
2SHQ�6\VWHPV�DQG�WKH�&RUUHVSRQGLQJ�,QWHUIDFHV

IRU�$XWRPRWLYH�(OHFWURQLFV

This document is an official release and replaces all previously distributed documents. The OSEK group retains
the right to make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without
permission in writing from the OSEK/VDX steering committee.

NM test procedure 2.0  by 26(. Document: NMTPR20.DOC

26(.�9';

10�WHVW�SURFHGXUH

Version 2.0

May 4th, 1999

Page 2  by 26(. NM test procedure 2.0

:KDW�LV�26(.�9';"
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and
network management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means „Vehicle Distributed eXecutive“. The functionality of OSEK operating
system was harmonized with VDX. For simplicity OSEK will be used instead of OSEK/VDX
in the document.

26(.�SDUWQHUV�
Adam Opel AG, BMW AG, Daimler-Benz AG, IIIT University of Karlsruhe, Mercedes-
Benz AG, Robert Bosch GmbH, Siemens AG, Volkswagen AG.
GIE.RE. PSA-Renault (Groupement d’intérêt Economique de Recherches et d’Etudes PSA-
Renault).

0RWLYDWLRQ�

• High, recurring expenses in the development and variant management of non-
application related aspects of control unit software.

• Incompatibility of control units made by different manufacturers due to different inter-
faces and protocols.

*RDO�
Support of the portability and reusability of the application software by:

• Specification of interfaces which are abstract and as application-independent as
possible, in the following areas: real-time operating system, communication and
network management.

• Specification of a user interface independent of hardware and network.

• Efficient design of architecture: The functionality shall be configurable and scaleable, to
enable optimal adjustment of the architecture to the application in question.

• Verification of functionality and implementation of prototypes in selected pilot projects.

$GYDQWDJHV�

• Clear savings in costs and development time.

• Enhanced quality of the control units software of various companies.

• Standardized interfacing features for control units with different architectural designs.

• Sequenced utilization of the intelligence (existing resources) distributed in the vehicle,
to enhance the performance of the overall system without requiring additional hardware.

• Provides absolute independence with regards to individual implementation, as the speci-
fication does not prescribe implementation aspects.

NM test procedure 2.0  by 26(. Page 3

26(.�FRQIRUPDQFH�WHVWLQJ
OSEK conformance testing aims at checking conformance of products to OSEK
specifications. Test suites are thus specified for implementations of OSEK operating system,
communication and network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored
by the Commission of European Communities. The term MODISTARC means ”Methods and
tools for the validation of OSEK/VDX based DISTributed ARChitectures”.

This document has been drafted by MODISTARC members:

Harald Heinecke BMW AG

Wolfgang Kremer BMW AG

Benoit Caillaud INRIA

Dirk John IIIT, Karlsruhe University

Yevgeny Shakuro Motorola GmbH

Barbara Ziker Motorola GmbH

Jean-Paul Cloup Peugeot Citroën S.A.

Jean-Emmanuel Hanne Peugeot Citroën S.A.

Samuel Boutin Renault S.A.

Patrick Palmieri Siemens Automotive SA

Didier Stunault Thomson-CSF Detexis

Page 4  by 26(. NM test procedure 2.0

7$%/(�2)�&217(176

���,1752'8&7,21 �

�����6FRSH �

�����5HIHUHQFHV �

�����$EEUHYLDWLRQV �

���7(67�(19,5210(17 �

�����7HVW�DUFKLWHFWXUH �

�����5HTXLUHPHQWV �
2.2.1. OS requirements 9
2.2.2. Network perturbations 9
2.2.3. COM requirements 11
2.2.4. Test tool adaptation 11

���)($785(6�$1'�3$5$0(7(56 ��

�����)RUPDW�RI�WKH�TXHVWLRQQDLUHV ��

�����'LUHFW�10 ��
3.2.1. PICS 13

3.2.1.1. Overall capabilities 13
3.2.1.2. Network information supported 13
3.2.1.3. Protocol events 14
3.2.1.4. NMPDU fields 14
3.2.1.5. NM API capabilities 15
3.2.1.6. NM API parameters 15
3.2.1.7. NM API return codes 17

3.2.2. PIXIT 17
3.2.2.1. Protocol parameters 17
3.2.2.2. API parameters 18
3.2.2.3. Test suite parameters 19

�����,QGLUHFW�10 ��
3.3.1. PICS 20

3.3.1.1. Overall capabilities 20
3.3.1.2. Network information supported 20
3.3.1.3. Protocol events 21
3.3.1.4. NM API capabilities 21
3.3.1.5. NM API parameters 22
3.3.1.6. NM API return codes 23

3.3.2. PIXIT 23
3.3.2.1. Protocol parameters 23
3.3.2.2. API parameters 24
3.3.2.3. Test suite parameters 25

���7(67�0$1$*(0(17�35272&2/ ��

�����7HVW�VFHQDULRV ��

�����'DWD�7\SHV ��

NM test procedure 2.0  by 26(. Page 5

�����703�PHVVDJHV�IURP�/7�WR�87 ��
4.3.1. Common messages for Direct and Indirect NM 28
4.3.2. Specific messages of Direct NM 33
4.3.3. Specific messages of Indirect NM 34

�����703�PHVVDJHV�IURP�87�WR�/7 ��
4.4.1. Common messages for Direct and Indirect NM 34
4.4.2. Specific messages of Direct NM 35
4.4.3. Specific messages of Indirect NM 35

�����703�PHVVDJHV�IURP�/7�WR�1HWZRUN�,QWHUIDFH ��

���35(6(17$7,21�2)�7+(�10�7(67�68,7(6 ��

77&+0(17����7(67�68,7(�)25�',5(&7�10

77&+0(17����7(67�68,7(�)25�,1',5(&7�10

Page 6  by 26(. NM test procedure 2.0

1.� Introduction

1.1.� Scope

This document specifies a test procedure for services and protocols of the OSEK NM as
defined in specification document [5].

This document applies to conformance test suites for testing implementations which claim
conformance to the OSEK NM specification. The test procedure consists of a list of test cases
building the OSEK NM test suite. A test case consists of a sequence of statements
corresponding to one or more test purposes specified in document [2].

As OSEK NM implementations can operate either the Direct OSEK NM or the Indirect OSEK
NM, the NM test suite has been divided into two parts accordingly.

1.2.� References

[1] OSEK/VDX Conformance Testing Methodology - Version 1.0. - 19 December
1997.

[2] OSEK/VDX - NM test plan - Version 1.0. - April 30th, 1998.

[3] OSEK/VDX Operating System - Version 2.0 - revision 1 - 15 October 1997.

[4] OSEK/VDX Communication - Version 2.1 - revision 1 - 17th June 1998.

[5] OSEK Network Management - Concept and Application Programming Interface-
Version 2.50 - 31th of May 1998.

[6] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection,
Conformance testing methodology and framework, SDUW� ���� *HQHUDO� &RQFHSWV,
1992.

[7] ISO/IEC 9646-3 - Information technology, Open Systems Interconnection,
Conformance testing, methodology and framework, SDUW�����7KH�7UHH�DQG�7DEXODU
&RPELQHG�1RWDWLRQ��77&1�� 1992.

1.3.� Abbreviations

API Application Programming Interface

EUT Equipment Under Test

ISO International Standard Organization

IUT Implementation Under Test

LT Lower Tester

NM Network Management

NMPDU Network Management - Protocol Data Unit

OS Operating System

PDU Protocol Data Unit

PICS Protocol Implementation Conformance Statement

NM test procedure 2.0  by 26(. Page 7

PIXIT Protocol Implementation eXtra Information for Testing

SDL Specification and Description Language

TE Test Equipment

TMP Test Management Protocol

TM_PDU Test Management - Protocol Data Unit

TTCN Tree and Tabular Combined Notation

UT Upper Tester

UUDT Unsegmented Unacknowledged Data Transfer

Page 8  by 26(. NM test procedure 2.0

2.�Test environment

2.1.� Test architecture

According to the methodology described in document [1], the test architecture for NM
conformance is split into two parts:

• the Equipment Under Test (EUT) which encompasses the NM implementation to be
tested, also called Implementation Under Test (IUT),

• the Test Equipment (TE) which implements the test suite and is connected to the
Equipment Under Test via the network data bus.

