_VALUE

Task1 SetRelAlarm(Alarm1,
AlarmBaseRef.maxallowedvalue
,
AlarmBaseRef.maxallowedvalue
+1)

E_OS_VALUE

Task1 SetAbsAlarm(NoAlarm,
 AlarmBaseRef.mincycle,
 0)

E_OS_ID

Task1 SetAbsAlarm(Alarm1,
 -1,
 0)

E_OS_VALUE

OS Test Procedure 1.0  by OSEK Page 41

Running
task

Called OS service Return status

Task1 SetAbsAlarm(Alarm1,
AlarmBaseRef.maxallowedvalue
+1,
 0)

E_OS_VALUE

Task1 SetAbsAlarm(Alarm1,
 AlarmBaseRef.mincycle,
 AlarmBaseRef.mincycle-
1)

E_OS_VALUE

Task1 SetAbsAlarm(Alarm1,
 AlarmBaseRef.mincycle
AlarmBaseRef.maxallowedvalue
+1)

E_OS_VALUE

Task1 CancelAlarm(NoAlarm) E_OS_ID
Task1 TerminateTask()

Test Sequence 2:
Test Cases: 2, 4, 5, 8, 14, 17, 23, 26, 27, 29
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 3
activation = 1
autostart = true

Task2
type = basic
priority = 2
activation = 1
autostart = false

Task3
type = basic
priority = 1
activation = 1
autostart = false

Alarms: Alarm1
counter = timer
action = activatetask
task = Task2

Running
task

Called OS service Return status

Task1 GetAlarmBase(Alarm1,
AlarmBaseRef)

E_OK, Value in AlarmBaseRef

Task1 CancelAlarm(Alarm1) E_OS_NOFUNC
Task1 SetRelAlarm(Alarm1,

AlarmBaseRef.maxallowedvalue,
 0)

E_OK
(maxallowed vielleicht zu groß)

OS Test Procedure 1.0  by OSEK Page 42

Running
task

Called OS service Return status

Task1 SetRelAlarm(Alarm1,
AlarmBaseRef.maxallowedvalue,
 0)

E_OS_STATE

Task1 GetAlarm(Alarm, AlarmRef) E_OK,
 AlarmRef <
AlarmBaseRef.maxallowedvalue

Task1 repeat

Task1 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task1 GetTaskState(Task2, StateRef) E_OK, StateRef=ready
Task1 SetRelAlarm(Alarm1,

AlarmBaseRef.maxallowedvalue,
 0)

E_OK

Task1 CancelAlarm(Alarm1) E_OK
Task1 GetAlarm(Alarm1, AlarmRef) E_OS_NOFUNC
Task1 ChainTask(Task3)

Task2 TerminateTask()

Task3 SetAbsAlarm(Alarm1, 0, 0) E_OK
Task3 TerminateTask()

Scheduler

Task2 TerminateTask()

Test Sequence 3
Test Cases: 6, 9, 15, 18, 24, 28
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 2
activation = 1
autostart = true

Task2
type = extended
priority = 1
autostart = false
event = Event2

Alarm: Alarm1
counter = timer
action = setevent
task = Task2
event = Event2

Running
task

Called OS service Return status

Task1 GetAlarmBase(Alarm1,
 AlarmBaseRef)

E_OK

OS Test Procedure 1.0  by OSEK Page 43

Running
task

Called OS service Return status

Task1 ActivateTask(Task2) E_OK
Task1 SetRelAlarm(Alarm1,

 AlarmBaseRef.maxallowed,
 0)

E_OK
(maxallowed vielleicht zu groß)

Task1 SetRelAlarm(Alarm1,
 AlarmBaseRef.maxallowed,
 0)

