
2SHQ�6\VWHPV�DQG�WKH�&RUUHVSRQGLQJ�,QWHUIDFHV

IRU�$XWRPRWLYH�(OHFWURQLFV

This document is an official release and replaces all previously distributed documents. The OSEK group retains the right to
make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in
writing from the OSEK/VDX steering committee.

OS Test Plan 2.0 by OSEK Document: os_testplan20.doc

26(.�9';

26�7HVW�3ODQ

Version 2.0

16th April 1999

Page 2 by 26(. OS Test Plan 2.0

:KDW�LV�26(.�9';"
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an open-
ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and network
management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means „Vehicle Distributed eXecutive“. The functionality of OSEK operating
system was harmonized with VDX. For simplicity OSEK will be used instead of OSEK/VDX in
this document.

26(.�SDUWQHUV�
Adam Opel AG, BMW AG, Daimler-Benz AG, IIIT University of Karlsruhe, Mercedes-Benz AG,
Robert Bosch GmbH, Siemens AG, Volkswagen AG., GIE.RE. PSA-Renault.

0RWLYDWLRQ�

• High, recurring expenses in the development and variant management of non-application
related aspects of control unit software.

• Incompatibility of control units made by different manufacturers due to different interfaces
and protocols.

*RDO�
Support of the portability and reusability of the application software by:

• Specification of interfaces which are abstract and as application-independent as possible, in
the following areas: real-time operating system, communication and network management.

• Specification of a user interface independent of hardware and network.

• Efficient design of architecture: The functionality shall be configurable and scaleable, to
enable optimal adjustment of the architecture to the application in question.

• Verification of functionality and implementation of prototypes in selected pilot projects.

$GYDQWDJHV�

• Clear savings in costs and development time.

• Enhanced quality of the control units software of various companies.

• Standardized interfacing features for control units with different architectural designs.

• Sequenced utilization of the intelligence (existing resources) distributed in the vehicle, to
enhance the performance of the overall system without requiring additional hardware.

• Provides absolute independence with regards to individual implementation, as the
specification does not prescribe implementational aspects.

OS Test Plan 2.0 by 26(. Page 3

26(.�FRQIRUPDQFH�WHVWLQJ
OSEK conformance testing aims at checking conformance of products to OSEK specifications. Test
suites are thus specified for implementations of OSEK operating system, communication and
network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored by
the Commission of European Communities. The term MODISTARC means ”Methods and tools for
the validation of OSEK/VDX based DISTributed ARChitectures”.

This document has been drafted by the MODISTARC members of the OS-Workgroup:

Bernd Büchs Adam Opel AG

Wolfgang Kremer BMW AG

Stefan Schmerler FZI

Franz Adis FZI

Yves Sorel INRIA

Robert France Motorola

Barbara Ziker Motorola

Jean-Emmanuel Hanne Peugeot Citroën S.A.

Eric Brodin Sagem SA

Gerhard Goeser Siemens Automotive SA

Patrick Palmieri Siemens Automotive SA

Page 4 by 26(. OS Test Plan 2.0

Table of Contents

1 Introduction ..5

2 Test suite structure..6

3 Test purposes ..7

3.1 Implementation specific parameters ...7

3.2 Task management..8

3.3 Interrupt processing...9

3.4 Event mechanism ..10

3.5 Resource management ..10

3.6 Alarms...11

3.7 Error handling, hook routines and OS execution control..11

4 Test cases ..14

4.1 Classification Tree Method...14

4.1.1 Introduction ..14

4.1.2 Test case Trees for OSEK OS...14

4.2 Task management..16

4.3 Interrupt processing...19

4.4 Event mechanism ..21

4.5 Resource management ..24

4.6 Alarms...25

4.7 Error handling, hook routines and OS execution control..29

5 Appendix I..30

6 Abbreviations ...31

7 References ..32

OS Test Plan 2.0 by 26(. Page 5

�� ,QWURGXFWLRQ

This document contains the test plan for the conformance test of the operating system. This means
definition of the test cases, which are used to certify conformance of an OS implementation.

According to the Conformance Testing Methodology [1], definition of the conformance test is a
two-stage process. In the first stage, the OS specification is analysed and the test purposes are
extracted from it. The assembly of the test purposes makes up the test plan. In the second stage test
cases are defined, which specify the sequence of the interactions between the test application and
the implementation to verify one or more test purposes. The assembly of the test cases makes up the
test suite. Together with all information needed to implement and execute the conformance tests
make up the test procedure.

According to the different functionalities of the operating system (task management, resource
management, ...) it is reasonable to structure and group the test purposes. This structure is explained
in chapter 1.

The test purposes are developed by analysing the specification and extracting checkable assertions.
The assertions determine what can and what must be tested. Testable assertions are, on the one hand
observable actions (task switches, interrupts, etc.) performed by the operating system, on the other
hand the correctness of the return status of OS services. Thus, during the conformance test each OS
service routine has to be called at least once for each specified return status.

In order to define the test cases it is necessary to further refine the assertions developed before.
Refinement means that it is necessary to analyse the assertions and detect all situations and states of
the system which may have an influence on the behaviour of a special assertion. This task will be
done by means of the classification-tree method which provides a systematic way for generating test
cases. A classification tree describes a complete decomposition of all possible situations and states
of the system. On this basis, test sequences have to be evolved which execute and verify these test
cases.

This document describes the test purposes and assertions which are derived from the specification
of the operating system. First, the structure of the assertions will be shown. This includes the
grouping of assertions according to the OS’s service groups as well as determining to which variants
of the operating system they rely on. In the second part the test cases as derived from the
Classification Tree Editor (CTE) will be presented.

Page 6 by 26(. OS Test Plan 2.0

��7HVW�VXLWH�VWUXFWXUH

It is reasonable to group the assertions derived from the specification according to the service
groups and functionalities of the operating system. They will be classified according to the
following service groups:

• Task management,

• Interrupt processing,

• Event mechanism,

• Resource management,

• Alarms,

• Error handling, hook routines and OS execution control (including start-up/shutdown of OS).

To deal with various requirements of the application software for the system and various capabilities
of a specific system (e.g. processor, memory) the OSEK OS offers the possibility to generate several
variants of a system. The variants apply to the following categories:

• Conformance class:

− BCC1 (only basic tasks, limited to one request per task and one task per priority, while all
tasks have different priorities)

− BCC2 (like BCC1, plus more than one task per priority possible and multiple requesting
of task activation allowed)

− ECC1 (like BCC1, plus extended tasks)

− ECC2 (like BCC2, plus extended tasks without multiple requesting admissible)

• Scheduling policy:

− non-preemptive

− mixed-preemptive

− full-preemptive

• Return status:

− standard (return values of system services provided in the standard version)

− extended (return values of system services provided in the extended version for
debugging purposes)

For each assertion has to be checked for which variants it is relevant, because some assertions are
not checkable under certain circumstances. E.g. the assertions about the event mechanism are not
relevant for the conformance classes BCC1 and BCC2, as they don’t support events.