The test suite makes up the Lower Tester (LT) which communicates through the Test
Management Protocol (TMP) with its counterpart of the EUT called Upper Tester (UT). UT’s
role is on one hand to perform all actions requested by the LT and on the other hand to send
back all the information collected at the NM API.

Any communication protocol can be used for exchanges between LT and UT provided it has
been validated before. The UUDT protocol of OSEK COM is a possible choice as described
in Figure 1 and Figure 2 below. Anyway, the TMP is expressed in terms of application
messages called TM_PDUs (Test Management - Protocol Data Units). This way, its
specification is independent of the underlying communication protocols.

To check direct NM conformance, the LT will also have to exchange NMPDUs with the IUT
as illustrated in Figure 1:

• NMPDUs will be sent in order to simulate the NM activity of the other network nodes,

• NMPDUs will be received and analysed in order to determine whether or not the IUT
behaviour conforms to the NM specification.

UT

OSEK
COM

(UUDT)

OSEK
NM

(IUT)

TM_PDU NM API

/7

7(67
(48,30(17

�7(�

(48,30(17�81'(5�7(67
�(87�

NMPDU

'7�%86

TM_PDU

Figure 1 Test architecture for direct NM conformance

To check indirect NM conformance, the LT will have to send COM messages to the EUT in
order to simulate the application data traffic on the network. Such messages will not be
interpreted nor used by the UT. The purpose is to activate the COM/NM interface as required
by indirect NM operation. The functionnality of this interface consists of:

• signalling reception of application messages monitored by the NM module,

NM test procedure 2.0  by 26(. Page 9

• signalling expiry of message monitoring timers.

If the COM module is not OSEK and is unable to provide the required signalling, this
functionnality has to be implemented inside the UT itself.

COM/NM
API

UT

OSEK
COM

(UUDT)

OSEK
NM

(IUT)

TM_PDU NM API

/7

7(67
(48,30(17

�7(�

(48,30(17�81'(5�7(67
�(87�

TM_PDU

'7�%86

COM message

COM
message

Figure 2 Test architecture for indirect NM conformance

Special TM_PDUs are specified to simulate network errors. They are not transmitted to the
UT but interpreted by the lower communication layers which shall perform the requested
actions. A possible approach is described in the next section.

2.2.� Requirements

2.2.1.� OS requirements

The test architecture for NM conformance includes a test application called UT and
implemented in the same equipment unit as the IUT. UT implementation does not require
special OS functionnality. The UT can be integrated in the same environment as the NM. Like
the NM, it only needs task and alarm management services and it can be based on a non-
OSEK OS providing equivalent functionnality.

The configuration of the UT can vary according to the NM configuration itself. For instance,
one or more tasks will need to be implemented depending on the number of tasks that can be
activated by the NM implementation. The configuration will also depend on the OS
conformance class, the scheduling mechanisms and the inter-task communication (task
activation or event setting).

Therefore, this document does not specify a configuration for the UT. It describes the
operation of UT when it receives commands from the LT or information from the NM
implementation, independently of the type and distribution of tasks and events.

2.2.2.� Network perturbations

Since a large part of the NM specification is devoted to error recovery mechanisms, it is
highly recommended that conformance test systems should be able to simulate network
perturbations.

Indeed, the NM specification deals with the following perturbations:

Page 10  by 26(. NM test procedure 2.0

• bus blocked (e.g. CAN BusOff),

• no transmission of NM frames.

Therefore, the NM test suite’s specification assumes that such errors can be reported to the
IUT at the Data Link interface. They could be generated either locally inside the TE or
remotely from the EUT. Some TM_PDUs have been especially defined to control and manage
error simulation from the LT. They are not transmitted to the UT:

• In the local option, they are interpreted by special test software implemented at the
network driver interface inside the EUT. Such a software shall provide the IUT with the
appropriate error reports.

• In the remote option, they are processed by special test software inside the TE which
shall generate the requested Data Bus perturbations using some appropriate hardware.

The picture below illustrates these two options. It shows the location of the added "test
software" and the path of error simulation TMPDUs in both configurations. In the remote
option, the network perturbations are generated by a "Bus Manipulator" driven by the test
software.

DATA BUS

DATA BUS

/2&$/�237,21

5(027(�237,21

87

OSEK NM (IUT)

7(67�(48,30(17
�7(�

Software Driver

Interface Controller

Hardware Driver

Test Software

Software Driver

Interface Controller

Hardware Driver

87

OSEK NM (IUT)

/7

(48,30(17�81'(5
7(67��(87�

Test Software

Software Driver

Interface Controller

Hardware Driver

Software Driver

Interface Controller

Hardware Driver

Bus
Manipulator

/7

7(67�(48,30(17
�7(�

(UURU
VLPXODWLRQ
70B3'8

(UURU
VLPXODWLRQ
70B3'8

(48,30(17�81'(5
7(67��(87�

Figure 3 Architectures for error simulation

NM test procedure 2.0  by 26(. Page 11

The local option is the more flexible and it allows to easily simulate all types of perturbations.
But it requires modifications of the EUT software. The remote option requires additional
hardware means and it may be more difficult to implement.

However, it should be pointed out that the local option only impacts software/hardware of the
network interface. Whatever the selected error simulation technique, the UT, LT and IUT
software need not be modified.

If error simulation is not possible, a reduced test suite can be executed. But the NM
functionnality will not be completely checked.

2.2.3.� COM requirements

The NM test suite’s specification assumes that three COM messages are utilised for exchanges
between the LT and the UT:

• Two messages are used by the TMP protocol to convey the TM_PDUs between the LT
and the UT in either direction.

• The third message is used to test message transmission capability from the UT.
According to the specification, the NM implementation must sometimes execute the
D_Offline or the D_Online services to enable or to disable user’s data transmission. The
message is then used to verify whether or not those services were called as specified.
Moreover, in Indirect NM, this message represents the user’s message whose
transmission is monitored by the Indirect NM.

2.2.4.� Test tool adaptation

It is anticipated that some adaptation of the test tool will take place before running the test
suites on a given IUT. Indeed, the NM specification does not define the format and the
encoding rules of PDUs (direct NM) and of API parameters. The same approach will be
followed in this document about the TMP specification. Only the structure of TMP messages
is specified, not the data encoding formats.

Therefore, two different adaptations will be required:

• adaptation to comply with NMPDUs formats,

• adaptation to comply with API parameter formats.

Page 12  by 26(. NM test procedure 2.0

3.�Features and parameters

The NM specification defines optional features and allows different configurations of the
specification parameters. Prior to any test suite execution, it is necessary to get a precise
knowledge of what features and functions are supported and what parameter values or range
of values are permissible. Such information has to be supplied by implementators in standard
questionnaires defined hereafter. It will be then used to configure the test environment and to
determine which tests can be executed.

Two questionnaires are to be provided. The first one is called PICS. It contains a statement of
the capabilities and options which have been implemented. Each question pertains to one of
the specification requirements, mandatory or optional. The PICS helps to determine whether
all the mandatory features have been implemented and hence it allows a static evaluation of
IUT conformance before test suite execution. The PICS is a fixed-format questionnaire in
which the questions are simply answered Yes or No.

The second questionnaire is called PIXIT. It provides with additional information required to
run the conformance tests. PIXIT questions ask for parameter values pertaining to the IUT and
to the testing environment such as time-out values or addressing information. Anwers are used
to parameterize the test suite and configure the LT and the UT.

3.1.� Format of the questionnaires

The questionnaire tables consists of four columns for the PICS and five for the PIXIT:

• Item: specifies an identifier which can be used as a reference in other questions

• Service / protocol features or parameters: specifies the nature of requested information

• Status: gives a status of the feature/parameter in the specification (Mandatory,
Optional)

• Support: indicates whether the feature/parameter has been implemented or not. This
column is to be filled in by IUT implementators.

• Value: specifies the related parameter value (PIXIT only). This column is to be filled
in by IUT implementators.

The questionnaires make use of the following symbols or abbreviations:

• Status column:
 M Mandatory
 O Optional
 SUHG� Conditional expression where SUHG refers to the item that needs to be supported

for the condition to apply. Conditions may contain logical expressions using
the following symbols:

 | logical OR,
 . (dot) logical AND.

• Support column:
 Yes feature/parameter supported
 No feature/parameter not supported
 N/A Not Applicable due to not matched condition

NM test procedure 2.0  by 26(. Page 13

The support column does only propose answers meeting compliance requirements. For
instance, if the feature or parameter is mandatory only a Yes answer is presented. Answering
No means non-compliance. Doing this, static conformance analysis becomes straightforward.

