
2SHQ�6\VWHPV�DQG�WKH�&RUUHVSRQGLQJ�,QWHUIDFHV

IRU�$XWRPRWLYH�(OHFWURQLFV

This document is an official release and replaces all previously distributed documents. The OSEK group retains
the right to make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without
permission in writing from the OSEK/VDX steering committee.

Conformance Methodology 2.0 by 26(. Document: Tmeth20.doc

26(.�9';

&RQIRUPDQFH�7HVWLQJ�0HWKRGRORJ\

Version 2.0

April 16th, 1999

Page 2 by 26(. Conformance Methodology 2.0

:KDW�LV�26(.�9';"
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.
A real-time operating system, software interfaces and functions for communication and
network management tasks are thus jointly specified.
The term OSEK means ”Offene Systeme und deren Schnittstellen für die Elektronik im
Kraftfahrzeug” (Open systems and the corresponding interfaces for automotive electronics).
The term VDX means „Vehicle Distributed eXecutive“. The functionality of OSEK operating
system was harmonized with VDX. For simplicity OSEK will be used instead of OSEK/VDX
in the document.

26(.�SDUWQHUV�
Adam Opel AG, BMW AG, Daimler-Benz AG, IIIT University of Karlsruhe, Mercedes-
Benz AG, Robert Bosch GmbH, Siemens AG, Volkswagen AG.
GIE.RE. PSA-Renault (Groupement d’intérêt Economique de Recherches et d’Etudes PSA-
Renault).

0RWLYDWLRQ�

• High, recurring expenses in the development and variant management of non-
application related aspects of control unit software.

• Incompatibility of control units made by different manufacturers due to different inter-
faces and protocols.

*RDO�
Support of the portability and reusability of the application software by:

• Specification of interfaces which are abstract and as application-independent as
possible, in the following areas: real-time operating system, communication and
network management.

• Specification of a user interface independent of hardware and network.

• Efficient design of architecture: The functionality shall be configurable and scaleable, to
enable optimal adjustment of the architecture to the application in question.

• Verification of functionality and implementation of prototypes in selected pilot projects.

$GYDQWDJHV�

• Clear savings in costs and development time.

• Enhanced quality of the control units software of various companies.

• Standardized interfacing features for control units with different architectural designs.

• Sequenced utilization of the intelligence (existing resources) distributed in the vehicle,
to enhance the performance of the overall system without requiring additional hardware.

• Provides absolute independence with regards to individual implementation, as the speci-
fication does not prescribe implementation aspects.

Conformance Methodology 2.0 by 26(. Page 3

26(.�FRQIRUPDQFH�WHVWLQJ
OSEK conformance testing aims at checking conformance of products to OSEK
specifications. Test suites are thus specified for implementations of OSEK operating system,
communication and network management.

Work around OSEK conformance testing is supported by the MODISTARC project sponsored
by the Commission of European Communities. The term MODISTARC means ”Methods and
tools for the validation of OSEK/VDX based DISTributed ARChitectures”.

This document has been drafted by MODISTARC members:

Bernd Büchs Adam Opel AG

Wolfgang Kremer BMW AG

Stefan Schmerler FZI

Franz Adis FZI

Benoit Caillaud INRIA

Yves Sorel INRIA

Dirk John IIIT, Karlsruhe University

Robert France Motorola

Barbara Ziker Motorola

Jean-Emmanuel Hanne Peugeot Citroën S.A.

Samuel Boutin Renault S.A.

Eric Brodin Sagem SA

Gerhard Goeser Siemens Automotive SA

Patrick Palmieri Siemens Automotive SA

Didier Stunault Thomson-CSF Detexis

Remark by the authors

This document is inspired by the paper published at the first OSEK Workshop [1], which sets the
development framework for an OSEK conformance test process. This document also takes account
of the work conducted since by the OSEK conformance testing group.

Page 4 by 26(. Conformance Methodology 2.0

Table of Contents

1. Scope of Conformance Testing ... 5
1.1. Motivations... 5
1.2. Definitions and intentions .. 5
1.3. Conformance testing concerns ... 7
1.4. Rules of test suites definition ... 7
1.5. Other limitations... 8
1.6. Work programme.. 9

2. Definition of Test Suites ... 11
2.1. Definition process... 11
2.2. OS test suites .. 14

2.2.1. Test configurations ... 14
2.2.2. Services and variants .. 14
2.2.3. Definition method for test suites .. 16

2.3. COM and NM test suites .. 17
2.3.1. Test configurations ... 17
2.3.2. Services and variants .. 18
2.3.3. Event management.. 22
2.3.4. Definition method for test suites .. 29

2.4. Strategy for OSEK modules integration and testing... 30
2.4.1. OSEK integration and conformance testing ... 30
2.4.2. Conformance testing of a complete OSEK implementation................................. 30

3. Test architecture for COM and NM .. 32
3.1. Description of the test architecture... 32
3.2. Rules of UT, LT and TMP specification .. 33
3.3. TMP mechanisms ... 35
3.4. Example of UT specification.. 37

4. Methods of test suite generation.. 39
4.1. Generation of OS test suites ... 39

4.1.1. Generation method and supporting tool ... 39
4.1.2. Test suite example .. 40
4.1.3. Test generation tool .. 41

4.2. Generation of COM and NM test suites ... 44
4.2.1. Generation method ... 44
4.2.2. Impact of test architecture... 46
4.2.3. Test suite example .. 47
4.2.4. Test generation tools... 49

5. TTCN overview .. 51
5.1. Declarations.. 51
5.2. Constraints.. 52
5.3. Dynamic behaviour... 53

6. Abbreviations .. 55

7. References ... 56

Conformance Methodology 2.0 by 26(. Page 5

1.�Scope of Conformance Testing

1.1.� Motivations

The OSEK project has led to the specification of three standards defining an Operating
System and Communication and Network Management services and protocols ([2], [3], [4]).
Its purpose is to define basic modules on which the distributed applications of future
automotive systems will be based. Standardisation of these modules will significantly reduce
the systems’ development costs and schedules, while creating a fully open market for
interchangeable OSEK components or hardware/software systems integrating these
components.

These goals cannot be achieved until a conformance procedure exists that allows the products
claiming the OSEK/VDX label to be qualified. Short of such a procedure, there is a high risk
that many incompatible implementations will arise, forcing either the ECU suppliers to
procure from a single software source, or the car manufacturers to procure from a single ECU
supplier. The goal of the conformance procedure is to prevent potential conformance conflicts
or to act as an arbitrator and settle disputes, where appropriate.

1.2.� Definitions and intentions

The objectives of the OSEK conformance process are to determine whether an OSEK
implementation complies or not with the OSEK specification. The purpose is therefore first to
establish, based on the specification, a list of conformance rules applicable to
implementations, which should ideally guarantee that the implementations will react in
accordance with the specification to a given series of events, under a given set of
circumstances. These rules are standardised by WHVW VXLWHV�that the implementations must pass
to achieve OSEK qualification.

From the conformance testing perspective, the implementation to be tested is seen as a black
box whose sole external interfaces are accessible. Therefore, conformance tests cannot check
the complete OSEK functionality of implementations.

The external interfaces are the APIs and OPDUs defined in the specification. OSEK module
access points are presented in Figure 1 below. COM and NM make use of both APIs and
OPDUs while OS only makes use of APIs.