OS Test Plan 2.0 by 26(. Page 7

��7HVW�SXUSRVHV

This chapter describes the test purposes relevant to the functionality and behaviour of the operating
system. They were established by reading the specification and extracting checkable assertions. The
assertions were analysed to remove redundancies. These assertions build the basis on which the test
cases and the test suite are developed. Therefore, it is necessary to further refine these assertions.
According to the Conformance Testing Methodology [1] this refinement will be done by means of
the classification-tree method (see chapter 4). This method was developed at Daimler-Benz AG and
is supported by the commercial tool CTE by ATS Automated Testing Solution GmbH [6]. The
resulting test cases and the sequences used to evaluate them will be described in the test procedure.

As mentioned in the previous chapter, the assertions are grouped according to several aspects of the
operating system. Each of the following chapters represents one group of test purposes. The test
purposes are listed in a table which contains for each assertion:

• a sequence number used as a reference for test suite traceability,

• the description of the test purpose extracted from the specification,

• the variants of the specification to which the purpose applies,

• a reference to the paragraph in the specification allowing traceability to be provided against the
specification.

���� ,PSOHPHQWDWLRQ�VSHFLILF�SDUDPHWHUV

In accordance with the specification 2.0 of the OSEK operating system, the vendor has to provide a
list of parameters specifying the implementation. This list gives detailed information concerning the
functionality, performance and memory demand, as well as the basic conditions to reproduce the
measurement of those parameters.

In order to test the conformance of a specific implementation to the OSEK OS specification, one has
to ensure that the list with implementation-specific parameters provided by the vendor exists, and
contains all prescribed parameters. It is important to point out that the conformance test neither
includes a test for the correctness of these parameters, nor does it specify any limit for hardware
requirements or performance figures that must be kept. To achieve conformance it is sufficient for
the operating system vendor to provide a list of parameters specifying the implementation’s
behaviour. To allow their verifications, this list must include a sufficient description of the methods
used to collect the presented informations.

This chapter refers to those parameters which describe basic functionalities of the OS
implementation. Therefore, they are needed in order to build and execute the test applications. It is
reasonable to provide additional parameters, like required hardware resources and performance
issues. They are listed in appendix I which may be changed in the future. Indeed it is not obvious,
from today’s point, which parameters are relevant for customers to evaluate an OS implementation.

The following table lists each parameter which must be contained in the list of parameters as one
assertion.

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Maximum number of tasks 63 12.2.1 All

Page 8 by 26(. OS Test Plan 2.0

No. Assertion Page Paragraph
in spec.

Affected
variants

2 Maximum number of active tasks (UXQQLQJ/ UHDG\/
ZDLWLQJ) (≥8 for BCC1/BCC2, ≥16 for ECC1/ECC2)

63 12.2.1 All

3 Maximum number of priorities (≥8) 63 12.2.1 All
4 Number of tasks per priority (>1) 63 12.2.1 BCC2, ECC2
5 Upper limit for number of task activations 63 12.2.1 BCC2, ECC2
6 Maximum number of events per task (≥8) 63 12.2.1 ECC1, ECC2
7 Limits for the number of alarm objects (per system/ per

task)
63 12.2.1 All

8 Limits for the number of nested resources (per system/
per task)

63 12.2.1 All

9 Lowest priority level used internally by the OS 63 12.2.1 All
10 Timer units reserved for the OS 63 12.2.2 All
11 Interrupts, traps and other hardware resources occupied

by the OS
63 12.2.2 All

���� 7DVN�PDQDJHPHQW

Task management concerns the activation and scheduling of tasks. The behaviour of the scheduler
depends on the conformance class and the scheduling policy.

Several attributes are assigned to each task:

• task type: basic, extended

• priority

• scheduling type: full-, non-preemptive

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Interrupts and OS have higher priority than tasks. 14 3.1 All
2 OS has to provide at least 8 levels of task priorities. 63 12.2 All
4 States for EXTENDED tasks are: UXQQLQJ, UHDG\,

VXVSHQGHG, ZDLWLQJ.
EXTENDED tasks release the processor, if
• they terminate
• they are preemptive and OS is executing a higher

priority task
• an Interrupt is executed
• they go to ZDLWLQJ state
• a transition from UXQQLQJ to ZDLWLQJ state occurs, if

the task waits for an event.

17 4.2.1 ECC1, ECC2

5 Tasks in UHDG\ state wait for allocation of the processor.
When no task with higher priority is in UHDG\ or UXQQLQJ
state, this task is put to UXQQLQJ state, if no interrupt is
processed.

17 4.2.1 All

OS Test Plan 2.0 by 26(. Page 9

No. Assertion Page Paragraph
in spec.

Affected
variants

6 A task in VXVSHQGHG state is not active. Task activation
puts it to UHDG\ state.

17 4.2.1 All

7 A task in ZDLWLQJ state waits at least for one event. With
the occurrence the task is set to UHDG\ state.

17 4.2.1 ECC1, ECC2

8 Pre-empted task is treated as the first task in the UHDG\
list of its priority.

17 4.2.1 All

9 States for BASIC tasks are: UXQQLQJ, UHDG\, VXVSHQGHG.
BASIC tasks release the processor, if
• they terminate
• they are preemtive and OS is executing a higher

priority task
• an Interrupt is executed

18 4.2.2 All

10 The OS ensures that after a task has been activated its
execution will start with the task’s first instruction.

20 4.3 All

11 Multiple activation is supported in BCC2/ECC2 for basic
tasks, a task attribute limits the number of multiple
activation.

20 4.3 BCC2, ECC2

12 Multiple task activations are stored in a FIFO structure in
order to preserve activation order

20 4.3 BCC2, ECC2

13 Bigger Numbers refer to higher priorities. (0 is lowest) 20 4.5 All
14 In BCC2 and ECC2 tasks with same priority are possible.

Processing of the tasks with same priority depends on
their order of activation.

20 4.5 BCC2, ECC2

15 A task being released from ZDLWLQJ state is treated like
the newest task in the UHDG\ queue of its priority.

21 4.5 ECC2

16 Points of rescheduling (possible task switch) with non-
preemptive scheduling:
• A task terminates itself via 7HUPLQDWH7DVN or

&KDLQ7DVN
• An explicit call of the scheduler (6FKHGXOH)
• The task waits for an event

21 4.6.1 Non-
preemptive

17 Within full-preemptive scheduling a task switch occurs,
whenever a task with higher priority is set to UHDG\ state.

22 4.6.2 Full-preemptive

18 Scheduling policies can be mixed. A task can be defined
non-preemptive in a mixed-preemptive OS, i.e. no
preemption can occur as long as this non-preemptive task
is running.

23 4.6.3 Mixed-
preemptive

���� ,QWHUUXSW�SURFHVVLQJ

The OSEK OS provides several services to handle interrupts. They can be used to enable and
disable interrupts and to allow the use of OS services within an interrupt service routine. But the
handling of interrupts is very hardware specific.