Whenever a condition is specified in the status column, a "N/A" answer is proposed and
should be ticked if the IUT does not match the condition. The condition defines what should
be answered to some previous questions in order to keep the present statement meaningful. No
condition is expressed when the statement is depending on previous answers relating to
mandatory features (since such answers should normally be Yes).

3.2.� Direct NM

3.2.1.� PICS

The following questionnaires intend to provide a comprehensive list of direct NM features and
options in order to determine the IUT capabilities with great accuracy. Protocol capabilities
are listed before services features since the latter are directly connected to protocol
implementation.

3.2.1.1.� Overall capabilities

Item Protocol Feature Status Support

Operating modes supported:
Ona − Normal/Active mode M _Yes
Ola − Limphome/Active mode M _Yes
Opa − Passive Mode O _Yes _No

− Network-wide BusSleep Mode
Obr • as receiver O _Yes _No
Obi • as initiator Obr:O _Yes _No _N/A

Miscelleanous:
Rd − Ring Data forwarding O _Yes _No
Dis − Disabling/enabling user communication when

entering/ leaving limphome state
M _Yes

3.2.1.2.� Network information supported

Item Protocol Feature Status Support

Network information managed by the IUT:
Ni1 − Normal configuration M _Yes
Ni2 − Limphome configuration M _Yes
Ni3 − Position inside logical ring (predecessor, successor) M _Yes
Ni4 − Network status O _Yes _No
Ni5 − Ring data Rd:M _Yes _N/A

Page 14  by 26(. NM test procedure 2.0

If Network Status is implemented, is the following
information available ? (1)

Ns1 − Present network configuration stable/not stable Ni4:O _Yes _No _N/A
Ns2 − No error/error bus blocked Ni4:O _Yes _No _N/A
Ns3 − NMPassive/NMActive Ni4:O _Yes _No _N/A
Ns4 − NMOn/NMOff Ni4:O _Yes _No _N/A
Ns5 − no NMLimphome/NMLimphome Ni4:O _Yes _No _N/A
Ns6 − no NMBusSleep/NMBusSleep P1(2):O _Yes _No _N/A
Ns7 − no NMTwbs/NMTwbs(Normal/Limphome) P1(2):O _Yes _No _N/A
Ns8 − using of Ring Data allowed/not allowed Ni4.Rd:O _Yes _No _N/A

Ns9 − GotoMode(Awake)/GotoMode(BusSleep) called Ni4.Obi:O _Yes _No _N/A

(1) At least one of the following bits of information must be supported.
(2) P1 = Ni4.(Obr|Obi)

3.2.1.3.� Protocol events

Item Protocol Feature Status Support

NMPDUs supported
− Ring message

Rmr • as receiver M _Yes
Rmt • as transmitter M _Yes

− Alive message
Amr • as receiver M _Yes
Amt • as transmitter M _Yes

− Limphome message
Lmr • as receiver M _Yes
Lmt • as transmitter M _Yes

Miscelleanous:
Ev1 − Moving to Limphome when bus blocked M _Yes
Ev2 − Moving to Limphome when tx_limit exceeded M _Yes
Ev3 − Moving to Limphome when rx_limit exceeded M _Yes

3.2.1.4.� NMPDU fields

Item Protocol Feature Status Support

NMPDU fields supported
Pf1 − Source M _Yes
Pf2 − Destination M _Yes
Pf3 − Code (ring, alive, limphome) M _Yes
Pf4 − Sleep.ind Obr|Obi:M _Yes _N/A
Pf5 − Sleep.ack (ring message only) Obr|Obi:M _Yes _N/A
Pf6 − RingData (ring message only) Rd:M _Yes _N/A

NM test procedure 2.0  by 26(. Page 15

3.2.1.5.� NM API capabilities

Item Service Feature Status Support

NM API calls supported:
Sv1 − InitConfig O(1) _Yes _No
Sv2 − GetConfig M _Yes
Sv3 − CmpConfig O(2) _Yes _No
Sv4 − SelectDeltaConfig O(3) _Yes _No
Sv5 − StartNM M _Yes
Sv6 − StopNM M _Yes
Sv7 − GotoMode Obi:M(4) _Yes _N/A
Sv8 − GetStatus Ni4:O(5) _Yes _No _N/A
Sv9 − CmpStatus Ni4:O(6) _Yes _No _N/A
Sva − SelectDeltaStatus Ni4:O(7) _Yes _No _N/A
Svb − SilentNM Opa:M(8) _Yes _N/A
Svc − TalkNM Opa:M(8) _Yes _N/A
Svd − TransmitRingData Rd:O(9) _Yes _No _N/A
Sve − ReadRingData Rd:O(9) _Yes _No _N/A

NM indication capabilities
− Can the NM indicate a normal configuration change

Inct • by task activation O _Yes _No
Ince • by event setting ¬Inct:O _Yes _No

− Can the NM indicate a limphome configuration
change

Ilct • by task activation O _Yes _No
Ilce • by event setting ¬Ilct:O _Yes _No _N/A

− Can the NM indicate a network status change
Inst • by task activation Ni4:O _Yes _No _N/A
Inse • by event setting Ni4.¬Inst:O _Yes _No _N/A

− Can the NM indicate ring data reception
Irdt • by task activation Rd:O _Yes _No _N/A
Irde • by event setting Rd.¬Irdt:O _Yes _No _N/A

(1) referred to as ,QLW&RQILJ option in NM test plan
(2) referred to as &PS&RQILJ option in NM test plan
(3) referred to as 6HOHFW&RQILJ option in NM test plan
(4) referred to as %XV6OHHS option in NM test plan
(5) referred to as 106WDWXV option in NM test plan
(6) referred to as &PS6WDWXV option in NM test plan
(7) referred to as 6HOHFW6WDWXV option in NM test plan
(8) referred to as $FWLYH�3DVVLYH option in NM test plan
(9) referred to as 5LQJ'DWD option in NM test plan

3.2.1.6.� NM API parameters

Item Service Feature Status Support

InitConfig parameters:
Icp1 − NetId Sv1:M _Yes _N/A

Page 16  by 26(. NM test procedure 2.0

GetConfig parameters:
Gcp1 − NetId M _Yes
Gcp2 − Config M _Yes
Gcp3 − ConfigKind M _Yes

CmpConfig parameters:
Ccp1 − NetId Sv3:M _Yes _N/A
Ccp2 − TestConfig Sv3:M _Yes _N/A
Ccp3 − RefConfig Sv3:M _Yes _N/A
Ccp4 − CMask Sv3:M _Yes _N/A

SelectDeltaConfig parameters:
Scp1 − NetId Sv4:M _Yes _N/A
Scp2 − ConfigKind Sv4:M _Yes _N/A
Scp3 − ConfigHandle Sv4:M _Yes _N/A
Scp4 − CMaskHandle Sv4:M _Yes _N/A

StartNM parameters:
Sap1 − NetId M _Yes

StopNM parameters:
Sop1 − NetId M _Yes

GotoMode parameters:
Gmp1 − NetId M _Yes _N/A
Gmp2 − NewMode M _Yes _N/A

GetStatus parameters:
Gsp1 − NetId Sv8:M _Yes _N/A
Gsp2 − NetworkStatus Sv8:M _Yes _N/A

CmpStatus parameters:
Csp1 − NetId Sv9:M _Yes _N/A
Csp2 − TestStatus Sv9:M _Yes _N/A
Csp3 − RefStatus Sv9:M _Yes _N/A
Csp4 − SMask Sv9:M _Yes _N/A

SelectDeltaStatus parameters:
Scp1 − NetId Sva:M _Yes _N/A
Scp2 − StatusHandle Sva:M _Yes _N/A
Scp3 − SMaskHandle Sva:M _Yes _N/A

SilentNM parameters:
Sip1 − NetId Svb:M _Yes _N/A

TalkNM parameters:
Tap1 − NetId Svc:M _Yes _N/A

ReadRingdata parameters:
Rdp1 − NetId Svd:M _Yes _N/A
Rdp2 − RingData Svd:M _Yes _N/A

TransmitRingdata parameters:
Tdp1 − NetId Sve:M _Yes _N/A
Tdp2 − RingData Sve:M _Yes _N/A

NM test procedure 2.0  by 26(. Page 17

3.2.1.7.� NM API return codes

Note: There is no statement regarding CmpStatus and CmpConfig. The returned code
(true/false) yields the result of comparison and should be considered as part of the
respective procedure implementation.