Page 6 by 26(. Conformance Methodology 2.0

OSEK module
under test

USER’S APIs

OSEK application

OSEK PDUs

1HWZRUN

Figure 1 OSEK module interfaces

A test suite then defines which actions and verifications a tester must conduct on the APIs and
OPDUs to carry out the conformance tests. This definition’s abstraction level is the same as
that of the OSEK specification. It does not presuppose nor recommend any kind of test
platform implementation.

In addition to strict observance of the OSEK specification, the test suites shall reflect the
OSEK specification intentions and objectives. The only point of interest here is what the
OSEK customer is expecting from the conformance tests, whether he is ECU or system
integrator. In this respect, the intentions of OSEK are expressed in terms of portability of
applications and interoperability of ECUs. These two notions are detailed below.

• Portability is the ability to move an application from one OSEK environment to another
OSEK environment with no need to make changes to this application. The "OSEK
environment" depends on three factors which are the micro-controller, the ECU and the
OSEK implementation itself. The OSEK implementation in turn comprises three
elements: the OS, COM and NM. Different degrees of portability can therefore be
defined, with the minimum level corresponding to changing a single element, while the
maximum level corresponds to changing all elements. The test suites will only address
portability of applications, not OSEK inter-module portability. This implies that APIs
and services for user applications are correctly implemented.

• Interoperability is the ability for two applications or more installed in different ECUs to
exchange data, which assumes that the exchange protocols defined in the OSEK
specification are being complied with. Interoperability only concerns COM and NM.

The selected tests shall be those and only those which are required to achieve both these
objectives.

Conformance Methodology 2.0 by 26(. Page 7

1.3.� Conformance testing concerns

The conformance process shall run throughout the life cycle of an OSEK system. Each stage
can give rise to conflicts or to errors, and suitable test procedures are therefore necessary. The
development cycle can be broken down into three stages:

• development of OSEK software,

• integration of the OSEK software to the target equipment,

• interconnection of equipment to validate the system.

In the first phase, the purpose is to validate source code. Conformance tests can help to verify
whether software being developed is compliant with the specification. But they are not
capable of performing a full validation.

In the second phase, the purpose is to test one or more OSEK components installed in the
target equipment and verify OSEK compliance of the object code. It is the main goals of
conformance testing.

In the third phase, i.e. system validation, the user’s applications are in operational use and
running the tests would have a disruptive effect. Any interoperability problems which could
be detected shall be resolved by other means, such as using protocol analysers. Going back to
phase 2 can however be required to analyse the behaviour of a suspect ECU.

1.4.� Rules of test suites definition

The test suites shall strictly reproduce what is written in the specification, and only that, in
keeping with the above-defined objectives. The test suites are independent from the design
options of the implementation to be tested. They shall add nothing which could reduce
without justification the scope of compliant implementations.

Conversely, any detail of the specification which can be considered as specific to an
implementation or a category of implementations shall be dismissed. As the saying goes:

�$OO�ZKDW�EHKDYHV�OLNH�26(.�LV�26(.�

The test suites are independent from the tested implementation environment, in particular as
regards the type of processor for the OS or the bus protocol (CAN, VAN, J1850...) for COM.
The specification of the network data exchanged during a test is provided in OSEK PDU
format.

The test suites shall cover all the specification variants, such as OS or COM classes or NM
optional services. The compatible variants of each suite are clearly identified to allow the tests
applicable to each implementation to be selected.

The specification elements to be covered by tests fall into three classes.

• APIs.

 APIs define procedural calls available to application. The purpose is to check that the
interface has been implemented correctly.

Page 8 by 26(. Conformance Methodology 2.0

• Services.

 Services define the function performed by the API, such as a task activation. The
specification defines two categories of services, i.e.: generation services and run-time
services. Only run-time services are addressed by conformance tests. Generation
services supply constructors intended to automate OSEK application generation. They
are usually implemented by specific off-line tools of the supplier’s production line. And
validation of such tools is out of the scope of OSEK conformance testing.

 Testing conformance of a service amounts to checking that the API produces the
expected information and return status. It allows to check behaviour rules stated in the
specification inasmuch as those behaviours are observable through API calls. For
example, OS scheduling rules can be verified by activating several tasks and calling
*HW7DVN6WDWH� to check the states of the different tasks. Behaviour verification often
implies execution of a combination of services.

 The specification defines standard status and extended status. Both of them will be
checked. Although extended status are generally used for application debugging and not
installed in operational software, they will be tested so that applications can be validated
with compliant OSEK software from the beginning.

 Conformance tests will check all status, inclusive of error reports. They will also check
that the service can be called up under all the conditions defined by the specification, at
task level or at interrupt level, for example.

• Protocols.

 Protocols describe network behaviours. They only concern COM and NM. They are
specified by state/event automata described by graphs or SDL diagrams. Protocol
observability is allowed through the OPDUs transmitted and received by the
implementation. Conformance tests of protocols shall cover all the transitions of the
automata inasmuch as they are observable, whether they express nominal behaviours or
error cases.

Two other types of tests can also be meaningful to an OSEK implementation user. However
they are out of the scope of conformance testing and they will not be dealt with in the current
project:

• Tests of capacity parameters, for example the number of tasks supported by the OS or
the number of network connections supported by COM,

• Tests of performance parameters, for example task switching times or message transit
times in the communication layers.

1.5.� Other limitations

It is not the purpose of the conformance tests to validate an OSEK software. The intended
objectives are not to detect design or coding errors but to check that the implementation is
consistent with the specification. Implementators shall validate their software using
conventional resources before presenting it for conformance tests.

In the same way, the conformance tests definition does not aim at checking that the OSEK
specification is consistent, bug-free, and has been designed to cover all possible situations. In
this task, the specification is considered as a reliable basis. However, any discrepancies which
could be discovered incidentally will be forwarded to the specification groups to be impacted
to the OSEK standards.

Conformance Methodology 2.0 by 26(. Page 9

Conformance tests have no claim to completeness. It will always be impossible to check all
possible combinations of events and situations predicted by the specification. The goal is to
achieve through tests as wide a coverage of the various functions as possible. Portability or
interoperability troubles may still arise owing to special scheduling of events or combination
of parameter values not covered by the tests.

The conformance tests are "black box" tests. Only events corresponding to the specification
interfaces (APIs, OPDUs) can be checked. Only the data associated with these events are
observable. For example, checking the state of a protocol automaton requires the existence of
an interface primitive providing this state. Otherwise, the test can only assume that the state
went to the expected value based on the events it could observe, such as the OPDUs
transmitted by the implementation.

1.6.� Work programme

This document forms part of the MODISTARC programme which has been designed to cover
the whole life-cycle of the conformance testing activity. Actually, as every specification the
test suites definition must be consolidated through implementation and validation of the
implementation. Therefore, the role of MODISTARC is firstly to define the OSEK test suites
and subsequently to realise the first implementation of the specified suites and validate the
implementation against OSEK prototypes. More precisely, the MODISTARC programme
consists of the four following phases:

• Conformance testing methodology. The goals are to define the relevant methods for
checking OSEK software conformance. This includes methods that will be employed
throughout the life cycle for definition, implementation and validation of the test suites.
The issues are represented by the present document.