E_OS_STATE

Task1 GetAlarm(Alarm1, AlarmRef) E_OK,
AlarmRef <
AlarmBaseRef.maxallowedvalue

Task1 repeat

Task1 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task1 GetEvent(Task2, EventRef) E_OK, EventRef = Event2
Task1 SetAbsAlarm(Alarm1, 0, 0) E_OK
Task1 GetAlarm(Alarm1, AlarmRef) E_OK, AlarmRef > 0
Task1 CancelAlarm(Alarm1) E_OK
Task1 TerminateTask()

Task2 TerminateTask()

Test Sequence 4:
Test Cases: 30
Scheduling policy: non-, mixed-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 1
schedule = non
activation = 1
autostart = true

Task2
type = basic
priority = 2
activation = 1
autostart = false

Alarms: Alarm1
 counter = timer

action = activatetask
task = Task2

Running
task

Called OS service Return status

Task1 SetRelAlarm(Alarm1,
 1000,
 0)

E_OK

Task1 repeat

OS Test Procedure 1.0  by OSEK Page 44

Running
task

Called OS service Return status

Task1 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task1 GetTaskState(Task2,
StateRef)

E_OK, StateRef=ready

Task1 TerminateTask()

Task2 TerminateTask()

Test Sequence 5:
Test Case 31, 32
Scheduling policy: mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 1
schedule = full
activation = 1
autostart = true

Task2
type = basic
priority = 2
activation = 1
autostart = false

Task3
type = basic
priority = 3
schedule = full
activation = 1
autostart = false

Alarms: Alarm1
counter = timer
action = activatetask
task = Task2

Running
task

Called OS service Return status

Task1 GetAlarmBase(Alarm1,
AlarmBaseRef)

E_OK

Task1 SetRelAlarm(Alarm1,

AlarmBaseRef.mincycle,
 0)

E_OK

Task1 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task2 TerminateTask()

Task1 ChainTask(Task3)

Task3 GetAlarmBase(Alarm1,
AlarmBaseRef)

E_OK

OS Test Procedure 1.0  by OSEK Page 45

Running
task

Called OS service Return status

Task3 SetRelAlarm(Alarm1,

AlarmBaseRef.mincycle,
 0)

E_OK

Task3 repeat

Task3 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task3 GetTaskState(Task2,
StateRef)

E_OK, StateRef = ready

Task3 TerminateTask()

Task2 TerminateTask()

Test Sequence 6:
Test Cases: 33, 34
Scheduling policy: non-, mixed-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 2
schedule = non
activation = 1
autostart = false

Task2
type = extended
priority = 1
Schedule = non
autostart = true
event = Event2

Task3
type = basic
priority = 3
schedule = non
activation = 1
autostart = false

Alarms: Alarm1
counter = timer
action = setevent
task = Task2
event = Event2

Running
task

Called OS service Return status

Task2 ActivateTask(Task1) E_OK
Task2 Schedule E_OK
Task1 GetAlarmBase(Alarm1,

AlarmBaseRef)
E_OK

OS Test Procedure 1.0  by OSEK Page 46

Running
task

Called OS service Return status

Task1 SetRelAlarm(Alarm1,
 AlarmBaseRef.mincycle,
 0)

E_OK

Task1 repeat

Task1 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task1 GetEvent(Task2, EventRef) E_OK, EventRef = Event2
Task1 TerminateTask()

Task2 ActivateTask(Task3) E_OK
Task2 ClearEvent(Event2) E_OK
Task2 WaitEvent(Event2) E_OK
Task3 GetAlarmBase(Alarm1,

AlarmBaseRef)
E_OK

Task3 SetRelAlarm(Alarm1,
 AlarmBaseRef.mincycle
 0)

E_OK

Task3 repeat

Task3 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task3 GetTaskState(Task2,
StateRef)

E_OK, StateRef = ready

Task3 TerminateTask()

Task2 TerminateTask()

Test Sequence 7:
Test Cases: 35, 36
Scheduling policy: mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Tasks: Task1

type = basic
priority = 1
schedule = full
activation = 1
autostart = false

Task2
type = extended
priority = 2
Schedule = full
autostart = true
event = Event2