Item Service Feature Status Support

Is E_OK return code supported by: (1)

Eok1 − InitConfig Sv1:O _Yes _No _N/A
Eok2 − GetConfig O _Yes _No
Eok5 − StartNM O _Yes _No
Eok6 − StopNM O _Yes _No
Eok7 − GotoMode Sv7:O _Yes _No _N/A
Eok8 − GetStatus Sv8:O _Yes _No _N/A
Eokb − SilentNM Svb:O _Yes _No _N/A
Eokc − TalkNM Svc:O _Yes _No _N/A
Eokd − TransmitRingData Svd:M _Yes _No _N/A
Eoke − ReadRingData Sve:M _Yes _No _N/A

Is E_notOK return code supported by: (1)

Enokd − TransmitRingData Svd:M _Yes _No _N/A
Enoke − ReadRingData Sve:M _Yes _No _N/A

(1) referred to as 6WDWXV option in NM test plan

3.2.2.� PIXIT

The following questionnaires intend to provide actual values for implementation-dependent
parameters stated in the NM specification. They also ask for some test parameters required to
run the test cases. The values supplied by the IUT designer will be picked up to parameterize
the test suite. It is understood here that some work is needed before to adapt the test
environment to the actual implementation formats of NMPDU fields and API parameters
(size, range of values...). There is no statement relating to such information in the
questionnaires.

3.2.2.1.� Protocol parameters

• Ring configuration

 To check the direct NM protocol, the LT needs to simulate other nodes of the logical
ring. Therefore, the test user will be asked for four node addresses called SN1, SN2,
PN1, PN2 and respecting the following sequence on the ring (NodeId represents the IUT
node address):

RING

•
•
•

•
•

NodeId

SN1

SN2

PN1

PN2

Figure 4 Logical ring configuration for the test suite

Page 18  by 26(. NM test procedure 2.0

• Expiration window timers

 To check protocol timer implementation, a time window has to be defined where IUT
outputs triggered by timer expiry can be accepted. For instance, to check an assertion
such as "the NM transmits a ring message after TTyp", the LT will firstly wait for TTyp

and verify that nothing has been received, secondly wait for the TTyp window expiration
and verify that the ring message has been received.

 A time window is therefore defined for each protocol timer.

Item Protocol parameter Status Support Value

Ring configuration:
Rc0 − Maximum number of nodes supported

in network configuration
M >= 2

Rc1 − NodeId M _Yes
Rc2 − SN1 M _Yes
Rc3 − PN1 Rc0>2:M _Yes _N/A
Rc4 − SN2 Rc0>3:M _Yes _N/A
Rc5 − PN2 Rc0>4:M _Yes _N/A

Other parameters:
Pp1 − rx_limit M _Yes
Pp2 − tx_limit M _Yes
Pp3 − reserved area of Opcode in NMPDUs M _Yes
Pp4 − size of ring data in ring message Rd:M _Yes _N/A

Protocol timers:
Wt1 − Ttyp M _Yes
Wt2 − Tmax M _Yes
Wt3 − Terror M _Yes
Wt4 − Twaitbussleep Obr|Obi:M _Yes _N/A

Expiration window timers:
Wt1 − TtypW M _Yes
Wt2 − TmaxW M _Yes
Wt3 − TerrorW M _Yes
Wt4 − TwaitbussleepW Obr|Obi:M _Yes _N/A

3.2.2.2.� API parameters

• Indication of configuration change

 To check the functionnality of task activation or event setting on change of
configuration, the Upper Tester must implement the associated tasks or events. The test
user will be asked for the config handle and mask handle values processed by the IUT.
And for each handle/mask association he must provide the list of nodes that must send
an alive or ring message to generate an indication at the NM API.

• Indication of network status change

 To check the functionnality of task activation or event setting on change of network
status, the Upper Tester must implement the associated tasks or events. The test user
will be asked for the status handle and mask handle values processed by the IUT. And

NM test procedure 2.0  by 26(. Page 19

for each handle/mask association he must provide the list of necessary status changes to
generate an indication at the NM API.

• Indication of ring data reception

 To check the functionnality of task activation or event setting on ring data reception, the
Upper Tester must implement the associated tasks or events.

Item Service parameter Status Support Value

Nid NetId M _Yes

API return status:
Rs1 − E_OK M _Yes
Rs2 − E_notOK Svd|Sve:M _Yes _N/A
Rs3 − TRUE Sv3|Sv9:M _Yes _N/A
Rs4 − FALSE Sv3|Sv9M _Yes _N/A

Task identifiers for NM indications:
Ti1 − normal configuration change Inct:M _Yes _N/A
Ti2 − limphome configuration change Ilct:M _Yes _N/A
Ti3 − network status change Inst:M _Yes _N/A
Ti4 − ring data reception Irdt:M _Yes _N/A

Event masks for NM indications:
Em1 − normal configuration change Ince:M _Yes _N/A
Em2 − limphome configuration change Ilce:M _Yes _N/A
Em3 − network status change Inse:M _Yes _N/A
Em4 − ring data reception Irde:M _Yes _N/A

Handles for config change indication:
Hc1 − table of config handles Inct|Ince| _Yes _N/A
Hc2 − table of associated mask handles Iect|Iece: _Yes _N/A
Hc3 − table of node lists M _Yes _N/A

Handles for status change indication:
Hs1 − table of status handles Ist|Ise:M _Yes _N/A
Hs2 − table of associated mask handles Ist|Ise:M _Yes _N/A
Hs3 − table of lists of status changes Ist|Ise:M _Yes _N/A

3.2.2.3.� Test suite parameters

• Test execution timers

 The following timers are defined to manage the test execution:

 Tresp: this timer is started when the LT is waiting for an NMPDU or a TMPDU from
the EUT. If it expires, the test will conclude that no response is forthcoming.

 Twait: this timer is started when the LT must wait for a certain amount of time before
sending the next NMPDU or TMPDU. This can happen when the LT has to
send two PDUs consecutively and the IUT needs to terminate the first action
before being able or entitled to accept the second PDU. The latter is sent after
Twait expiry.

Page 20  by 26(. NM test procedure 2.0

Item Test suite parameter Status Support Value

Test execution timers:
Tt1 − Tresp M _Yes
Tt2 − Twait M _Yes

3.3.� Indirect NM

3.3.1.� PICS

The following questionnaires intend to provide a comprehensive list of indirect NM features
and options in order to determine the IUT capabilities with great accuracy. Protocol
capabilities are listed before services features since the latter are directly connected to protocol
implementation.

3.3.1.1.� Overall capabilities

Item Protocol Feature Status Support

Node monitoring mechanism supported:
Mtr − Transmission monitoring M _Yes
Mre − Reception monitoring M _Yes
Mni − Network interface status monitoring M _Yes

Time-out monitoring mechanism supported:
Gt − One global time-out O1(1) _Yes _No
Mt − One monitoring time-out per message O1(1) _Yes _No

Operating modes supported:
On − Normal mode M _Yes
Ol − Limphome mode M _Yes
Obs − BusSleep Mode Mt:O _Yes _No _N/A

Miscelleanous:
Dis − Disabling/enabling user communication when

entering/ leaving limphome state
M _Yes

(1) O1: these two options are exclusive each other. One of them must be supported.

3.3.1.2.� Network information supported

Item Protocol Feature Status Support

Network information managed by the IUT:
Ni1 − Normal configuration M _Yes
Ni2 − Extended configuration Mt:M _Yes _N/A
Ni3 − Network status O _Yes _No
Ni4 − Extended network status Mt:O _Yes _No _N/A

If Network Status is implemented, is the following
information available ? (1)

NM test procedure 2.0  by 26(. Page 21

Ns1 − No error/error bus blocked Ni3:O _Yes _No _N/A
Ns2 − NMOn/NMOff Ni3:O _Yes _No _N/A
Ns3 − no NMLimphome/NMLimphome Ni3:O _Yes _No _N/A
Ns4 − no NMBusSleep/NMBusSleep Ni3.Obs:O _Yes _No _N/A

Ns5 − no NMWaitBusSleep/NMWaitBusSleep Ni3.Obs:O _Yes _No _N/A

If Extended Network Status is implemented, is the
following information available ?