• Test suites definition. The goals are to specify the OSEK conformance test suites
according to the rules established in the present document. The issues are three
documents defining the test suites for OS, COM and NM. They are established from the
associated specification document and they will become the official OSEK conformance
standards after the validation.

• Implementation work. This phase includes all implementation work required to validate
the test suites specification. It comprises the development of conformance tools
implementing the test suites and the development of OSEK prototypes to be used in the
validation phase.

 As test suites are defined in an implementation-independent style, some implementation
choices have been decided for the test tools. For instance, the hardware environment is
PC and network protocols are checked via a CAN network.

 The OSEK prototypes include a PC implementation and three ECUs. Each one will
implement different OSEK specification variants to allow different configurations of the
suites to be assessed.

• Conformance test campaign. This phase will start with conformance assessment of the
four OSEK prototypes using the PC tools. Then, the various prototypes will be
interconnected on a test platform and a distributed application will be installed and
executed to demonstrate the fulfilment of the two main objectives stated before, that is
portability and interoperability of OSEK software once conformance has been
established.

Page 10 by 26(. Conformance Methodology 2.0

 The intended test application is a virtual application using OSEK services and protocols,
and built as a symmetrical application. Therefore, portability will be evaluated by
checking that the OSEK API’s behaviour is the same in the different targets.
Interoperability will be demonstrated through the data exchanges between the remote
parts of the symmetrical application.

Conformance Methodology 2.0 by 26(. Page 11

2.�Definition of Test Suites

2.1.� Definition process

The conformance tests shall check that the APIs, services and protocols of the specification
are implemented correctly.

As concerns APIs, the tests shall check that the implementation complies with the syntax
defined in the specification. This check is carried out automatically by a compilation tool
when linking the implemented API with an OSEK compliant software that makes use of the
APIs. Provided there is a conformance software for OSEK services which respects the OSEK
API, linking that software with OSEK implementation will automatically check syntax
compatibility between specified OSEK API and implemented OSEK API. Therefore, it is not
necessary to define specific test suites to verify API conformance.

As concerns services and protocols, the various parameters which will impact definition of the
test suites have to be first identified:

• the list of variants,

• the list of APIs accessible as a function of the variants,

• the list of specification parameters which the user shall define before executing the tests
(such as network addresses)

• the list of constraint parameters whose value will influence test selection for a given
implementation (such as maximum number of tasks)

Subsequently, conformance test definition is a two-stage process:

• definition of the test purposes,

• definition of the test cases

Definition of the test purposes results from analysis of the specification. Definition determines
what can and what must be tested. The method used consists in reading the specification and
extracting checkable assertions. The assertions are established from the specification’s text,
tables or figures and from the SDL diagrams for protocols. Then, the complete assertions are
analysed to remove redundancies. The result is a table containing for each assertion:

• a sequence number used as a reference for test suite traceability,

• the description of the test purpose comprising one or two sentences extracted from the
specification,

• the variants of the specification to which the purpose applies,

• reference to the specification paragraph allowing traceability to be provided against the
specification.

The complete test purposes of an OSEK module makes up the WHVW�SODQ.

Definition of the test cases consists in specifying the sequence of interactions between the
tester and the implementation which will allow one or more test purposes to be verified. The
method is derived from ISO 9646 [5] which was drafted to check conformance of the ISO
communication protocols. The general principles apply to OSEK conformance tests, including
those of the OS.

Page 12 by 26(. Conformance Methodology 2.0

The test cases are organised per a hierarchical classification. Each sequence is identified by a
path in this classification. For example, OS/function/test number.

To each test case is associated a list of requirements defining:

• the utilisation conditions: task level, ISR, ...

• the applicable variants: OS, COM class, ...

• the capacity requirements: number of required tasks,...

The complete test cases for an OSEK module make up the WHVW�VXLWH�

The test suite and all needed information to implement and execute the tests make up the WHVW
SURFHGXUH. Extra information concerns elements of test architecture, parameterization of the
test suite, selection of applicable test cases...

A test case comprises three parts:

• a preamble which places the implementation in the test execution conditions,

• the sequence of interactions corresponding to the test purposes,

• a postamble which returns the implementation to initial condition.

Specification of test cases requires the definition of one or more initial states from which the
preambles and postambles will be established. The most used initial states are those obtained
after OS, COM or NM initialisation respectively.

The purpose of this method is to increase the flexibility of use of conformance tools. The tests
with the same initial test are independent and it is possible to access one of them without
repeating the previous tests. Further, as the initial and end states are the same, a test can be
replayed as many times as necessary to analyse a conformance fault. Conversely, the
preambles and postambles extend the duration of each test when a complete test is run. There
must be a sufficient number of initial states for the test suites length to be acceptable.

The interactions sequence which describes a test case is made of transmissions to the
implementation and receptions from the implementation. In the most simple case,
transmission corresponds to activation of an API and reception corresponds to the status code
and parameters returned by the API. In the case of protocols, these can be transmissions and
receptions of PDUs.

A reception interaction is followed by a verification of the received information which allows
checking whether the test ran correctly.

Execution of a test case results in a YHUGLFW which may have one of the following values:

• PASS: the test purpose(s) have been achieved,

• FAIL: a conformance fault has been detected,

• INCONCLUSIVE: the test purposes have not been achieved but no compliance fault has
been detected. This only occurs in case of COM and NM, when message(s) expected
from the implementation have not been received by the tester. The problem can result
from network failure or other environmental events and the tester cannot certify a
compliance fault.

INCONCLUSIVE verdict may also be set when the test cannot be executed for various
reasons, e.g. non implemented variant of the specification.

Execution of a test suite produces two reports:

• the FRQIRUPDQFH�WHVWV�UHSRUW providing the list of the test cases that have effectively
been processed and the verdict produced by every one,

Conformance Methodology 2.0 by 26(. Page 13

• the FRQIRUPDQFH�UHSRUW giving the global status of conformance. The implementation
will be declared compliant if all tests produce a PASS verdict. Tests giving
INCONCLUSIVE verdicts for which environment failures are suspected must be passed
again until they return a PASS verdict.

Page 14 by 26(. Conformance Methodology 2.0

2.2.� OS test suites

2.2.1.�Test configurations

As the conformance testing is agreed to be a black box testing, the only interface of the OS
module is the OS API defined in the OS specification. This can be seen in the left part of
Figure 2. The right part shows how the tested OS is embedded into the conformance tester to
run the test suites.

26(.�26

CONFORMANCE TESTER

26(.�26
OS API OS API

Figure 2 Conformance testing configuration for OS

The conformance tester consists of an OSEK application which makes dedicated calls to the
API and compares the returned values to the values prescribed in the specification. To
compile and generate such an application it is necessary to configure the system (tester and
OS). Configuration implies amongst others determination of

• conformance class needed

• task attributes (priority, basic/extended, preemptive/non-preemptive, ...)

• resources, events, alarms needed

• ...

The OSEK OS specification [2] recommends the usage of OIL (OSEK Implementation
Language) for system generation.

2.2.2.�Services and variants

The OS API consists of the services presented in Table 1. Constructional elements for object
declaration and generation are not considered since they are not used at run time.