This concerns in particular interrupts of category 1, as no ISR-frame is prepared for the operating
system. Therefore, it is not allowed to call any OS service, which prevents observation of the
behaviour of the interrupt service routine.

Page 10 by 26(. OS Test Plan 2.0

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Interrupts of category 2: Calls to OS services are
restricted. Calling a forbidden OS service produces the
error E_OS_CALLEVEL.

26 5 Extended error
status 1)

2 Interrupts of category 3: Calls to OS services are
restricted. They are allowed if enclosed within a
(QWHU�/HDYH,65 frame. Within this frame calling a
forbidden OS service produces the error
E_OS_CALLEVEL, outside this frame the behaviour is
not defined.

26 5 Extended error
status 1)

1) These assertions are optional, because these test can be made at precompile time. This allows the
OS to be more efficient in handling interrupts.

���� (YHQW�PHFKDQLVP

The event mechanism is a means of synchronisation. It is provided for extended tasks only. Events
are objects managed by the operating system. Each event is assigned to an extended task. Various
system services are provided to manipulate events.

Events are supported in the extended conformance classes (ECC1, ECC2) only.

No. Assertion Page Paragraph
in spec.

Affected
variants

1 An event is assigned to an extended task. 28 6 ECC1, ECC2
2 One task can own at least 8 events. This is the minimum

value for the parameter „Number of events per task“
63 12.2 ECC1, ECC2

3 When at least one event a task is waiting for occurs, this
task is set to UHDG\ state.

28 6 ECC1, ECC2

4 An event can only be cleared by its owner by calling
&OHDU(YHQW.

28 6 ECC1, ECC2

5 When activating an extended task by calling
$FWLYDWH7DVN, its events are cleared by the OS.

28 6 ECC1, ECC2

6 Any task can set events. 28 6 ECC1, ECC2
7 If an extended task tries to wait for an event, which has

already occurred at least once, it remains in UXQQLQJ
state.

28 6 ECC1, ECC2

���� 5HVRXUFH�PDQDJHPHQW

The resource management is used to co-ordinate concurrent accesses of several tasks to shared
resources. It has to ensure that two tasks cannot occupy the same resource at the same time and that
priority inversion or deadlocks cannot occur. The specification implies to use the priority ceiling
protocol even when it is not mandatory. However, the behaviour of the system must be identical to
the priority ceiling protocol whether the implementation uses it or not.

OS Test Plan 2.0 by 26(. Page 11

No. Assertion Page Paragraph
in spec.

Affected
variants

1 A task cannot terminate or switch to ZDLWLQJ state, while
it occupies a resource. This can only be checked if OS
supports extended error states, otherwise the behaviour is
undefined.

30 7.2 Extended error
status

2 The scheduler is treated like a resource which is
accessible to all tasks. A standard resource with a defined
name (constant RES_SCHEDULER) is generated. It can
be occupied to prevent interruptions by other tasks.

30 7.3 All

3 OS ensures (e.g. by priority ceiling protocol) that tasks
are only transferred from the UHDG\ state to the UXQQLQJ
state, if all resources, the task might need, are released.

30 7.1 All

4 After a task has occupied a resource any other task which
might occupy the same resource does not enter the
UXQQLQJ state, even if its priority is higher than the
priority of the task occupying this resource. This
behaviour is equivalent to the priority ceiling protocol.

32 7.5 All

���� $ODUPV

Expiration of alarms is determined on the basis of counters. As there exists no API for counters their
functionality cannot be tested. The same holds true for non-variant alarms.

No. Assertion Page Paragraph
in spec.

Affected
variants

1 Alarm will expire when a predefined counter value is
reached

33 8.2 All

2 Alarms are statically assigned to
• One counter
• One task
• A notation, if that task is to be activated or an event is

to be set (only in ECC1, ECC2)

33 8.2 All

ECC1, ECC2

3 Alarms can be manipulated by the user. 34 8.2 All
4 Absolute and relative alarms are supported, both may be

set to cyclic or single alarms.
34 8.2 All

5 The OS provides at least one counter which is derived
from a timer. User can assume existence of this counter.

34 8.2 All

���� (UURU�KDQGOLQJ��KRRN�URXWLQHV�DQG�26�H[HFXWLRQ�FRQWURO

The OSEK operating systems provides hook routines which allow user-defined actions within the
OS internal processing, e.g. at task switches. The interface of hook routines is implementation
dependant except the first parameter which is fixed.

Error handling of the OSEK operating system is limited to a status information returned by the
system services. If fatal errors occur a centralised system shutdown is called. But, as the conditions
for this shutdown are implementation dependant, this is not testable.

Page 12 by 26(. OS Test Plan 2.0

No. Assertion Page Paragraph
in spec.

Affected
variants

1 The first parameter of hook routines is fixed, additional
parameters are optional and implementation specific.

35 9.1 All

2 Hook routines are a part of the OS, but user-defined.
Therefore they are higher prior than all tasks and thus
can’t be preempted.

35 9.1 All

3 Hook routines are only allowed to use a subset of OS
services. It can not be checked if a OS service is called
which is not part of this subset.

35 9.1 All

4 Every OS call returns the status code. If the OS could not
execute the requested service correctly, status code is not
equal E_OK.

37 9.2.1 All

5 The operating system starts with a call to 6WDUW26�with
the application mode as a parameter.

38 9.3 All

6 After the OS is initialised (scheduler not running), it calls
the 6WDUWXS+RRN�before starting the first user task.

38 9.3 All

7 During execution of StartupHook, all user interrupts are
disabled.

38 9.3 All

8 After 6WDUWXS+RRN, the interrupt mask is set according to
INITIAL_INTERRUPT_DESCRIPTOR.

38 9.3 All

9 When 6KXWGRZQ26 is called with a defined error code,
the OS will shutdown and call the hook routine
6KXWGRZQ+RRN.

60 11.7 All

10 3RVW7DVN+RRN is called after executing the current task,
but before leaving the task's UXQQLQJ state.

60 11.7 All

11 3UH7DVN+RRN is called before executing the new task, but
after the transition of the task to the UXQQLQJ state.

60 11.7 All

12 (UURU+RRN is called if a system call returns a value not
equal to E_OK.

60 11.7 All

13 Naming convention for status information:
• all return status information of API services start with

E_
• errors of OS start with E_OS_
• internal errors of OS (implementation specific) start

with E_OS_SYS_

43 11.1 All

14 Values of the status information API services offer:
• E_OK = 0
• E_OS_ACCESS = 1
• E_OS_CALLEVEL = 2
• E_OS_ID = 3
• E_OS_LIMIT = 4
• E_OS_NOFUNC = 5
• E_OS_RESOURCE = 6
• E_OS_STATE = 7
• E_OS_VALUE = 8

43 11.1 All

OS Test Plan 2.0 by 26(. Page 13

No. Assertion Page Paragraph
in spec.