En1 − no error Ni2:M _Yes _N/A
En2 − error, communication possible Ni2:O _Yes _No _N/A
En3 − error, communication not possible Ni2:M _Yes _N/A

(1) At least one of the following bits of information must be supported.

3.3.1.3.� Protocol events

Item Protocol Feature Status Support

Message monitoring
Imt − Indication of monitored message transmission M _Yes
Imr − Indication of monitored message reception M _Yes

Miscelleanous:
Ev1 − Moving to Limphome when bus blocked M _Yes

3.3.1.4.� NM API capabilities

Item Service Feature Status Support

NM API calls supported:
Sv1 − InitConfig Mt:M _Yes _N/A
Sv2 − GetConfig M _Yes
Sv3 − CmpConfig O(1) _Yes _No
Sv4 − SelectDeltaConfig O(2) _Yes _No
Sv5 − StartNM M _Yes
Sv6 − StopNM M _Yes
Sv7 − GotoMode Obs:M(3) _Yes _N/A
Sv8 − GetStatus Ni3:O(4) _Yes _No _N/A
Sv9 − CmpStatus Ni3:O(5) _Yes _No _N/A
Sva − SelectDeltaStatus Ni3:O(6) _Yes _No _N/A

NM indication capabilities
− Can the NM indicate a configuration change

Inct • by task activation O _Yes _No
Ince • by event setting ¬Inct:O _Yes _No

− Can the NM indicate an extended configuration
change

Iect • by task activation O _Yes _No
Iece • by event setting ¬Iect:O _Yes _No _N/A

− Can the NM indicate a network status change
Ist • by task activation Ni3:O _Yes _No _N/A

Page 22  by 26(. NM test procedure 2.0

Ise • by event setting Ni3.¬Inst:O _Yes _No _N/A

(1) referred to as &PS&RQILJ option in NM test plan
(2) referred to as 6HOHFW&RQILJ option in NM test plan
(3) referred to as %XV6OHHS option in NM test plan
(4) referred to as 106WDWXV option in NM test plan
(5) referred to as &PS6WDWXV option in NM test plan
(6) referred to as 6HOHFW6WDWXV option in NM test plan

3.3.1.5.� NM API parameters

Item Service Feature Status Support

InitConfig parameters:
Icp1 − NetId Sv1:M _Yes _N/A

GetConfig parameters:
Gcp1 − NetId M _Yes
Gcp2 − Config M _Yes
Gcp3 − ConfigKind M _Yes

CmpConfig parameters:
Ccp1 − NetId Sv3:M _Yes _N/A
Ccp2 − TestConfig Sv3:M _Yes _N/A
Ccp3 − RefConfig Sv3:M _Yes _N/A
Ccp4 − CMask Sv3:M _Yes _N/A

SelectDeltaConfig parameters:
Scp1 − NetId Sv4:M _Yes _N/A
Scp2 − ConfigKind Sv4:M _Yes _N/A
Scp3 − ConfigHandle Sv4:M _Yes _N/A
Scp4 − CMaskHandle Sv4:M _Yes _N/A

StartNM parameters:
Sap1 − NetId M _Yes

StopNM parameters:
Sop1 − NetId M _Yes

GotoMode parameters:
Gmp1 − NetId M _Yes _N/A
Gmp2 − NewMode M _Yes _N/A

GetStatus parameters:
Gsp1 − NetId Sv8:M _Yes _N/A
Gsp2 − NetworkStatus Sv8:M _Yes _N/A

CmpStatus parameters:
Csp1 − NetId Sv9:M _Yes _N/A
Csp2 − TestStatus Sv9:M _Yes _N/A
Csp3 − RefStatus Sv9:M _Yes _N/A
Csp4 − SMask Sv9:M _Yes _N/A

SelectDeltaStatus parameters:
Scp1 − NetId Sva:M _Yes _N/A
Scp2 − StatusHandle Sva:M _Yes _N/A

NM test procedure 2.0  by 26(. Page 23

Scp3 − SMaskHandle Sva:M _Yes _N/A

3.3.1.6.� NM API return codes

Note: There is no statement regarding CmpStatus and CmpConfig. The returned code
(true/false) yields the result of comparison and should be considered as part of the
respective procedure implementation.

Item Service Feature Status Support

Is E_OK return code supported by: (1)

Eok1 − InitConfig Sv1:O _Yes _No _N/A
Eok2 − GetConfig O _Yes _No
Eok5 − StartNM O _Yes _No
Eok6 − StopNM O _Yes _No
Eok7 − GotoMode Sv7:O _Yes _No _N/A
Eok8 − GetStatus Sv8:O _Yes _No _N/A

(1) referred to as 6WDWXV option in NM test plan

3.3.2.� PIXIT

The following questionnaires intend to provide actual values for implementation-dependent
parameters stated in the NM specification. They also ask for some test parameters required to
run the test cases. The values supplied by the IUT designer will be picked up to parameterize
the test suite. It is understood here that some work is needed before to adapt the test
environment to the actual implementation formats of NMPDU fields and API parameters
(size, range of values...). There is no statement relating to such information in the
questionnaires.

3.3.2.1.� Protocol parameters

• Network configuration

 To check the indirect NM protocol, the LT needs to simulate other network nodes.
Therefore, the test user will be asked for two node addresses called MN1 and MN2 and
during test suite execution the LT will send data messages with MN1 or MN2 as source
addresses. In case of “one time-out per message” protocol version, the user must also
specify the respective time-out values associated with MN1 and MN2 sources.

• Expiration window timers

 To check protocol timer implementation, a time window has to be defined where IUT
outputs triggered by timer expiry can be accepted. For instance, to check an assertion
such as "In NMLimphome state, application communication is enabled after TError", the
test system will firstly wait for TError and verify that communication has not been
enabled, secondly wait for the TError window expiration and verify that communication
has been enabled.

 A time window is therefore defined for each protocol timer.

Page 24  by 26(. NM test procedure 2.0

Item Protocol parameter Status Support Value

Network configuration:
Nc0 − Maximum number of nodes supported

in network configuration
M >= 2

Nc1 − MN1 M _Yes
Nc2 − MN2 Nc0>2:M _Yes _N/A

Other parameters:
Pp1 − Max number of counter incr. for ON Mt:M _Yes _N/A
Pp2 − Max number of counter incr. for MN1 Mt:M _Yes _N/A
Pp3 − Max number of counter incr. for MN2 Mt.Nc2:M _Yes _N/A
Pp4 − Max number of counter decr. for ON Mt:M _Yes _N/A
Pp5 − Max number of counter decr. for MN1 Mt:M _Yes _N/A

Protocol timers:
Pt1 − Time-out for OBservation (TOB) Gt:M _Yes _N/A
Pt2 − Terror M _Yes
Pt3 − Twaitbussleep Obs:M _Yes _N/A
Pt4 − TON (Time-out for node transmission) Mt:M _Yes _N/A
Pt5 − TMN1 (Time-out for MN1) Mt:M _Yes _N/A
Pt6 − TMN2 (Time-out for MN2) Mt.Nc2:M _Yes _N/A
Pt7 − TMA (Time-out for all mute/absent) Mt:M _Yes _N/A

Expiration window timers:
Wt1 − TOBW Gt:M _Yes _N/A
Wt2 − TerrorW M _Yes
Wt3 − TwaitbussleepW Obs:M _Yes _N/A
Wt4 − TONW (transmission from own note) Mt:M _Yes _N/A
Wt5 − TMNW (reception from remote nodes) Mt:M _Yes _N/A

3.3.2.2.� API parameters

• Indication of configuration change

 To check the functionnality of task activation or event setting on change of
configuration, the Upper Tester must implement the associated tasks or events. The test
user will be asked for the config handle and mask handle values processed by the IUT.
And for each handle/mask association he must provide the list of nodes that must send
an alive or ring message to generate an indication at the NM API.

• Indication of network status change

 To check the functionnality of task activation or event setting on change of network
status, the Upper Tester must implement the associated tasks or events. The test user
will be asked for the status handle and mask handle values processed by the IUT. And
for each handle/mask association he must provide the list of necessary status changes to
generate an indication at the NM API.