Conformance Methodology 2.0 by 26(. Page 15

OS-API Services Service call

Task management services

− Transfer task into UHDG\ state $FWLYDWH7DVN

− Terminate calling task 7HUPLQDWH7DVN

− Terminate calling task and activate succeeding task &KDLQ7DVN

− Call scheduler 6FKHGXOH

− Get currently active task *HW7DVN,G

− Get state of a task *HW7DVN6WDWH

Interrupt handling services

− Enter interrupt service routine (ISR) (QWHU,65

− Leave interrupt service routine (ISR) /HDYH,65

− Enable interrupts (QDEOH,QWHUUXSW

− Disable interrupts 'LVDEOH,QWHUUXSW

− Query interrupt status *HW,QWHUUXSW'HVFULSWRU

Resource management services

− Get resource and enter critical section *HW5HVRXUFH

− Release resource and leave critical section 5HOHDVH5HVRXUFH

Event control services

− Set event of extended task 6HW(YHQW

− Clear Event &OHDU(YHQW

− Get event mask of a task *HW(YHQW

− Wait for setting of an event :DLW(YHQW

Alarms services

− Read alarm base characteristics *HW$ODUP%DVH

− Occupy and set relative alarm 6HW5HO$ODUP

− Occupy and set absolute alarm 6HWEVODUP

− Cancel alarm &DQFHO$ODUP

− Get alarm value *HW$ODUP

Operating system execution control services

− Get current application mode *HW$FWLYH$SSOLFDWLRQ0RGH

− Start operating system 6WDUW26

− Shut down operating system 6KXWGRZQ26

Hook routines

− Called if OS service returns an error (UURU+RRN

− Called at task switch before entering context of new task 3UH7DVN+RRN

− Called at task switch after leaving context of old task 3RVW7DVN+RRN

− Called after start-up 6WDUWXS+RRN

− Called before shutdown 6KXWGRZQ+RRN

Table 1 OS-API services

Page 16 by 26(. Conformance Methodology 2.0

All services except the event control services shall be implemented in all conformance
classes. The event control services shall be implemented in conformance classes ECC1 and
ECC2 only.

There are many variants for the OS services because of different conformance classes (Table
2) and different scheduling policies (Table 3) that are defined in the specification. Each OS
service may have a different behaviour for each variant. The assessment of one of these
variants is done statically before generation of the OSEK application. The conformance test
must cover all possible variants.

OS conformance classes Description

BCC1 only basic tasks, limited to one request per task and one task per
priority, while all tasks have different priorities

BCC2 like BCC1, plus more than one task per priority possible and
multiple requesting of tasks allowed

ECC1 like BCC1, plus extended tasks

ECC2 like BCC2, plus extended tasks without multiple requesting
admissible

Table 2 OS conformance classes

OS scheduling policies Description

non-preemptive Task switches are only performed via one of a selection of
explicitly defined system services (explicit points of rescheduling)

full-preemptive Tasks may be rescheduled at any instruction by the occurrence of
trigger conditions pre-set by the operating system

mixed-preemptive Full-preemptive and non-preemptive scheduling principles are to
be used for execution of different tasks on the same system

Table 3 OS scheduling policies

2.2.3.�Definition method for test suites

The following means will be used to describe and specificy the test suites:

• State-/Activity-Charts for a high-level description of the sequence of the test suite

• C-Code for generation of the executable of the test suite

• OIL [8] for configuration of the test suite

• TTCN [5] as recommended by ISO 9646 for test suite description

For details about generation of test suites see Chapter 4.1.

Conformance Methodology 2.0 by 26(. Page 17

2.3.� COM and NM test suites

2.3.1.�Test configurations

According to the black box testing principle, a test suite is made of a sequence of interactions
between the tester and the OSEK implementation. It is therefore necessary to firstly identify
the OSEK interfaces that will be made available to a conformance tester for running the test
suites.

&RQILJXUDWLRQ�IRU�&20

The potential interfaces of a COM module are those defined in the COM specification [3] and
presented in the left part of Figure 3:

• the COM API intended to OSEK applications,

• the OS API, as for instance Alarm services to manage the protocol timers,

• the COM-IL API intended to OSEK/NM modules,

• the Network API at the interface between Interaction Layer and Network Layer,

• the DLL/COM API at the interface between Network Layer and Data Link Layer or
between Interaction Layer and Data Link Layer in implementations without the optional
network layer,

• the DLL/NM API offering special data link services to NM modules such as the
Window management functionality,

• the OSEK PDUs sent onto or received from the network by the COM module.

As regards conformance testing, only interfaces that comply with the objectives of application
portability and network interoperability must be kept. This excludes internal interfaces and
interfaces with other OSEK modules (OS, NM). Relevant interfaces for conformance testing
are presented in the right part of Figure 3, namely:

• the COM API, mandatory to enable application portability,

• the OSEK PDUs, mandatory to enable network interoperability.

COM API

O
S
E
K

C
O
M

OSEK PDU

DLL/NM API

OS-API

CONFORMANCE TESTER

COM API

O
S
E
K

C
O
M

OSEK PDU

Network Layer

Data Link Layer

Interaction Layer

Network Layer

Data Link Layer

Network API

DLL/COM API

COM-IL/NM API

Interaction Layer

Figure 3 Conformance testing configuration for COM

Page 18 by 26(. Conformance Methodology 2.0

&RQILJXUDWLRQ�IRU�10

The interfaces of an NM module as defined by the NM specification are those shown in left
part of Figure 4:

• the NM API intended to OSEK applications and offering data exchange capabilities to
application via the NM infrastructure,

• the OS API,

• the COM-IL/NM API (indirect NM),

• the COM-DLL/NM API.

However, it is more convenient to test NM protocols via a real network. Implementing the
protocol tester in an external equipment makes it independent of the NM module environment
and it allows to keep the same practical test methods as for COM protocols. Therefore, the
lower NM interface should be the OSEK PDUs exchanged by NM rather than the DLL/NM
API. Consequently, the necessary Data Link services are to be added to the NM module in the
test configuration as shown in the middle part of Figure 4. In case of indirect NM, the test
environment must also provide the COM-IL/NM services. They can be either simulated by the
conformance tester or generated by an OSEK/COM module incorporated in the tester.

Finally, the same justification as in COM can be put forward to exclude the OS interface from
NM conformance testing objectives. As a consequence, the NM conformance tester will only
access the NM API and the OSEK PDUs as presented in the right part of Figure 4 and
additionnally the COM-IL/NM API in case of indirect NM.

CONFORMANCE TESTER

NM API

OSEK
NM

DLL/NM API

OS-API

NM API

OSEK
NM

Data Link
Layer

OSEK PDU

DLL/NM API

OS-API

NM API

OSEK
NM

Data Link
Layer

OSEK PDU

COM-IL/NM APICOM-IL/NM API

COM-IL/NM
API

Figure 4 Conformance testing configuration for NM

2.3.2.�Services and variants

&20�$3,�VHUYLFHV

OSEK/COM implementations shall be compliant with one in the four conformances classes
defined in the specification. Conformances classes are upward compatible. Therefore,
conformance tests shall be organised in order to provide a series of test cases adapted to each

Conformance Methodology 2.0 by 26(. Page 19

conformance class. Due to upward compatibility, implementations must pass test cases of
their conformance class and of the lower classes.

Tests to be executedConformance class of
implementation

CCC0 CCC1 CCC2 CCC3

CCC0 X

CCC1 X X

CCC2 X X X

CCC3 X X X X

Table 4 Tests to be executed according to conformance class

The COM API consists of the services presented below. The lowest conformance class at
which the services must be implemented is also specified.