Affected
variants

15 The application mode that is passed to the StartOS
function can be detected by the
*HW$FWLYH$SSOLFDWLRQ0RGH function.

59 11.6 All

Page 14 by 26(. OS Test Plan 2.0

��7HVW�FDVHV

This chapter contains the test cases which will be used to test an implementation of an operating
system to be OSEK conform. Thus, they are developed on the basis of the OSEK OS specification.

���� &ODVVLILFDWLRQ�7UHH�0HWKRG

������ ,QWURGXFWLRQ

The Classification Tree Method supports in a systematic and methodical way the determination of
test cases. It helps to realize the test object and its mostly unclear input data range, in order to get
structured test cases.

The input data range of a test object is classified by the Classification-Tree Method into test relevant
aspects. These classifications divide the data range disjunctively and completely into a finite number
of classes.

Using the Classification-Tree Method it is possible to identify exactly the input parameters relevant
for testing by combining classes of different classifications. In doing so, exactly one class from each
classification must be considered. For complex systems, it is necessary to check the combinations
for logical compatibility.

If the concept of classification is used recursive on classes, then these classes are further refined.

������ 7HVW�FDVH�7UHHV�IRU�26(.�26

The aim of classifying the OSEK OS in the classification trees was to describe every possible
system state and its reactions to a call of an API service or an internal event like expiring of an
alarm or occurring of an interrupt. This ensures that every situation that may occur during execution
of an application is covered by the conformance tests.

The OSEK OS was divided into eight test groups which are handled separately. These groups are

• Task Management,

• Interrupt processing,

• Event mechanism,

• Resource management,

• Alarms, and

• Error handling, hook routines and OS execution control.

A test case is defined by a call to a OS service within a special system state and the reactions and
answers performed by the system. The test trees ensure that each possible state is taken into account.

To keep the test trees simple the following conventions have been reached.

• The test trees don’t contain the static properties of the OS (conformance class, scheduling policy,
return status). This information is redundant and can be recovered from the test cases itself and is
attached to the textual description of the test cases.

OS Test Plan 2.0 by 26(. Page 15

• Only the system environment (runtime properties) that influences the performed OS call is
modelled in the test trees (execution level, running task’s type, etc.).

• The reaction (answer) of the executed is not contained in the test trees (except for the return
status). This can again be recovered from the test case itself and is attached to the textual
description.

The test cases are chosen in that way that the OS service are called that often that each situation
which is described in the specification is provoked at least once.

Each test case is defined by one line of a classification tree and the corresponding textual
description which is printed below the classification tree. The textual description is presented in a
table of the following structure:

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() from task-
level with invalid task ID (task does
not exist)

Service returns E_OS_ID

The specification of OSEK OS in its current version (2.0 rev 1) is at some points ambiguous. This
leads to wholes, which allow ambiguous interpretation of the specification. In order to do
conformance tests this wholes had to be filled. Thus, some assumption had to be made, what is the
correct interpretation in the "spirit" of OSEK. In the introduction to each of the following tables
those assumption are expressed.

A general assumption that had to be taken is about the minimum number of task supported by the
OS for applications. The specification doesn’t provide this number. Therefore it is assumed that
there are at least 8 tasks available in BCC1/BCC2 and at least 16 tasks in ECC1/ECC2. This
numbers conform to fig. 12-1 of the specification.

6FKHGXOLQJ�SROLF\�RI�26
n: non-preemptive
m: mixed-preemptive
f: full preemptive

Actions that must be executed for
this test case

&RQIRUPDQFH�FODVV�RI�26
B1: BCC1
B2: BCC2
E1: ECC1
E2: ECC2

26�VWDWXV�RI�26�VHUYLFHV
s: standard
e: extended

Expected result of this test case

Page 16 by 26(. OS Test Plan 2.0

���� 7DVN�PDQDJHPHQW

E_OK

E_OS_ID

E_OS_RESOURCE

E_OS_CALLEVEL

E_OS_LIMIT

return
status

equal to
running task

lower than
running task

higher than
running task

priority

not
reached

reached

max.
activations

extended

basic

type

waiting

ready

running

suspended

state

invalid

valid

task ID

affected task

GetTaskState

GetTaskID

Schedule

ChainTask

TerminateTask

ActivateTask

called
OS service

ISR of
category 3

ISR of
category 2

noyes

occupying
resource

noyes

preemptive

yes

no
constraints

task

execution
level

OSEK Task Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() from task-
level with invalid task ID (task does
not exist)

Service returns E_OS_ID

2 n, m
B1, B2, E1, E2
s, e

Call ActivateTask() from non-
preemptive task on VXVSHQGHG basic
task

No preemption of UXQQLQJ task.
Activated task becomes UHDG\.
Service returns E_OK

3 m, f
B1, B2, E1, E2
s, e

Call ActivateTask() from
preemptive task on VXVSHQGHG basic
task which has higher priority than
running task.

5XQQLQJ task is preempted.
Activated task becomes UXQQLQJ.
Service returns E_OK

4 m, f
B1, B2, E1, E2
s, e

Call ActivateTask() from
preemptive task on VXVSHQGHG basic
task which has lower priority than
running task.

No preemption of UXQQLQJ task.
Activated task becomes UHDG\.
Service returns E_OK

OS Test Plan 2.0 by 26(. Page 17

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

5 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on VXVSHQGHG basic
task which has equal priority as
running task.

No preemption of UXQQLQJ task.
Activated task becomes UHDG\.
Service returns E_OK

6 n, m
E1, E2
s, e

Call ActivateTask() from non-
preemptive task on VXVSHQGHG
extended task

No preemption of UXQQLQJ task.
Activated task becomes UHDG\ and its
events are cleared. Service returns
E_OK

7 m, f
E1, E2
s, e

Call ActivateTask() from
preemptive task on VXVSHQGHG
extended task which has higher
priority than running task.

5XQQLQJ task is preempted.
Activated task becomes UXQQLQJ and
its events are cleared. Service returns
E_OK

8 m, f
E1, E2
s, e

Call ActivateTask() from
preemptive task on VXVSHQGHG
extended task which has lower
priority than running task.

No preemption of UXQQLQJ task.
Activated task becomes UHDG\ and its
events are cleared. Service returns
E_OK

9 m, f
E2
s, e

Call ActivateTask() from
preemptive task on VXVSHQGHG
extended task which has equal
priority as running task.

No preemption of UXQQLQJ task.
Activated task becomes UHDG\ and its
events are cleared. Service returns
E_OK

10 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() on UHDG\
basic task which has reached max.
number of activations

Service returns E_OS_LIMIT

11 n, m, f
E1, E2
e

Call ActivateTask() on UHDG\
extended task

Service returns E_OS_LIMIT

12 n, m
B2, E2
s, e

Call ActivateTask() from non-
preemptive task on UHDG\ basic task
which has not reached max. number
of activations

No preemption of UXQQLQJ task.
Activation request is queued in ready
list. Service returns E_OK

13 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on UHDG\ basic task
which has not reached max. number
of activations and has lower priority
than running task1

No preemption of UXQQLQJ task.
Activation request is queued in ready
list. Service returns E_OK

14 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on UHDG\ basic task
which has not reached max. number
of activations and has equal priority
as running task

No preemption of UXQQLQJ task.
Activation request is queued in ready
list. Service returns E_OK

15 n, m, f
B1, B2, E1, E2
e

Call ActivateTask() on
UXQQLQJ basic task which has
reached max. number of activations

Service returns E_OS_LIMIT

1 Activating a higher priority task which is already ready from a preemptive task is not possible as the higher priority
task would be running.