Item Service parameter Status Support Value

Nid NetId M _Yes

API return status:
Rs1 − E_OK M _Yes

NM test procedure 2.0  by 26(. Page 25

Rs2 − TRUE Sv3|Sv9:M _Yes _N/A
Rs3 − FALSE Sv3|Sv9M _Yes _N/A

Task identifiers for NM indications:
Ti1 − normal configuration change Inct:M _Yes _N/A
Ti2 − extended configuration change Iect:M _Yes _N/A
Ti3 − network status change Ist:M _Yes _N/A

Event masks for NM indications:
Em1 − normal configuration change Ince:M _Yes _N/A
Em2 − extended configuration change Iece:M _Yes _N/A
Em3 − network status change Ise:M _Yes _N/A

Handles for config change indication:
Hc1 − table of config handles Inct|Ince| _Yes _N/A
Hc2 − table of associated mask handles Iect|Iece: _Yes _N/A
Hc3 − table of node lists M _Yes _N/A

Handles for status change indication:
Hs1 − table of status handles Ist|Ise:M _Yes _N/A
Hs2 − table of associated mask handles Ist|Ise:M _Yes _N/A
Hs3 − table of lists of status changes Ist|Ise:M _Yes _N/A

3.3.2.3.� Test suite parameters

• Test execution timers

 The following timers are defined to manage the test execution:

 Tresp: this timer is started when the LT is waiting for an NMPDU or a TMPDU from
the EUT. If it expires, the test will conclude that no response is forthcoming.

 Twait: this timer is started when the LT must wait for a certain amount of time before
sending the next NMPDU or TMPDU. This can happen when the LT has to
send two PDUs consecutively and the IUT needs to terminate the first action
before being able or entitled to accept the second PDU. The latter is sent after
Twait expiry.

Item Test suite parameter Status Support Value

Test execution timers:
Mt1 − Tresp M _Yes
Mt2 − Twait M _Yes

Page 26  by 26(. NM test procedure 2.0

4.�Test Management Protocol

4.1.� Test scenarios

Figure 2 below describes the different communication scenarios between the UT and the LT.
Dashed lines stand for messages that may be sent or not according to some status or
configuration parameters.

UT LTService request

Response

UT LT

Status

Scenario 1 Scenario 2

UT LTNMPDU

Event report

Scenario 3

UT LTConfiguration
message

Scenario 4

Service request

UT LTTest message

Test message

Scenario 5

Error
simulator

LTError
configuration

Scenario 6

Figure 5 Test scenarios

Scenarios 1 and 2 are used to request the UT to call a service of the NM API. The 6HUYLFH
UHTXHVW message conveys a service identifier and the associated parameters:

• Scenario 1 corresponds to GetConfig, CmpConfig, GetStatus and ReadRingData
procedure calls. The result is the network config, the network status and the ring data
respectively. It is sent back in the 5HVSRQVH message.

• Scenario 2 corresponds to the other API calls. The only result is the API status.
Depending on what is specified in the request message, it will be returned or not in the
6WDWXV message.

In Scenario 3, the LT sends out an NMPDU which causes or not generation of an indication
from the NM to the UT in order to inform of a configuration change, a status change or a ring

NM test procedure 2.0  by 26(. Page 27

data reception. Depending on the UT configuration, the indication will be returned or not to
the LT in the (YHQW�UHSRUW.

Scenario 4 aims at configuring the UT behaviour. The &RQILJXUDWLRQ�PHVVDJH specifies which
of the possible NM indications shall be returned to the LT.

Scenario 5 is used to verify whether or not user’s communication has been enabled or disabled
by the NM. On 7HVW�PHVVDJH reception, the UT shall try and send back the same message
towards the LT.

Scenario 6 aims at configuring the network interface behaviour. The (UURU� FRQILJXUDWLRQ
message specifies which network perturbations are to be simulated.

4.2.� Data Types

The test management protocol makes use of the following data types of the NM specification:

'DWD�7\SHV 5HPDUN
NetIdType Type for references to several communication networks
StatusType Type of returned status information after a service call
ConfigKindName Unique name defining the requested configuration. Legal names are:

"Normal", "Normal_extended", "LimpHome".
ConfigHandleType This data type represents a handle to reference values of the type

ConfigRefType
NMModeName Unique name defining the NM operational modes. Legal names are:

"BusSleep" and "Awake"
NetworkStatusType Type of Network Status
StatusHandleType This data type represents a handle to reference values of the type

StatusRefType
RingDataType Type of the data field in the NMPDU

Table 1 Reused data types of NM specification

Data types specific to the test management protocol are defined below:

Name: 703'81DPH

Description: Unique name defining the type of TMP message.

Values: "apiCall": to request the UT to call a procedure of the NM API
"apiStatus": to carry out information returned by the last API call
"utConfig": to configure UT’s behaviour
"errorConfig": to configure Network Interface’s behaviour
"utEvent": to report from NM indication through task activation or

event signalling
"testMessage": to request the UT to send back the test message

Name: 'LU10$3,1DPH

Description: Unique name defining the type of direct NM API.

Values: "initConfig", "getConfig", "cmpConfig", "selectConfig", "startNM",
"stopNM", "gotoMode", "getStatus", "cmpStatus", "selectStatus",
"silentNM", "talkNM", "readRingData" and "transmitRingData".

Page 28  by 26(. NM test procedure 2.0

Name: 6WDWXV0RGH7\SH

Description: Unique name defining how the API return code will be dealt with.

Values: "never": the return code is never returned to LT,
"always": the return code is always returned to LT,
"ifError": the return code is returned if different from E_OK,

Name: (YHQW,G7\SH

Description: This data type defines a mask for the NM indications being reported to the
LT. NM indications correspond either to task activations or event
signallings.

Values: This data type includes one bit for each possible indication:
One bit deals with NM signalling of Normal configuration change,
One bit deals withNM signalling of Limphome configuration change (direct

NM) or Extended configuration change (indirect NM),
One bit deals with NM signalling of Network status change,
One bit deals with NM signalling of Ring data reception (direct NM).

Name: 'DWD3URILOH7\SH

Description: This data type describes a data profile.

Values: "allZero": all bits of information are set to zero,
"zeroOne": bit setting is 0101..... ,
"oneZero": bit setting is 1010....,
"allOne": all bits of information are set to one,
"badProfile" none of the profiles above were received

Name: &RQILJ7\SH

Description: This data type represents a network configuration.

Values: Depends on NM implementation under test.

Name: 1HW(UURU7\SH

Description: This data type specifies the network errors to be simulated.

Values: "noNetError": no error simulation,
"busBlocked": simulation of bus blocked (e.g. CAN Bus Off),
"noTransmission": simulation of no Transmission (e.g. no frame

acknowledgement at the data bus),
"statusAfterOK" to request the UT to get and save the network status,
"bSleep": to request Bus Sleep mode setting from the UT.

4.3.� TMP messages from LT to UT

4.3.1.� Common messages for Direct and Indirect NM

TMP messages are transmitted from LT to UT to request the UT to either:

• execute a service of the NM API,

NM test procedure 2.0  by 26(. Page 29

• or configure UT’s behaviour,

• or send a user message.

As long as the NM is not started, the network hardware inside the EUT is not initialised and
the LT cannot communicate with the UT. It is therefore assumed that the UT will execute
StartNM on its own. The CallStartNM message is only used to confirm that the NM should
have been started. It can also request the status returned by StartNM.

Message Name: &DOO,QLW&RQILJ

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "initConfig"
StatusModeType <statusMode>;
NetIdType <netId>;

Purpose: This message requests the UT to execute "status =
InitConfig(netId)".

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO*HW&RQILJ

Scenario: 1 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "getConfig"
NetIdType <netId>;
ConfigKindName <configKind>;

Purpose: This message requests the UT to execute "status =
GetConfig(netId, Config, configKind)" where Config refers to the
local buffer containing the network configuration.

The UT shall then send back the configuration and the returned
status to the LT using the NetConfigMsg message.

Message Name: &DOO&PS&RQILJ

Scenario: 1 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "cmpConfig"
NetIdType <netId>;
DataProfileType <testConfig>;
DataProfileType <refConfig>;
DataProfileType <cMask>;

Purpose: This message requests the UT to execute "result =
CmpConfig(netId, TestConfig, RefConfig, CMask)" where
TestConfig, RefConfig and CMask are initialised according to the
data profiles specified by the corresponding parameters of the
message.

Page 30  by 26(. NM test procedure 2.0

The UT shall then return the result of CmpConfig to the LT using
the APIStatus message.