COM-API Services Service Call Conformance class

COM start-up

- Start of COM module 6WDUW&20 CCC0

Data transfer

- Update and send static message object 6HQG0HVVDJH CCC0

- Receive static message object 5HFHLYH0HVVDJH CCC0

- Update and send dynamic message object 6HQG0HVVDJH7R CCC2

- Receive dynamic message object 5HFHLYH0HVVDJH)URP CCC2

- Set message resource as busy *HW0HVVDJH5HVRXUFH CCC0

- Set off message resource from busy 5HOHDVH0HVVDJH5HVRXUFH CCC0

- Get the current status of the message *HW0HVVDJH6WDWXV CCC0

Table 5 COM-API services

Services related to system object declaration and generation will not be checked in
conformance tests since they are not used at run time. However, an implicit verification will
be performed through the test application implementation. Indeed, both the test application
and the OSEK/COM will make use of system objects that will be compiled to generate
executable code and will be run during the test campaign.

Moreover, the COM services include a lot of capabilities. Messages can be either unqueued
(not buffered) or queued (buffered), withcopy (local copy in application task) or without copy
(direct access to message object). Transmission triggering can be direct (at user’s request)
periodic or mixed (direct + periodic). Reception or end of transmission can be signalled
through task activation or event setting. An alarm may be sent to warn of non reception of a
periodic message or to warn of non transmission.

Notifications of (non) message transmission or of (non) message reception can be seen as
pieces of information sent by the COM module to applications. They can therefore be
assimilated to indication services supplied by the COM module. These indication services, as
presented in the table below, are not new services but a means to formalise notification

Page 20 by 26(. Conformance Methodology 2.0

actions that should be performed by the implementation. They can be implemented with OS
task or event activation mechanisms, or they can solely be notified by setting the message
status. The implementation option is selected on a per message basis.

COM indication service Service name Conformance class

- Indication of message transmission 7[BLQG CCC1

- Indication of no message transmission 1R7[BLQG CCC1

- Indication of message reception 5[BLQG CCC1

- Indication of no message reception 1R5[BLQG CCC1

Table 6 COM indication services

Messages can be transferred between local tasks or through the network. In case of network-
wide transmission, the 6HQG0HVVDJH�5HFHLYHPHVVDJH calls imply the utilisation of one of the
network protocols, UUDT (unsegmented) or USDT (segmented). 6HQG0HVVDJH7R�
5HFHLYH0HVVDJH)URP� are only used for network transmissions with USDT. Those services
offer the possibility either to send the same message object to different receivers or to receive
a message from different senders.

All message characteristics are set statically before generation of the OSEK application. The
conformance tests must be able to verify all the possibilities. Different messages and the
associated parameters will therefore be defined and implemented in the conformance test
application in order to be able to cover the different underlying options of the COM-API. To
sum up the possible options and the associated minimum conformance class are as follows :

• withoutcopy/unqueued (CCC0), withcopy/unqueued (CCC0) or queued (CCC3)
message,

• direct (CCC0), periodic (CCC1) or mixed (CCC1) transmission,

• application signalling mode (task activation, event setting) (CCC1),

• local (CCC0), UUDT (CCC0) or USDT (CCC2) transfer.

10�$3,�VHUYLFHV

The NM specification defines two main variants that will determine the test suite’s selection
for an NM implementation:

• Direct Management,

• Indirect Management.

Direct NM services

The services of direct management can be broken down into core services required in every
implementation and optional services. They are described in Table 7 below.

Conformance Methodology 2.0 by 26(. Page 21

Direct Management Services Service Call Core Optional

Configuration management

- Select the indication sensitivity 6HOHFW'HOWD&RQILJ X

- (Re)start the configuration management ,QLW&RQILJ X

- Make current configuration available *HW&RQILJ X

- Comparison of two configurations &PS&RQILJ X

Operating mode management

- Start of NM, i.e. transition to NM mode
’NMon’.

6WDUW10 X

- Stop of NM, i.e. transition to NM mode
’NM Shutdown’ and finally to ’NMoff’

6WRS10 X

- Transition to NM mode ’NMpassive’
without network-wide notification

6LOHQW10 X

- Transition to NM mode ’NMactive’ after a
previous call of SilentNM

7DON10 X

- Transition to a new operating mode (e.g.
BusSleep, Awake)

*RWR0RGH X

- Select the indication sensitivity 6HOHFW'HOWD6WDWXV X

- Get status information (network, node) *HW6WDWXV X

- Comparison of two states &PS6WDWXV X

Data Field management

- Transmit data 7UDQVPLW5LQJ'DWD X

- Read received data 5HDG5LQJ'DWD X

Table 7 Core and optional services of Direct NM

The list of test cases applicable to a given implementation will depend on optional services
actually implemented. The NM test suite will therefore specify the needed options for each
test case.

System generation services have been removed from Table 7 since only run-time services will
be tested. However, they define a way to notify NM events to application during network
operation and they can therefore be assimilated to indication services as presented in the table
below. For the sake of clarity, a name has been assigned to each service.

Indication services are not new services but a means to formalise notification actions that
should be performed by the implementation. They can be implemented with OS task or event
activation mechanisms, or they can solely be notified by setting the network status or the
configuration status.

Page 22 by 26(. Conformance Methodology 2.0

Constructional
element

NM indication service Service name

,QLW,QG'HOWD&RQILJ - Indication of configuration change &RQILJBLQG
,QLW,QG'HOWD6WDWXV - Indication of status change 6WDWXVBLQG
,QLW,QG5LQJ'DWD - Indication of ring data reception 5LQJ'DWDBLQG

Table 8 Indication services of direct NM

Indirect NM services

The services of indirect management can be broken down into core services required in every
implementation and optional services. They are described in Table 9 below. Indirect NM is
based on monitoring of OSEK/COM message transmissions by the local node or message
receptions by the remotes nodes. The protocol includes two exclusive options called One
Global Timeout and One Timeout per Message.

Indirect Management Services Service Call Core Optional

Configuration management

- Select the indication sensitivity 6HOHFW'HOWD&RQILJ X

- (Re)start the configuration management ,QLW&RQILJ X

- Make current configuration available *HW&RQILJ X

- Comparison of two configurations &PS&RQILJ X

Operating mode management

- Start of NM, i.e. transition to NM mode
’NMon’.

6WDUW10 X

- Stop of NM, i.e. transition to NM mode
’NM Shutdown’ and finally to ’NMoff’

6WRS10 X

- Transition to a new operating mode (e.g.
BusSleep, Awake)

*RWR0RGH X

- Select the indication sensitivity 6HOHFW'HOWD6WDWXV X

- Get status information (network, node) *HW6WDWXV X

- Comparison of two states &PS6WDWXV X

Processing of monitoring information (1)

- Indication of monitored message
transmission/reception

,B0VJ7UDQVIHU�LQG X

- Indication of monitoring time-out expiry ,B0VJ7LPHRXW�LQG X (2)

(1) services called by the COM-IL to deliver monitoring information
(2) service implemented only in One Timeout per Message option

Table 9 Core and optional services of indirect NM

2.3.3.�Event management

The concept of black box testing implies an event-driven specification of the test suites. In
protocol specifications, the events are arranged in specification inputs and specification

Conformance Methodology 2.0 by 26(. Page 23

outputs which will be henceforth called inputs and outputs for simplification. The main event
categories are presented in the table below.