Page 18 by 26(. OS Test Plan 2.0

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

16 n, m, f
E1, E2
e

Call ActivateTask() on
UXQQLQJ extended task

Service returns E_OS_LIMIT

17 n, m
B2, E2
s, e

Call ActivateTask() from non-
preemptive task on UXQQLQJ basic
task which has not reached max.
number of activations

No preemption of UXQQLQJ task.
Activation request is queued in ready
list. Service returns E_OK

18 m, f
B2, E2
s, e

Call ActivateTask() from
preemptive task on UXQQLQJ basic
task which has not reached max.
number of activations

No preemption of UXQQLQJ task.
Activation request is queued in ready
list. Service returns E_OK

19 n, m, f
E1, E2
e

Call ActivateTask() on ZDLWLQJ
extended task

Service returns E_OS_LIMIT

20 n, m, f
B1, B2, E1, E2
e

Call TerminateTask() from ISR
category 2

Service returns E_OS_CALLEVEL

21 n, m, f
B1, B2, E1, E2
e

Call TerminateTask() from ISR
category 3

Service returns E_OS_CALLEVEL

22 n, m, f
B1, B2, E1, E2
e

Call TerminateTask() while
still occupying a resource

5XQQLQJ task is not terminated.
Service returns E_OS_RESOURCE

23 n, m, f
B1, B2, E1, E2
s, e

Call TerminateTask() 5XQQLQJ task is terminated and UHDG\
task with highest priority is executed

24 n, m, f
B1, B2, E1, E2
e

Call ChainTask() from task-
level. Task-ID is invalid (does not
exist).

Service returns E_OS_ID

25 n, m, f
B1, B2, E1, E2
e

Call ChainTask() from ISR
category 2

Service returns E_OS_CALLEVEL

26 n, m, f
B1, B2, E1, E2
e

Call ChainTask() from ISR
category 3

Service returns E_OS_CALLEVEL

27 n, m, f
B1, B2, E1, E2
e

Call ChainTask() while still
occupying a resource

5XQQLQJ task is not terminated.
Service returns E_OS_RESOURCE

28 n, m, f
B1, B2, E1, E2
s, e

Call ChainTask() on VXVSHQGHG
task

5XQQLQJ task is terminated, chained
task becomes UHDG\ and UHDG\ task
with highest priority is executed

29 n, m, f
B1, B2, E1, E2
s, e

Call ChainTask() on UXQQLQJ
task

5XQQLQJ task is terminated, chained
task becomes UHDG\�and UHDG\ task
with highest priority is executed

OS Test Plan 2.0 by 26(. Page 19

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

30 n, m, f
B1, B2, E1, E2
e

Call ChainTask() on UHDG\ basic
task which has reached max. number
of activations

5XQQLQJ task is not terminated.
Service returns E_OS_LIMIT

31 n, m, f
E1, E2
e

Call ChainTask() on UHDG\
extended task

5XQQLQJ task is not terminated.
Service returns E_OS_LIMIT

32 n, m
B2, E2
s, e

Call ChainTask() from non-
preemptive task on UHDG\ basic task
which has not reached max. number
of activations

5XQQLQJ task is terminated,
activation request is queued in ready
list and UHDG\ task with highest
priority is executed

33 n, m, f
E1, E2
e

Call ChainTask() on ZDLWLQJ
extended task

Service returns E_OS_LIMIT

34 n, m, f
B1, B2, E1, E2
s, e

Call Schedule() from task. 5HDG\ task with highest priority is
executed. Service returns E_OK

35 n, m, f
B1, B2, E1, E2
e

Call Schedule() from ISR
category 2

Service returns E_OS_CALLEVEL

36 n, m, f
B1, B2, E1, E2
e

Call Schedule() from ISR
category 3

Service returns E_OS_CALLEVEL

37 n, m, f
B1, B2, E1, E2
e

Call GetTaskID() from ISR
category 2

Service returns E_OS_CALLEVEL

38 n, m, f
B1, B2, E1, E2
e

Call GetTaskID() from ISR
category 3

Service returns E_OS_CALLEVEL

39 n, m, f
B1, B2, E1, E2
s, e

Call GetTaskID() from task Return task ID of currently UXQQLQJ
task. Service returns E_OK

40 n, m, f
B1, B2, E1, E2
e

Call GetTaskState() with
invalid task ID (task does not exist)

Service returns E_OS_ID

41 n, m, f
B1, B2, E1, E2
s, e

Call GetTaskState() Return state of queried task. Service
returns E_OK

���� ,QWHUUXSW�SURFHVVLQJ

No conformance tests will be made for interrupt service routines (ISR) of category 1 because they
do not run under the control of the OS. Thus, there is no possibility to check if an ISR1 is active or
not. The same holds true for ISRs of category 3 outside the ISR frame build by the calls to
Enter/LeaveISR().

Page 20 by 26(. OS Test Plan 2.0

E_OS_NOFUNCE_OK

return
status

non-preemptive
task

preemptive
task

interrupted task

return from interrupt

trigger interrupt

GetInterruptDescriptor

DisableInterrupt

EnableInterrupt

called
OS service

ISR of
category 2

task

execution
level

OSEK Interrupt Processing

ISR of
category 3

1
2
3
4
5
6
7
8
9
10
11
12

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
s, e

Call EnableInterrupt(). All
requested interrupts are disabled

Enable interrupts. Service returns
E_OK

2 n, m, f
B1, B2, E1, E2
e

Call EnableInterrupt(). At
least one of the requested interrupts
is already enabled

Enable interrupts. Service returns
E_OS_NOFUNC

3 n, m, f
B1, B2, E1, E2
s, e

Call DisableInterrupt(). All
requested interrupts are enabled

Disable interrupts. Service returns
E_OK

4 n, m, f
B1, B2, E1, E2
e

Call DisableInterrupt(). At
least one of the requested interrupts
is already disabled

Disable interrupts. Service returns
E_OS_NOFUNC

5 n, m, f
B1, B2, E1, E2
s, e

Call
GetInterruptDescriptor()

Returns current interrupt descriptor.
Service returns E_OK

6 n, m, f
B1, B2, E1, E2
s, e

Interruption of UXQQLQJ�task Interrupt is executed

7 n, m, f
B1, B2, E1, E2
s, e

Interruption of ISR2 Interrupt is executed

8 n, m, f
B1, B2, E1, E2
s, e

Interruption of ISR3 Interrupt is executed

9 n, m
B1, B2, E1, E2
s, e

Return from ISR2. Interrupted task is
non-preemptive

Execution of interrupted task is
continued

10 n, m
B1, B2, E1, E2
s, e

Return from ISR3. Interrupted task is
non-preemptive

Execution of interrupted task is
continued

OS Test Plan 2.0 by 26(. Page 21

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

11 m, f
B1, B2, E1, E2
s, e

Return from ISR2. Interrupted task is
preemptive

5HDG\ task with highest priority is
executed (Rescheduling)

12 m, f
B1, B2, E1, E2
s, e

Return from ISR3. Interrupted task is
preemptive

5HDG\ task with highest priority is
executed (Rescheduling)

���� (YHQW�PHFKDQLVP

Events are not queued. I.e. if an event is set twice before it could be cleared, then the task owning
this event is notified only once. Therefore one event gets lost. This behaviour is not clearly
expressed by the specification and is therefore not object of conformance testing.