Message Name: &DOO6HO&RQILJ

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "selectConfig"
StatusModeType <statusMode>;
NetIdType <netId>;
ConfigKindName <configKind>;
ConfigHandleType <configHandle>;
ConfigHandleType <cMaskHandle>;

Purpose: This message requests the UT to execute "result =
SelectDeltaConfig(netId, configKind, configHandle,
cMaskHandle)".

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO6WDUW10

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "startNM"
StatusModeType <statusMode>;
NetIdType <netId>;

Purpose: This message requests the UT to restart the NM and execute
"status = StopNM(netId) ", then "status = StartNM(netId)".

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO6WRS10

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "stopNM"
StatusModeType <statusMode>;
NetIdType <netId>;

Purpose: This message requests the UT to execute "status =
StopNM(netId) ", then "status = StartNM(netId)" only if statusMode
is set to "always".

The UT will send back the status returned by StopNM to the LT
after execution of StartNM. Status transmission is done with the
APIStatus message.

If statusMode is different from "always", nothing is done since the
NM will be stopped and restarted on the next CallStartNM.

NM test procedure 2.0  by 26(. Page 31

Message Name: &DOO*RWR0RGH

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "gotoMode"
StatusModeType <statusMode>;
NetIdType <netId>;
NMModeName <nmMode>;

Purpose: This message requests the UT to execute "status =
GotoMode(netId, nmMode)".

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO*HW6WDWXV

Scenario: 1 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "getStatus"
NetIdType <netId>;

Purpose: This message requests the UT to execute "status =
GetStatus(netId, NetworkStatus)" where NetworkStatus is the
network status returned by the API call.

The UT shall then send the network status and the API status to
the LT using the NetStatusMsg message.

However, if the NM is in WaitBusSleep state, the network status is
not sent immediately (since application communication is
disabled). It will be returned on the next CallGetStatus. Network
status is therefore not read again on that CallGetStatus.

The UT must also not call GetStatus and send a previously saved
network status when CallGetStatus is received after TestMsg with
netError set to "statusAfterOK" or "bSleep".

Message Name: &DOO&PS6WDWXV

Scenario: 1 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "cmpStatus"
NetIdType <netId>;
NetworkStatusType <testStatus>;
NetworkStatusType <refStatus>;
NetworkStatusType <sMask>;

Purpose: This message requests the UT to execute "result =
CmpStatus(netId, TestStatus, RefStatus, SMask)" where
TestStatus, RefStatus, SMask are references to testStatus,
refStatus and sMask parameters of the message.

The UT shall then return the result of CmpStatus to the LT using
the APIStatus message.

Page 32  by 26(. NM test procedure 2.0

Message Name: &DOO6HO6WDWXV

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "selectStatus"
StatusModeType <statusMode>;
NetIdType <netId>;
StatusHandleType <statusHandle>;
StatusHandleType <sMaskHandle>;

Purpose: This message requests the UT to execute "result =
SelectDeltaStatus(netId, statusHandle, sMaskHandle)".

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO&RQILJ87

Scenario: 4 - Configuration message

Parameters: TMPDUName <pduCode>; // "utConfig"
EventIdType <eventId>;

Purpose: This message defines which NM indications (task activation or
event signalling) the UT shall report to the LT. Each bit of eventId
specifies whether or not the corresponding indication is to be
transmitted when occurring.

Default: no transmission.

NM indications are sent to the LT using the UTEvent message.

Message Name: 7HVW0VJ

Scenario: 5 - Test message

Parameters: TMPDUName <pduCode>; // "testMessage"
NetErrorType <netError>;

Purpose: This message requests the UT to send back the same message
to the LT.

The returned message will be received or not by the LT depending
on the error type set in netError (see 4.4.2).

If netError is set to "statusAfterOK", no message is returned. The
UT must execute "status = GetStatus(netId, NetworkStatus)".
NetworkStatus value will be returned on the next CallGetStatus.

If netError is set to "bSleep", return of the message is delayed.
The UT must execute the following sequence:
- GotoMode(BusSleep),
- wait TwaitBusSleep
- save the network status (GetStatus),
- GotoMode(Awake)
- send back TestMsg.

NM test procedure 2.0  by 26(. Page 33

4.3.2.� Specific messages of Direct NM

Additional TMP messages are transmitted from LT to UT to request the UT to execute
specific services of the direct NM API.

Message Name: &DOO6LOHQW10

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "silentNM"
StatusModeType <statusMode>;
NetIdType <netId>;

Purpose: This message requests the UT to execute "status =
SilentNM(netId)".

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO7DON10

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "talkNM"
StatusModeType <statusMode>;
NetIdType <netId>;

Purpose: This message requests the UT to execute "status =
TalkNM(netId)".

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

Message Name: &DOO5HDG5'

Scenario: 1 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "readRingData"
NetIdType <netId>;

Purpose: This message requests the UT to execute "status =
ReadRingData(netId, RingData)" where RingData represent the
NMPDU data returned by the API call.

The UT shall then send the ring data and the API status to the LT
using the RingDataMsg message.

Message Name: &DOO7UDQVPLW5'

Scenario: 2 - Service request

Parameters: TMPDUName <pduCode>; // "apiCall"
DirNMAPIName <dirNMAPI>; // "transmitRingData"

Page 34  by 26(. NM test procedure 2.0

StatusModeType <statusMode>;
NetIdType <netId>;
DataProfileType <dataProf>;

Purpose: This message requests the UT to execute "status =
TransmitRingData(netId, RingData)" where RingData is initialised
according to the data profile specified by the corresponding
parameter of the message.

Depending on both the returned status and the statusMode
option, the UT will send back or not the status to the LT. Status
transmission is done with the APIStatus message.

4.3.3.� Specific messages of Indirect NM

There is no specific API for indirect NM and therefore no specific command from LT to UT.

4.4.� TMP messages from UT to LT

TMP messages are transmitted from UT to LT to inform the UT of the result of a service call
or of an NM indication.

4.4.1.� Common messages for Direct and Indirect NM

Message Name: $3,6WDWXV

Scenario: 1 - Response: after CallCmpConfig, CallCmpStatus
2 - Status: after CallInitConfig, CallSelConfig, CallStartNM,

CallStopNM, CallGotoMode, CallSelStatus,
CallSilentNM, CallTalkNM, CallTransmitRD,

Parameters: TMPDUName <pduCode>; // "apiStatus"
DirNMAPIName <dirNMAPI>;
StatusType <status>;

Purpose: This message provides the LT with the status returned by the last
service call. dirNMAPI defines the name of the service and can
take any value except "getConfig", "getStatus" and
"readRingData".

Message Name: 1HW&RQILJ0VJ

Scenario: 1 - Response: after CallGetConfig

Parameters: TMPDUName <pduCode>; // "apiStatus"
DirNMAPIName <dirNMAPI>; // "getConfig"
StatusType <status>;
ConfigType <config>;

Purpose: This message provides the LT with the network configuration and
the API status returned by a GetConfig call.

NM test procedure 2.0  by 26(. Page 35

Message Name: 1HW6WDWXV0VJ

Scenario: 1 - Response: after CallGetStatus

Parameters: TMPDUName <pduCode>; // "apiStatus"
DirNMAPIName <dirNMAPI>; // "getStatus"
StatusType <status>;
NetworkStatusType <networkStatus>;

Purpose: This message provides the LT with the network status and the API
status returned by a GetStatus call.

Message Name: 87(YHQW

Scenario: 3 - Indication

Parameters: TMPDUName <pduCode>; // "utEvent"
EventIdType <eventId>;

Purpose: This message informs the LT that an NM indication has just
occurred. The corresponding information of eventId shall be set.

Message Name: 7HVW0VJ

Scenario: 5 - Test message

Parameters: see TestMsg in § 4.3.1.

Purpose: This message intends to check whether user's communication has
been enabled or disabled by the NM. It is a copy of the test
message received from the LT. It's not transmitted using the
normal TMP message object but using the specific message
object described in § 2.2.3.

In Indirect NM, this message is also used by the NM to monitor
the message transmission by the tested node.

4.4.2.� Specific messages of Direct NM

Message Name: 5LQJ'DWD0VJ

Scenario: 1 - Response: after CallReadRD

Parameters: TMPDUName <pduCode>; // "apiStatus"
DirNMAPIName <dirNMAPI>; // "readRingData"
StatusType <status>;
DataProfileType <dataProf>;

Purpose: This message provides the LT with the API status and the profile
of the ring data returned by a ReadRingData call.