Event type Input Output Interface

local service procedure call procedure return user

network service request indication, confirmation user

OPDUs reception transmission network

Timer expiry start, stop OS

Table 10 Protocol event categories

6HUYLFH�HYHQWV

User services have been split into local services and network services:

• Local services are used to obtain local information maintained by the COM or NM
module. Usually, execution of local services does not impact the operational behaviour
of the COM/NM implementation (e.g. GetStatus). The requested information is
provided in output parameters when the called procedure returns to the calling
application.

• Network services are used to transmit or modify network-wide information. The service
is not completed when the called service procedure returns to application. A uniform
interaction model can be defined to describe the interactions between the tested
implementation and the conformance tester. It consists of three primitives called
request, indication and confirmation. The request primitive is the procedure call done to
request a service execution. Indication and confirmation primitives represent call-backs
from the tested implementation to notify the end of service execution to the
conformance tester. They can exist or not depending on the requested service. An
indication corresponds to a remote notification and a confirmation to a local
notification. Depending on the service and on implementation choices the notification
can be implemented by task activation or event signalling, or it can be implicitly known
by polling methods.

For instance, the full model of interaction applies to message transfer when notification of
transmission and reception are implemented:

• request for transmission:�6HQG0HVVDJH�

• indication of reception:�5[BLQG�

• confirmation of transmission:�7[BLQG�

Page 24 by 26(. Conformance Methodology 2.0

/2&$/�12'(5(027(�12'(

Test application Test applicationCOM/NM
module

COM/NM
module

REQUEST

CONFIRMATION

INDICATION

Figure 5 Service interaction model

7LPHU�HYHQWV

The OSEK specification makes use of two types of timers:

• periodic timers to trigger periodic protocol tasks,

• waiting timers defining the maximum allowed time for a specification’s input event to
occur.

Timer events are in principle neither controllable nor observable, since the COM and NM
interfaces with OS are not visible from a conformance test application. Nevertheless, the time-
outs can be most of the time artificially triggered by the tests:

• for a periodic time-out, the tester has to wait for enough time to observe the output(s)
generated by the time-out,

• for a waiting time-out, the tester has not to send the expected input and wait for enough
time to observe the output(s) generated by the time-out.

The conformance test specification will not claim a precise measurement of timer values.
However, some tests will be designed for checking that measured values meet the
implemented values with a certain margin of error.

&20�HYHQWV

The COM events simulated or processed during conformance tests execution are listed in the
following tables.

The COM-API services are described in section 2.3.2. The related events are listed in the
following table according to the event classification presented above.

Conformance Methodology 2.0 by 26(. Page 25

Local events of COM-API Network events of COM-API

Procedure call Request Indication Confirmation

5HFHLYH0HVVDJH 6WDUW&20 QRQH
5HFHLYH0HVVDJH)URP 6HQG0HVVDJH 5[BLQG��1R5[BLQG 7[BLQG��1R7[BLQG
*HW0HVVDJH5HVRXUFH 6HQG0HVVDJH7R 5[BLQG��� 7[BLQG��1R7[BLQG

5HOHDVH0HVVDJH5HVRXUFH
*HW0HVVDJH6WDWXV

(*) periodic/mixed transfer is not allowed with
SendMessageTo, so NoRx_ind cannot happen

Table 11 COM-API events

The COM-OPDUs and the associated protocol fields are described below. UUDT transfers
make only use of one type of frame. In USDT transfers, the data receiving protocol must send
flow control frames to stop or resume the data transfer. The first flow control is sent after the
first data frame. Then data are sent per blocks of consecutive frames. USDT protocol also
allows to send unsegmented data within a single frame.

The specification defines two formats of protocol encoding called normal addressing and
extended addressing. The latter includes an additional byte of information called extended
address.

COM OPDUs Fields Definition

88'7�)UDPH Data UUDT data transfer

6LQJOH)UDPH PCI, DL, Data USDT data frame for unsegmented transfer

)LUVW)UDPH PCI, XDL-DL, Data USDT’s first data frame of segmented transfer

&RQVHFXWLYH)UDPH PCI, SN, Data USDT’s other frames of segmented transfer

)ORZ&RQWURO�)UDPH PCI, FS, BSmax, STmin Sent by USDT receiver to stop/resume transfer

Table 12 COM OPDUs

Legend:

• Data: user data.

• PCI: Protocol Control Information identifying the type of USDT frame.

• XDL, DL: (eXtended) Data Length = user data length. In segmented transfer, XDL-DL
≤ 4095.

• SN: Sequence Number identifying the data segment of segmented transfer.

• FS: Flow Status = clear to send if sender can resume data transfer, or wait if sender must
stop data transfer.

• BSmax: maximum Block Size = number of ConsecutiveFrames sent without intermediate
flow control. 1 ≤ BSmax ≤ 255. 0 means that no flow control is performed.

• STmin: minimum Separation Time between successive ConsecutiveFrames.

For segmented transfers, the conformance tests must be able to check whether the sending and
receiving protocols are correctly implemented and therefore a tester must:

• verify the sequence of OPDUs transmitted by the sending protocol and generate the
appropriate flow controls,

Page 26 by 26(. Conformance Methodology 2.0

• generate appropriate data frames to the receiving protocol and verify that it transmits
correct flow controls.

The tester must also support the two types of encoding formats.

The protocol timers managed by the COM network layer are described below. They are
implemented only in USDT protocol. The related time-out events will be simulated in
conformance tests.

Timers Side Definition

$V sender Time-out for data frame transmission by the DLL

%� sender Time-out for flow control reception after FirstFrame transmission

%� sender Time-out for flow control reception after ConsecutiveFrame transmission

'� sender Time-out between two successive flow control receptions

$U receiver Time-out for flow control transmission by the DLL

& receiver Time-out between flow control transmission and ConsecutiveFrame
reception

'� receiver Time-out between two successive ConsecutiveFrame receptions

Table 13 Time-out events of COM network protocol

10�HYHQWV

The NM events simulated or processed during conformance tests execution are listed in the
following tables.

Direct NM events

The API services of direct NM are described in section 2.3.2. The related events are listed in
the following table according to the event classification presented above.

Local events of direct NM API Network events of direct NM API

Procedure call Request Indication (1) Confirmation (1)

6HOHFW'HOWD&RQILJ 6WDUW10 &RQILJBLQG 6WDWXVBLQG
*HW&RQILJ 6WRS10 &RQILJBLQG 6WDWXVBLQG
&PS&RQILJ ,QLW&RQILJ &RQILJBLQG 6WDWXVBLQG
6HOHFW'HOWD6WDWXV 6LOHQW10 &RQILJBLQG 6WDWXVBLQG
*HW6WDWXV 7DON10 &RQILJBLQG 6WDWXVBLQG
&PS6WDWXV *RWR0RGH 6WDWXVBLQG 6WDWXVBLQG
5HDG5LQJ'DWD 7UDQVPLW5LQJ'DWD 5LQJ'DWDBLQG

(1)events that modify the status of a node may lead to a status change indication inside the node and
to a configuration change indication inside remote nodes

Table 14 Events of direct NM API

Conformance Methodology 2.0 by 26(. Page 27

The direct NM specification defines seven OPDU types (also called NMPDUs) described
below.