Task3
type = basic
priority = 3
schedule = full
activation = 1
autostart = false

Task4

OS Test Procedure 1.0  by OSEK Page 47

type = basic
priority = 4
schedule = full
activation = 1
autostart = false

Alarms: Alarm1
counter = timer
action = setevent
task = Task2
event = Event2

Running
task

Called OS service Return status

Task2 ActivateTask(Task1) E_OK
Task2 WaitEvent(Event2) E_OK
Task1 ActivateTask(Task3) E_OK
Task3 GetAlarmBase(Alarm1,

AlarmBaseRef)
E_OK

Task3 SetRelAlarm(Alarm1,
 AlarmBaseRef.mincycle
 0)

E_OK

Task3 repeat

Task3 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task3 GetTaskState(Task2,
StateRef)

E_OK, StateRef = ready

Task3 TerminateTask() E_OK
Task2 ClearEvent(Event2) E_OK
Task2 ActivateTask(Task4) E_OK
Task4 GetAlarmBase(Alarm1,

AlarmBaseRef)
E_OK

Task4 SetRelAlarm(Alarm1,
 AlarmBaseRef.mincycle,
 0)

E_OK

Task4 repeat

Task4 until GetAlarm(Alarm1) =
E_OS_NOFUNC

Task4 GetEvent(Task2, EventRef) E_OK, EventRef = Event2
Task4 TerminateTask()

Task2 TerminateTask()

Task1 TerminateTask()

3.6 Error handling, hook routines and OS execution control

Test Sequence 1:
Test Cases: 1, 2, 3, 4, 5, 6, 7, 8
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: standard, extended

OS Test Procedure 1.0  by OSEK Page 48

Hook routines: StartupHook = true
ErrorHook = false
ShutdownHook = true
PreTaskHook = true
PostTaskHook = true

Tasks: Task1
type = basic
schedule = non
priority = 1
activation = 1
autostart = false

Task2
type = basic
schedule = non
priority = 2
activation = 1
autostart = false

Running task Called OS service Return status
StartupHook ActivateTask(Task1) E_OK
PreTaskHook GetTaskID() E_OK, Task1
PreTaskHook GetTaskState(Task1) E_OK, running
PreTaskHook GetTaskState(Task2) E_OK, suspended
Task1 ActivateTask(Task2) E_OK
Task1 Schedule() E_OK
PostTaskHook GetTaskID() E_OK, Task1
PostTaskHook GetTaskState(Task1) E_OK, running
PostTaskHook GetTaskState(Task2) E_OK, suspended
PreTaskHook GetTaskID() E_OK, Task2
PreTaskHook GetTaskState(Task1) E_OK, ready
PreTaskHook GetTaskState(Task2) E_OK, running
Task2 TerminateTask() E_OK
PostTaskHook GetTaskID() E_OK, Task2
PostTaskHook GetTaskState(Task1) E_OK, ready
PostTaskHook GetTaskState(Task2) E_OK, running
PreTaskHook GetTaskID() E_OK, Task1
PreTaskHook GetTaskState(Task1) E_OK, running
PreTaskHook GetTaskState(Task2) E_OK, suspended
T1 ShutdownOS() E_OK
ShutdownHook

Test Sequence 2:
Test Cases: 1, 2, 3, 4, 5, 6, 7
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: ECC1, ECC2
Return status: standard, extended
Hook routines: StartupHook = true

ErrorHook = false
ShutdownHook = true

OS Test Procedure 1.0  by OSEK Page 49

PreTaskHook = true
PostTaskHook = true

Tasks: Task1
type = basic
schedule = non
priority = 1
activation = 1
autostart = false