4.4.3.� Specific messages of Indirect NM

There is no specific message from LT to UT for Indirect NM.

Page 36  by 26(. NM test procedure 2.0

4.5.� TMP messages from LT to Network Interface

TMP messages are transmitted from LT to Network Interface to configure the network error
simulation. They are common to direct and indirect NM.

Message Name: &DOO6HW(UURU

Parameters: TMPDUName <pduCode>; // "errorConfig"
NetErrorType <netError>;

Purpose: This message defines whether network errors shall be simulated
or not, and if yes, it specifies the type of network error. This
information is set by the "netError" parameter.

Default: no error simulation.

If bus blocked simulation is requested, the network interface shall
behave so that a "bus blocked" indication is returned to the NM
after each transmission attempt until simulation of this error is
stopped by another CallSetError message with a different
"netError" value.

If simulation of no message transmission is requested, the
network interface shall behave so that a no transmission error is
returned to the NM after each transmission attempt until error
simulation is stopped by another CallSetError message with a
different "netError" value.

The type of network error can also be configured with the TestMsg message (see 2.2.3).

NM test procedure 2.0  by 26(. Page 37

5.�Presentation of the NM test suites

The test suites for direct and indirect NM are specified in TTCN language [7]. The
specification is supplied in Attachments 1 and 2 respectively.

To make the test cases independent of each other, the NM must be restarted before the test
case execution. Therefore, the test cases start with CallStartNM and end with CallStopNM.
They can be executed separately.

The NM test cases are derived from the test purposes of document [2 But the respective
sequences of test cases and of test purposes are organised differently. The test purposes are
listed according to the order of chapters and sections in the NM specification. On the contrary,
the test cases are grouped in directories representing the main options of an implementation.
Inside each directory, they are sequenced in a logical order to allow a progressive test of the
associated functionnality.

Test case directories aim to represent respectively:

• the NM core functionnality that must be always implemented,

• the sleep mode,

• the passive mode (direct NM only),

• the API.

To facilitate cross-reference with the test plan, naming conventions have been defined. Test
case names are derived from the location of the corresponding assertion in the test plan.
Names consist of:

• a radix identifying the table of test assertion,

• the reference number of the assertion in the table. If the test case is linked to several
assertions, the respective numbers are separated by "_". If several tests stem from the
same assertion, the number is followed by a letter A, B, C...

Example: INI1_12 refers to assertions Nr 1 and 12 of the table "NM Init".

NM test procedure 2.0  by 26(. Page 1

Attachment 1: Test suite for Direct NM

The correspondence between the test case names and the test plan is given in the following
table:

7HVW�FDVH�QDPH 7HVW�SODQ�VHFWLRQ
CONF... Configuration management
MOD... Operating modes and operating mode management
DATA... Data field management
INI... NMInit and NMreset
NORM... NMNormal
LIMP... NMLimpHome
SLEEP... NMBusSleep

Table 2 Test case names of direct NM

Some test purposes are not referenced in the test suite. They are covered by test cases in other
groups as described in the table below:

7HVW�SXUSRVH &RYHUHG�E\�WHVW�FDVH
CONF7 INI1B
CONF8 NORM7A
CONF9 INI1B
CONF11 CONF1_3A
MOD1 INI1_12
MOD4 INI1_12
MOD7 BSLEEP1
MOD8 INI9A
MOD22 MOD2
MOD27 NORM15A
MOD29 NORM15A
MOD31 NORM16

Test purposes regarding task activation or event setting on change of network status are not
implemented in this version of the test suite (MOD24, MOD25, MOD26).

(QFRGLQJ�RI�QHWZRUN�FRQILJXUDWLRQV�

In the test suite, network configurations are represented by a 6-bit field, e.g. ’010110’B. Each
bit provides with the status of a node in the ring configuration. From left to right, they stand
for SN2, SN1, NodeId (own node), PN1, PN2, any other node. Bit value is 1 if the node is
considered present and 0 if the node is considered absent.

Page 2  by 26(. Direct NM test suite 2.0

(QFRGLQJ�RI�QHWZRUN�VWDWXV�

In the test suite, the network status is represented by a 9-bit field, e.g. ’000010110’B. It is
encoded according to the example given in the NM specification (Table 3 of [5]) Top to
bottom bits in the table are encoded from right to left, i.e. the most right bit represents the
information Present network configuration stable.

(QFRGLQJ�RI�10�$3,�HYHQWV�

Events from NM/API are encoded in a 4 bit field, e.g. ’0010’B, which represent from right to
left:

• indication of normal configuration change,

• indication of limphome configuration change,

• indication of network status change,

• indication of ring data reception.

In CallConfigUT messages from LT to UT, bit value 1 means that the UT shall send an
UTEvent message when the indication occurs. 0 means it shall not.

In UTEvent messages from UT to LT, bit value 1 means that the related indication has
occurred. 0 means it has not.

Indirect NM test suite 2.0  by 26(. Page 1

Attachment 2: Test suite for Indirect NM

The Indirect NM specification includes two different protocol versions. Test cases which are
common to both versions are grouped in directory BOTH. The others are specific to a given
version, even if sometimes the test purpose is the same :

• the directory OGT contains the test cases for protocol "One global time-out",

• the directory OTM contains the test cases for protocol "One time-out per message".

Each directory in turn includes subdirectories defining respectively the test cases for the core
functionnality, the limphome mode, the sleep mode (OTM only) and the API.

The correspondence between the test case names and the test plan is given in the following
table:

7HVW�FDVH�QDPH 7HVW�SODQ�VHFWLRQ
(directory BOTH)
CONF... Configuration management
MOD... Operating modes and operating mode management
(directory OGT) One global time-out TOB
GINI... − Handling of StartNM and StopNM
GNORM... − NMNormal
GLIMP... − NMLimpHome
(directory OTM) One time-out per message
MINI... − Handling of StartNM, StopNM and InitConfig
MNORM... − NMNormal
MLIMP... − NMLimpHome
MSLEEP... − NMBusSleep
MCONF... Configuration management

Table 3 Test case names of indirect NM

Some test purposes are not referenced in the test suite. They are covered by test cases in other
groups as described in the table below:

7HVW�SXUSRVH �2QH�JOREDO�WLPH�RXW�
&RYHUHG�E\�WHVW�FDVH�

�2QH�WLPH�RXW�SHU�PHVVDJH�
&RYHUHG�E\�WHVW�FDVH�

CONF6 GINI2 MINI2
CONF7 not applicable MINI3
CONF8 GINI2 MINI2
CONF10 GCONF1_3 MCONF1_3
MOD4 GINI3_4 MINI5_6
MOD5 GINI3_4 MINI5_6

Page 2  by 26(. Direct NM test suite 2.0

Test purposes regarding task activation or event setting on change of network status are not
implemented in this version of the test suite (MOD7, MOD8, MOD9).

As the current NM specification does not provide an API for reading the extended network
status, the related assertions are not tested:

• test purposes LIMP15, LIMP16, LIMP17 are not covered at all,

• test purposes INI6, NORM9, NORM10, LIMP12 are covered ony for the part reative to
norma status.

(QFRGLQJ�RI�QHWZRUN�FRQILJXUDWLRQV�

In the test suite, network configurations and extended network configurations are represented
by a 3-bit field, e.g. ’010’B. Each bit provides with the status of a node in the configuration.
From left to right, they stand for MN2, MN1, NodeId (own node). Bit value is 1 if the node is
considered (static) not mute or (static) present and 0 if the node is considered (static) mute or
(static) absent.

(QFRGLQJ�RI�QHWZRUN�VWDWXV�

In the test suite, the network status is represented by a 5-bit field, e.g. ’10110’B. It is encoded
according to the example given in the NM specification (Table 8 of [5]). Top to bottom bits in
the table are encoded from right to left, i.e. the most right bit represents the information No
Error/Error, bus blocked.

(QFRGLQJ�RI�10�$3,�HYHQWV�

Events from NM/API are encoded in a 4 bit field, e.g. ’0010’B, which represent from right to
left:

• indication of normal configuration change,

• indication of extended configuration change,

• indication of network status change,

• indication of extended network status change (not used).

In CallConfigUT messages from LT to UT, bit value 1 means that the UT shall send an
UTEvent message when the indication occurs. 0 means it shall not.

In UTEvent messages from UT to LT, bit value 1 means that the related indication has
occurred. 0 means it has not.