OPDUs of direct NM Definition

Type Sleep.ind Sleep.ack

5LQJ�PHVVDJH FOHDUHG FOHDUHG Message transmitted when the local node
VHW FOHDUHG belongs to the logical ring
VHW VHW

$OLYH�PHVVDJH FOHDUHG GRQ
W�FDUH Message transmitted to ask for registration to
VHW GRQ
W�FDUH the logical ring

/LPSKRPH�PHVVDJH FOHDUHG GRQ
W�FDUH Message transmitted during failure recovery
VHW GRQ
W�FDUH period

Table 15 OPDUs of direct NM

The protocol timers managed by direct NM are described below. The related time-out events
will be simulated in conformance tests.

Timers of direct NM Definition

77\S Typical time interval between two ring messages

70D[Maximum time interval between two ring messages

7(UURU Time interval between two ring messages with NMlimphome
identification

7:DLW%XV6OHHS Time the NM waits before transmission in NMbussleep

Table 16 Time-out events of direct NM protocol

Timer 77[(delay to repeat a NM message’s transmission request when it was rejected by the
DLL) will not be simulated since it appears as implementation dependent. Such a functionality
can be present or not depending on the DLL implementation.

Indirect NM events

The API services of indirect NM are described in section 2.3.2. The related events are listed in
the following table according to the event classification presented above. Monitoring services
activated by the COM-IL/NM API can be assimilated as local services.

Page 28 by 26(. Conformance Methodology 2.0

Local events of indirect NM API Network events of indirect NM API

Procedure call Request Indication (1) Confirmation

6HOHFW'HOWD&RQILJ 6WDUW10 6WDWXVBLQG
*HW&RQILJ 6WRS10 6WDWXVBLQG
&PS&RQILJ ,QLW&RQILJ 6WDWXVBLQG
6HOHFW'HOWD6WDWXV *RWR0RGH 6WDWXVBLQG
*HW6WDWXV &RQILJBLQG

&PS6WDWXV
,B0VJ7UDQVIHU�LQG
,B0VJ7LPHRXW�LQG

(1) In indirect NM, API calls are of local scope.
Configuration indications result from monitoring of
the COM messages by the NM protocol.

Table 17 Events of indirect NM API

As it is based on COM message monitoring, the indirect NM protocol does not implement any
specific OPDU.

In option One Global Time-out, the indirect NM makes use of a periodic timer called Time-
out for OBservation and described below.

Timer of indirect NM Definition

72% Period of network status update

Table 18 Time-out event of indirect NM protocol

1HWZRUN�IDXOWV

The conformance tests must be able to verify IUT behaviour in case of faulty network. In NM
specification, two types of network faults are identified and therefore must be processed by
implementations:

• "transmission error": IUT can receive but cannot transmit,

• "fatal bus error": IUT can neither receive nor transmit (e.g. CAN bus off).

In COM specification, only the transmission error is processed. It causes timers As (data
sending side) or Ar (data reception side) to expire. In case of fatal bus error, COM exchanges
are suspended by the NM module through the D_Offline call to COM/DLL.

Generation of network faults by the tester requires the development of adapted hardware
depending on the physical network (CAN, VAN...). If such hardware cannot be made
available, network faults shall be at least simulated by adhoc software. Otherwise, it will not
be possible to perform a meaningful conformance testing, since a large part of the COM and
NM protocols is devoted to network failure recovery. Error simulation software must be
incorporated at the interface between the COM/DLL and the network drivers.

Conformance Methodology 2.0 by 26(. Page 29

2.3.4.�Definition method for test suites

As for the OS, the COM and NM test suites will be specified in TTCN language. TTCN is an
ISO standard [6] especially designed for describing conformance tests of communication
protocols. TTCN has been widely used in the telecommunication area. TTCN’s main features
are presented later in this document.

Page 30 by 26(. Conformance Methodology 2.0

2.4.� Strategy for OSEK modules integration and testing

2.4.1.�OSEK integration and conformance testing

The modularity and scaleability of the OSEK specification enables a progressive integration of
OSEK software in target equipment. This can be done in three steps:

1. OS module,

2. COM module which makes use of OS services,

3. NM module which makes use of OS and COM services.

As well, separate test suites are going to be specified for each of the three modules. As there is
no correlation between interfaces to be tested by each of them, the three test suites can be
considered as independent of each other. Therefore, they will enable in turn a progressive
conformance assessment of the OSEK implementation during integration. The three steps of
integration and conformance testing are shown in figure below.

1. OS module integration and OS conformance testing.

2. COM module integration with certified OS, then COM conformance testing.

3. NM module integration with certified OS and COM, then NM conformance testing.

OSEK
COM

certified

OSEK/NM PDU

NM API

OSEK
NM

OSEK
OS

certified

 C
 O
 N T
 F E
 O S
 R T
 M E
 A R
 N
 C
 E

OS API

OSEK
OS

 C
 O
 N T
 F E
 O S
 R T
 M E
 A R
 N
 C
 E

COM API

OSEK
COM

OSEK/COM PDU

OSEK
OS

certified

 C
 O
 N T
 F E
 O S
 R T
 M E
 A R
 N
 C
 E

1) OSEK/OS
conformance

2) OSEK/COM
conformance

3) OSEK/NM
conformance

 O S N M COM

Figure 6 Progressive integration and conformance testing of OSEK modules

2.4.2.�Conformance testing of a complete OSEK implementation

For both the OSEK developer and the end-user, it is essential that conformance should be
verified once all OSEK modules have been integrated in the final equipment and no further
software modification will be made. Again, thanks to modularity and independence of the test
suites, the conformance tests can be executed against the complete OSEK implementation.

They can also be replayed in the life cycle of the product to verify non regression after any
modification.

Conformance Methodology 2.0 by 26(. Page 31

CONFORMANCE TESTER

COM API

OSEK
COM

OSEK PDU

NM API

OSEK
NM

OS API

OSEK
OS

Figure 7 Conformance testing configuration for complete OSEK implementation

In some products, OSEK/COM and OSEK/NM implementations can be associated to a non
OSEK OS and despite this, their conformance shall be evaluated. The modularity of the test
suites also enables to cope with this situation as presented in Figure 8 below:

CONFORMANCE TESTER

COM API

OSEK
COM

OSEK PDU

NM API

OSEK
NM

non OSEK
OS

Figure 8 Conformance testing configuration for implementations without OSEK OS

Page 32 by 26(. Conformance Methodology 2.0

3.�Test architecture for COM and NM

3.1.� Description of the test architecture

COM and NM services can be split into two categories:

• Local services such as sending a message to another local task. API calls are entirely
processed inside the tested implementation’s equipment.

• Network services such as sending a message to another equipment. They require data
exchanges with a remote COM or NM implementation using the OSEK protocols.

The first ones are tested through local procedures and the same techniques are employed as in
OS conformance testing. The latter involve an external equipment playing the role of the
remote OSEK implementation. It is called Test Equipment while the equipment containing the
OSEK implementation is called Equipment under Test. The OSEK implementation to be
tested is itself called Implementation Under Test (IUT).

To test OSEK protocols, the conformance tester needs to access two interfaces of the IUT:

• The network interface for exchanging OSEK PDUs via the interconnection network.

• The service interface for exchanging service information via OSEK APIs.