Task2
type = basic
schedule = non
priority = 2
activation = 1
autostart = false

Running task Called OS service Return status
StartupHook ActivateTask(Task1) E_OK
PreTaskHook GetTaskID() E_OK, Task1
PreTaskHook GetTaskState(Task1) E_OK, running
PreTaskHook GetTaskState(Task2) E_OK, suspended
Task1 ActivateTask(Task2) E_OK
Task1 Schedule() E_OK
PostTaskHook GetTaskID() E_OK, Task1
PostTaskHook GetTaskState(Task1) E_OK, running
PostTaskHook GetTaskState(Task2) E_OK, suspended
PreTaskHook GetTaskID() E_OK, Task2
PreTaskHook GetTaskState(Task1) E_OK, ready
PreTaskHook GetTaskState(Task2) E_OK, running
Task2 TerminateTask() E_OK
PostTaskHook GetTaskID() E_OK, Task2
PostTaskHook GetTaskState(Task1) E_OK, ready
PostTaskHook GetTaskState(Task2) E_OK, running
PreTaskHook GetTaskID() E_OK, Task1
PreTaskHook GetTaskState(Task1) E_OK, running
PreTaskHook GetTaskState(Task2) E_OK, suspended
Task1 ShutdownOS() E_OK
ShutdownHook

Test Sequence 2:
Test Cases: 1, 2, 3, 4, 5, 6, 7
Scheduling policy: non-, mixed-, full-preemptive
Conformance class: BCC1, BCC2, ECC1, ECC2
Return status: extended
Hook routines: StartupHook = true

ErrorHook = false
ShutdownHook = true
PreTaskHook = true
PostTaskHook = true

OS Test Procedure 1.0  by OSEK Page 50

Tasks: Task1
type = basic
schedule = non
priority = 1
activation = 1
autostart = false

Task2
type = basic
schedule = non
priority = 2
activation = 1
autostart = false

Running task Called OS service Return status
StartupHook ActivateTask(Task1)

PreTaskHook GetTaskID() E_OK, Task1
Task1 ChainTask(Task2) E_OK
PostTaskHook GetTaskID() E_OK, Task1
PreTaskHook GetTaskID() E_OK, Task2
Task2 ShutdownOS() E_OK
PostTaskHook GetTaskID() E_OK, Task2
ShutdownHook

OS Test Procedure 1.0  by OSEK Page 51

4 Abbreviations
API Application Programming Interface

COM Communication

DLL Data Link Layer

ECU Electronic Control Unit

ISO International Standard Organization

ISR Interrupt Service Routine

IUT Implementation Under Test

LT Lower Tester

NM Network Management

OPDU OSEK Protocol Data Unit

OS Operating System

PDU Protocol Data Unit

PCO Point of Control and Observation

SDL Specification and Description Language

TMP Test Management Protocol

TM_PDU Test Management - Protocol Data Unit

TTCN Tree and Tabular Combined Notation

UT Upper Tester

OS Test Procedure 1.0  by OSEK Page 52

5 References

[1] OSEK/VDX Conformance Testing Methodology - Version 1.0 - 19th of December 1997

[2] OSEK/VDX OS Test Plan - Version 1.0 - 4th of March 1998

[3] OSEK/VDX Certification Procedure - F. Kaag, J. Minuth, K.J. Neumann, H. Kuder -
Proceedings of the 1st International Workshop on Open Systems in Automotive
Networks - October 1995.

[4] OSEK/VDX Operating System - Version 2.0 revision 1- 15th of October1997

[5] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection, Conformance
testing methodology and framework, part 1 : General Concepts, 1992.

[6] ISO/IEC 9646-3 - Information technology, Open Systems Interconnection, Conformance
testing, methodology and framework, part 3 : The Tree and Tabular Combined Notation
(TTCN), 1992.

[7] Benutzerdokumentation "Classification-Tree Editor - CTE für MS-Windows",
Version 1.2 - ATS Automated Testing Solutions GmbH, Daimler-Benz AG, 1st of
February 1998.