E_OK

E_OS_ID

E_OS_STATE

E_OS_CALLEVEL

E_OS_ACCESS

E_OS_RESOURCE

return
status

lower than
running task

higher than
running task

priority

extended

basic

type

suspended

running

ready

requested
event

other
event

waiting for..

waiting

state

invalidvalid

task ID

affected task

cleared

set

event

WaitEvent

GetEvent

ClearEvent

SetEvent

called
OS service

ISR of
category 3

ISR of
category 2

noyes

occupying
resource

extended

basic

type

noyes

preemptive

yes

no
constraints

task

execution
level

OSEK Event Mechanism

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
E1, E2
e

Call SetEvent() with invalid
Task ID

Service returns E_OS_ID

2 n, m, f
E1, E2
e

Call SetEvent() for basic task Service returns E_OS_ACCESS

3 n, m, f
E1, E2
e

Call SetEvent() for VXVSHQGHG
extended task

Service returns E_OS_STATE

Page 22 by 26(. OS Test Plan 2.0

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

4 n, m
E1, E2
s, e

Call SetEvent() from non-
preemptive task on ZDLWLQJ�extended
task which is waiting for at least one
of the requested events

Requested events are set. 5XQQLQJ
task is not preempted. :DLWLQJ task
becomes UHDG\��Service returns
E_OK

5 n, m
E1, E2
s, e

Call SetEvent() from non-
preemptive task on ZDLWLQJ�extended
task which is not waiting for any of
the requested events

Requested events are set. 5XQQLQJ
task is not preempted. :DLWLQJ task
doesn’t become UHDG\. Service
returns E_OK

6 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on ZDLWLQJ�extended
task which is waiting for at least one
of the requested events and has
higher priority than UXQQLQJ�task

Requested events are set. 5XQQLQJ
task becomes�UHDG\�(is preempted)�
:DLWLQJ task becomes UXQQLQJ.
Service returns E_OK

7 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on ZDLWLQJ�extended
task which is waiting for at least one
of the requested events and has equal
or lower priority than UXQQLQJ�task

Requested events are set. 5XQQLQJ
task is not preempted.�:DLWLQJ task
becomes UHDG\. Service returns
E_OK

8 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on ZDLWLQJ�extended
task which is not waiting for any of
the requested events

Requested events are set. 5XQQLQJ
task is not preempted. :DLWLQJ task
doesn’t become UHDG\. Service
returns E_OK

9 n, m
E1, E2
s, e

Call SetEvent() from non-
preemptive task on UHDG\�extended
task

Requested events are set. 5XQQLQJ
task is not preempted. Service
returns E_OK

10 m, f
E1, E2
s, e

Call SetEvent() from
preemptive task on UHDG\�extended
task

Requested events are set. 5XQQLQJ
task is not preempted. Service
returns E_OK

11 n, m, f
E1, E2
e

Call ClearEvent() from basic
task

Service returns E_OS_ACCESS

12 n, m, f
E1, E2
e

Call ClearEvent() from ISR2 Service returns E_OS_CALLEVEL

13 n, m, f
E1, E2
e

Call ClearEvent() from ISR3 Service returns E_OS_CALLEVEL

14 n, m, f
E1, E2
s, e

Call ClearEvent() from
extended task

Requested events are cleared.
Service returns E_OK

15 n, m, f
E1, E2
e

Call GetEvent() with invalid
Task ID

Service returns E_OS_ID

16 n, m, f
E1, E2
e

Call GetEvent() for basic task Service returns E_OS_ACCESS

OS Test Plan 2.0 by 26(. Page 23

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

17 n, m, f
E1, E2
e

Call GetEvent() for VXVSHQGHG
extended task

Service returns E_OS_STATE

18 n, m, f
E1, E2
s, e

Call GetEvent() for UXQQLQJ
extended task

Return current state of all event bits.
Service returns E_OK

19 n, m, f
E1, E2
s, e

Call GetEvent() for UHDG\
extended task

Return current state of all event bits.
Service returns E_OK

20 n, m, f
E1, E2
s, e

Call GetEvent() for ZDLWLQJ
extended task

Return current state of all event bits.
Service returns E_OK

21 n, m, f
E1, E2
e

Call WaitEvent() from basic task Service returns E_OS_ACCESS

22 n, m, f
E1, E2
e

Call WaitEvent() from extended
task which occupies a resource

Service returns E_OS_RESOURCE

23 n, m, f
E1, E2
e

Call WaitEvent() from ISR2 Service returns E_OS_CALLEVEL

24 n, m, f
E1, E2
e

Call WaitEvent() from ISR3 Service returns E_OS_CALLEVEL

25 n, m, f
E1, E2
s, e

Call WaitEvent() from extended
task. None of the events waited for is
set

5XQQLQJ�task becomes ZDLWLQJ�and
UHDG\ task with highest priority is
executed� Service returns E_OK

26 n, m, f
E1, E2
s, e

Call WaitEvent() from extended
task. At least one event waited for is
already set

No preemption of�UXQQLQJ�task�
Service returns E_OK

Page 24 by 26(. OS Test Plan 2.0

���� 5HVRXUFH�PDQDJHPHQW

E_OS_NOFUNC

E_OS_ACCESS

E_OS_CALLEVEL

E_OS_LIMIT

E_OS_ID

E_OK

return
status

RES_SCHEDULER

not definedany

name

occupiedfree

state

not
allowed

allowed

access

resource

GetResource

ReleaseResource

called
OS service

ISR of
category 3

ISR of
category 2

noyes

max. No. of
nested resources

reached

noyes

preemptive

yes

no
constraints

task

execution
level

OSEK Resource Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call GetResource() from task
which has no access to this resource

Service returns E_OS_ACCESS

2 n, m, f
B1, B2, E1, E2
e

Call GetResource() from task
with invalid resource ID

Service returns E_OS_ID

3 n, m, f
B1, B2, E1, E2
e

Call GetResource() from ISR2 Service returns E_OS_CALLEVEL

4 n, m, f
B1, B2, E1, E2
e

Call GetResource() from ISR3 Service returns E_OS_CALLEVEL

5 n, m, f
B1, B2, E1, E2
e

Call GetResource() from task
with too many resources occupied in
parallel

Service returns E_OS_LIMIT

6 n, m
B1, B2, E1, E2
s, e

Test Priority Ceiling Protocol:
Call GetResource() from non-
preemptive task, activate task with
priority higher than running task but
lower than ceiling priority, and force
rescheduling

Resource is occupied and UXQQLQJ
task’s priority is set to resource’s
ceiling priority. Service returns
E_OK. No preemption occurs after
activating the task with higher
priority and rescheduling

7 m, f
B1, B2, E1, E2
s, e

Test Priority Ceiling Protocol:
Call GetResource()from
preemptive task, and activate task
with priority higher than running
task but lower than ceiling priority

Resource is occupied and UXQQLQJ
task’s priority is set to resource’s
ceiling priority. Service returns
E_OK. No preemption occurs after
activating the task with higher
priority

OS Test Plan 2.0 by 26(. Page 25

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

8 n, m, f
B1, B2, E1, E2
s, e

Call GetResource() for resource
RES_SCHEDULER

Resource is occupied and UXQQLQJ
task’s priority is set to resource’s
ceiling priority. Service returns
E_OK

9 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
task with invalid resource ID

Service returns E_OS_ID

10 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
ISR2

Service returns E_OS_CALLEVEL

11 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
ISR3

Service returns E_OS_CALLEVEL

12 n, m, f
B1, B2, E1, E2
e

Call ReleaseResource() from
task with resource which is not
occupied

Service returns E_OS_NOFUNC

13 n, m
B1, B2, E1, E2
s, e

Call ReleaseResource() from
non-preemptive task

Resource is released and UXQQLQJ
task’s priority is reset. No
preemption of UXQQLQJ�task. Service
returns E_OK

14 m, f
B1, B2, E1, E2
s, e

Call ReleaseResource() from
preemptive task

Resource is released and UXQQLQJ
task’s priority is reset. Ready task
with highest priority is executed
(Rescheduling). Service returns
E_OK

15 n, m
B1, B2, E1, E2
s, e

Call ReleaseResource()from
non-preemptive task for resource
RES_SCHEDULER

Resource is released and UXQQLQJ
task’s priority is reset. No
preemption of UXQQLQJ�task. Service
returns E_OK

16 m, f
B1, B2, E1, E2
s, e

Call ReleaseResource()from
preemptive task for resource
RES_SCHEDULER

Resource is released and UXQQLQJ
task’s priority is reset. Ready task
with highest priority is executed
(Rescheduling). Service returns
E_OK

���� $ODUPV

The behaviour of the OS is not defined by the specification if the action assigned to the expiration
of an alarm can not be performed, because

• it would lead to multiple task activation, which is not allowed in the used conformance class or
the max. number of activated tasks is already reached, or

• it would set an event for a task which is currently suspended.

The expected behaviour is, that at least the error hook is called. But as this situation is not covered
by the specification, it is not part of conformance testing.

Page 26 by 26(. OS Test Plan 2.0

E_OS_VALUE

E_OS_STATE

E_OS_NOFUNC

E_OS_ID

E_OK

return
status

not waiting
on event

waiting
on event

affected
task's
state

lower than
running task

higher than
running task

affected
task's
priority

affected task

too great

suitable

too low

cycle
value

too great

suitable

too low

increment
value

set
event

activate
task

action

unsetset

state

noyes

defined

alarm

alarm expires

CancelAlarm

SetAbsAlarm

SetRelAlarm

GetAlarm

GetAlarmBase

called
OS service

non-
preemptive

preemptive

running task

OSEK Alarms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
e

Call GetAlarmBase() with
invalid alarm ID

Service returns E_OS_ID

2 n, m, f
B1, B2, E1, E2
s, e

Call GetAlarmBase() Return alarm base characteristics.
Service returns E_OK

3 n, m, f
B1, B2, E1, E2
e

Call GetAlarm() with invalid
alarm ID

Service returns E_OS_ID

4 n, m, f
B1, B2, E1, E2
s, e

Call GetAlarm() for alarm which
is currently not in use

Service returns E_OS_NOFUNC

5 n, m, f
B1, B2, E1, E2
s, e

Call GetAlarm() for alarm which
will activate a task on expiration

Returns number of ticks until
expiration. Service returns E_OK

6 n, m, f
E1, E2
s, e

Call GetAlarm() for alarm which
will set an event on expiration

Returns number of ticks until
expiration. Service returns E_OK

7 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with invalid
alarm ID

Service returns E_OS_ID

OS Test Plan 2.0 by 26(. Page 27

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

8 n, m, f
B1, B2, E1, E2
s, e

Call SetRelAlarm() for already
activated alarm which will activate a
task on expiration

Service returns E_OS_STATE

9 n, m, f
E1, E2
s, e

Call SetRelAlarm() for already
activated alarm which will set an
event on expiration

Service returns E_OS_STATE

10 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with
increment value lower than zero

Service returns E_OS_VALUE

11 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with
increment value greater than
maxallowedvalue

Service returns E_OS_VALUE

12 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with cycle
value lower than mincycle

Service returns E_OS_VALUE

13 n, m, f
B1, B2, E1, E2
e

Call SetRelAlarm() with cycle
value greater than
maxallowedvalue

Service returns E_OS_VALUE

14 n, m, f
B1, B2, E1, E2
s, e

Call SetRelAlarm() for alarm
which will activate a task on
expiration

Alarm is activated. Service returns
E_OK

15 n, m, f
E1, E2
s, e

Call SetRelAlarm() for alarm
which will set an event on expiration

Alarm is activated. Service returns
E_OK

16 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with invalid
alarm ID

Service returns E_OS_ID

17 n, m, f
B1, B2, E1, E2
s, e

Call SetAbsAlarm() for already
activated alarm which will activate a
task on expiration

Service returns E_OS_STATE

18 n, m, f
E1, E2
s, e

Call SetAbsAlarm() for already
activated alarm which will set an
event on expiration

Service returns E_OS_STATE

19 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with
increment value lower than zero

Service returns E_OS_VALUE

20 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with
increment value greater than
maxallowedvalue

Service returns E_OS_VALUE

21 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with cycle
value lower than mincycle

Service returns E_OS_VALUE

22 n, m, f
B1, B2, E1, E2
e

Call SetAbsAlarm() with cycle
value greater than
maxallowedvalue

Service returns E_OS_VALUE

Page 28 by 26(. OS Test Plan 2.0

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

23 n, m, f
B1, B2, E1, E2
s, e

Call SetAbsAlarm() for alarm
which will activate a task on
expiration

Alarm is activated. Service returns
E_OK

24 n, m, f
E1, E2
s, e

Call SetAbsAlarm() for alarm
which will set an event on expiration

Alarm is activated. Service returns
E_OK

25 n, m, f
B1, B2, E1, E2
e

Call CancelAlarm() with invalid
alarm ID

Service returns E_OS_ID

26 n, m, f
B1, B2, E1, E2
s, e

Call CancelAlarm() for alarm
which is currently not in use

Service returns E_OS_NOFUNC

27 n, m, f
B1, B2, E1, E2
s, e

Call CancelAlarm() for already
activated alarm which will activate a
task on expiration

Alarm is cancelled. Service returns
E_OK

28 n, m, f
E1, E2
s, e

Call CancelAlarm() for already
activated alarm which will set an
event on expiration

Alarm is cancelled. Service returns
E_OK

29 n, m, f
B1, B2, E1, E2
s, e

Expiration of alarm which activates
a task while no tasks are currently
UXQQLQJ

Task is activated

30 n, m
B1, B2, E1, E2
s, e

Expiration of alarm which activates
a task while UXQQLQJ task is non-
preemptive

Task is activated. No preemption of
UXQQLQJ task

31 m, f
B1, B2, E1, E2
s, e

Expiration of alarm which activates
a task with higher priority than
UXQQLQJ�task�while UXQQLQJ task is
preemptive

Task is activated. Task with highest
priority is executed

32 m, f
B1, B2, E1, E2
s, e

Expiration of alarm which activates
a task with lower priority than
UXQQLQJ�task�while UXQQLQJ task is
preemptive

Task is activated. No preemption of
UXQQLQJ task.

33 n, m
E1, E2
s, e

Expiration of alarm which sets an
event while UXQQLQJ task is non-
preemptive. Task which owns the
event is not ZDLWLQJ for this event
and not VXVSHQGHG

Event is set

34 n, m
E1, E2
s, e

Expiration of alarm which sets an
event while UXQQLQJ task is non-
preemptive. Task which owns the
event is ZDLWLQJ for this event

Event is set. Task which is owner of
the event becomes UHDG\��No
preemption of UXQQLQJ task

35 m, f
E1, E2
s, e

Expiration of alarm which sets an
event while UXQQLQJ task is
preemptive. Task which owns the
event is not ZDLWLQJ for this event
and not VXVSHQGHG

Event is set

OS Test Plan 2.0 by 26(. Page 29

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

36 m, f
E1, E2
s, e

Expiration of alarm which sets an
event while UXQQLQJ task is
preemptive. Task which owns the
event is ZDLWLQJ for this event

Event is set. Task which is owner of
the event becomes UHDG\��Task with
highest priority is executed
(Rescheduling)

���� (UURU�KDQGOLQJ��KRRN�URXWLQHV�DQG�26�H[HFXWLRQ�FRQWURO

The specification doesn’t provide an error status when calling an OS service which is not allowed on
hook level from inside a hook routine. It is assumed that the correct behaviour would be to return
E_OS_CALLEVEL. As this is not prescribed by the specification, this will not be used as a criteria
for the conformance of the implementation. Anyway, the conformance tests will check that
restricted OS services return a value not equal E_OK.

Test
case
No.

Sched. policy
Conf. class
Status

Action Expected Result

1 n, m, f
B1, B2, E1, E2
s, e

Call
GetActiveApplicationMode
()

Return current application mode

2 n, m, f
B1, B2, E1, E2
s, e

Call StartOS() Start operating system

3 n, m, f
B1, B2, E1, E2
s, e

Call ShutdownOS() Shutdown operating system

4 n, m, f
B1, B2, E1, E2
s, e

Check PreTaskHook/PostTaskHook:
Force rescheduling

PreTaskHook is called before
executing the new task, but after the
transition to UXQQLQJ state.
PostTaskHook is called after exiting
the current task but before leaving
the task’s UXQQLQJ�state

5 n, m, f
B1, B2, E1, E2
s, e

Check ErrorHook:
Force error

ErrorHook is called at the end of a
system service which has a return
value not equal E_OK

6 n, m, f
B1, B2, E1, E2
s, e

Check StartupHook:
Start OS

StartupHook is called after
initialisation of OS

7 n, m, f
B1, B2, E1, E2
s, e

Check ShutdownHook:
Shutdown OS

ShutdownHook is called after the OS
shut down

8 n, m, f
B1, B2, E1, E2
e

Check availability of OS services
inside hook routines according to fig.
9-1 of OS spec.

OS services which must not be
called from hook routines return
status not equal E_OK

Page 30 by 26(. OS Test Plan 2.0

��$SSHQGL[�,

This appendix list implementation specific parameters which are proposed by the specification to be
provided by the vendor. Anyway, as they are too dependant on the environment and the applications
running on the system, to be useful to customers, it doesn’t seem to be reasonable to determine
them. Thus, the MODISTARC OS group decided not to use them as criteria for compliance and
therefore put them into this appendix.

No. Assertion Page Paragraph
in spec.

Affected
variants

1 RAM and ROM requirement for each of the OS
components

63 12.2.2 All

2 Size for each linkable module 63 12.2.2 All
3 Application dependant RAM and ROM requirements for

OS data (e.g. bytes RAM per task, RAM required per
alarm, ...)

63 12.2.2 All

4 Execution context of the OS (e.g. size of OS internal
tables)

63 12.2.2 All

5 Total execution time for each service 63 12.2.3 All
6 OS start-up time without invoking hook routines 63 12.2.3 All
7 Interrupt latency for ISR of category 1, 2 and 3 63 12.2.3 All
8 Task switching times for all types of switching 63 12.2.3 All
9 Idle CPU overhead 63 12.2.3 All

OS Test Plan 2.0 by 26(. Page 31

��$EEUHYLDWLRQV
API Application Programming Interface

COM Communication

DLL Data Link Layer

ECU Electronic Control Unit

ISO International Standard Organization

ISR Interrupt Service Routine

IUT Implementation Under Test

LT Lower Tester

NM Network Management

OPDU OSEK Protocol Data Unit

OS Operating System

PDU Protocol Data Unit

PCO Point of Control and Observation

SDL Specification and Description Language

TMP Test Management Protocol

TM_PDU Test Management - Protocol Data Unit

TTCN Tree and Tabular Combined Notation

UT Upper Tester

Page 32 by 26(. OS Test Plan 2.0

��5HIHUHQFHV

[1] OSEK/VDX Conformance Testing Methodology - Version 1.0 - 19th of December 1997

[2] OSEK/VDX Certification Procedure - F. Kaag, J. Minuth, K.J. Neumann, H. Kuder -
Proceedings of the 1st International Workshop on Open Systems in Automotive
Networks - October 1995.

[3] OSEK/VDX Operating System - Version 2.0 revision 1 - 15th of October1997

[4] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection, Conformance
testing methodology and framework, part 1 : General Concepts, 1992.

[5] ISO/IEC 9646-3 - Information technology, Open Systems Interconnection, Conformance
testing, methodology and framework, part 3 : The Tree and Tabular Combined Notation
(TTCN), 1992.

[6] Benutzerdokumentation "Classification-Tree Editor - CTE für MS-Windows",
Version 1.2 - ATS Automated Testing Solutions GmbH, Daimler-Benz AG, 1st of
February 1998.