Therefore, the conformance tester consists of two distinct modules:

• The Upper Tester (UT) which communicates with IUT’s upper interface through APIs. It
is implemented at the top of the IUT and in the Equipment Under Test.

• The Lower Tester (LT) which communicates with IUT’s lower interface through PDUs.
It is implemented in a Test Equipment connected to the IUT via the physical network.

This architecture is the so-called Coordinated Test Architecture of ISO 9646. Indeed, the
respective actions of Upper and Lower Testers shall be Coordinated during a test case
execution. The co-ordination is performed by a specific protocol called Test Management
Protocol (TMP) which forms part of the test procedure specification. TMP data are exchanged
between LT and UT by the means of TM_PDUs (Test Management PDUs).

The test architecture and the interactions between UT, LT and IUT are illustrated by the
following figure. In actual implementations, TM_PDUs are transferred using the data
transmission services of the IUT. They are therefore encapsulated in the data part of OSEK
PDUs. The IUT does not interpret TM_PDUs but it only passes them from UT to network and
conversely.

Conformance Methodology 2.0 by 26(. Page 33

87

OSEK API

OSEK PDUs ,87

/7 TM_PDUs

7(67
(48,30(17

(48,30(17
81'(5�7(67

Figure 9 Principle of test architecture

3.2.� Rules of UT, LT and TMP specification

The rules governing the definition of LT, UT, and TMP are twice:

• The UT shall be generic and as simple as possible. Since the UT is implemented in the
same equipment as the IUT, it needs to be customised by each implementator according
to target specific constraints. At least it must be recompiled and linked to IUT software.
Therefore the maximum functionality of conformance tools is transferred to LT.
"Generic and simple" also means that UT specification must be as far as possible
independent of the selected test cases for a given IUT.

• The TMP shall use the minimum services and protocols of the IUT. Using IUT services
is requested to transfer TM_PDUs and the simplest protocols shall be used to do it in
order not to disturb the test execution and not to duplicate much of conformance tests in
TM_PDU transfer operations. Specific test cases need to be added to the test suite for
the purpose of testing IUT’s ability to transfer TM_PDUs. Such tests also aim to verify
that the UT has been correctly customised. They shall be executed at the beginning of
the test campaign.

Execution of the test suite is therefore entirely driven by the LT. The LT is in charge of
performing all the actions specified in the test case. It controls the operation of the UT in ways
necessary to run the tests selected for the IUT. It analyses the test results and computes the
verdicts.

The role of UT is limited to interpretation and execution of LT commands. The UT shall also
return to LT all data collected from the IUT at the API level. It never calls API services on its
own except commands enabling network communications such as StartCOM and StartNM.
The TMP is a two-way protocol operating as follows:

• from LT to UT, it conveys API calls and parameters the UT must then send to the IUT,

• from UT to LT, it conveys information returned by API calls and indications of OS
events or task activation originating from the IUT.

As stated before, conformance testing requires the simulation of network faults that can be
either generated by hardware means or simulated by software. In case of software simulation,
a TM_PDU will be sent by the LT to notify the equipment under test of the type of fault
(transmission error, fatal bus error) and its duration. This TM_PDU is not transmitted to the
UT. It must be interpreted by the network driver of the Equipment Under Test which will

Page 34 by 26(. Conformance Methodology 2.0

simulate the requested fault. Return to a non faulty behaviour will be ordered by another
TM_PDU.

Since the UT is independent of the executed test case and operates as an application protocol
implemented at the top of the IUT, it will be specified in SDL like COM and NM protocols.
The specification will be incorporated in the OSEK conformance standards as part of the test
procedure. According to OSEK recommendations, OIL [8] could be used to define
configuration parameters of UT implementations.

The TMP is a simple point-to-point send/receive protocol. A predefined DLL connection is
assigned to each direction of transmission. Depending on tester’s implementation, TM_PDUs
can be sent or receive:

• either at the COM-API level using the SendMessage/ReceiveMessage interface.
TM_PDUs are exchanged on UUDT connections mapped upon the predefined DLL
connections,

• or at the DLL-API level using the OSEK D_UUData service or any convenient DLL
driver interface.

Either of those options can be chosen for NM conformance. They lead to the two possible
architectures of the equipment under test presented below. In principle, COM conformance
will use the first possibility since the COM-API is always present.

OSEK PDUsOSEK PDUs

UT

OSEK
COM

(CCC0)

OSEK
NM

TM_PDUs NM API

UT

OSEK
NM

Data Link

TM_PDUs NM API

Data Link

Figure 10 ’Equipment under test’ architectures for NM conformance

Overall design rules can be set up to specify the TMP and the UT. They depend on the type of
service requested by LT or on the type of event occurring at the UT/IUT interface. The table
below specifies the TM_PDUs exchanged by LT and UT according to the event classification
presented in section 2.3.3:

Conformance Methodology 2.0 by 26(. Page 35

API event TM_PDU

from to contents

Request LT UT API to be called and parameters

UT LT Status returned by API call (1)

Indication, confirmation UT LT Type of event and parameters (2)

Local service LT UT API to be called and parameters

UT LT Status and data returned by API call (1)

None LT UT Configuration parameters

(1)The TM_PDU can be sent out or not, depending on information given in message from LT to UT.
(2)The TM_PDU can be sent out or not, depending on some configuration parameter.

Table 19 TMP and UT specification rules

3.3.� TMP mechanisms

Figure 11 and Figure 12 show the required protocol mechanisms to order the UT to send or
receive application messages. These communication scenarii will be run at the start of a test
campaign in order to verify the correct operation of the UT. They describe basic actions the
UT will have then to perform in any test case.

The scenarii assume a task is activated within the UT each time a message is received
(Message_ind event). A TMP task is activated upon TM_PDU reception and a "test" task
upon reception of test case’s OPDUs. The actions performed on each task activation are as
follows:

• (1): the UT acquires the TM_PDU and executes the requested SendMessage,

• (2): the UT sends a TM_PDU to notify the LT of a message arrival,

• (3): the UT acquires the TM_PDU and executes the requested ReceiveMessage. Then it
sends the message back to LT with a SendMessage.

Four primitives have been defined to describe LT actions:

• SendOPDU(0VJ) to transmit the test case message 0VJ,

• ReceiveOPDU(0VJ) to receive the test case message 0VJ,

• SendTM_PDU[FRPPDQG], to transmit a FRPPDQG to UT via a TM_PDU,

• ReceiveTM_PDU[HYHQW], to receive notification of an IUT HYHQW via a TM_PDU.

Page 36 by 26(. Conformance Methodology 2.0

COM-APINetwork IUT

APINetworkLT IUT

SendTM_PDU [Send (Msg)]

UT

703�WDVN��0HVVDJHBLQG�

ReceiveMessage(TM_PDU)
SendMessage(Msg)

ReceiveOPDU (Msg)

TM_PDU

OPDU

SendMessage (0VJ)

OPDU(0VJ)

6&(1$5,2

,03/(0(17$7,21

���

Figure 11 TMP mechanisms for message sending by UT

COM-APINetwork

APINetwork IUT

SendTM_PDU [Receive(Msg)]

LT UT

703�WDVN��0HVVDJHBLQG�

ReceiveMessage(TM_PDU)
ReceiveMessage(Msg)
SendMessage(TM_PDU)

ReceiveTM_PDU [Msg]

TM_PDU

TM_PDU

SendOPDU (Msg)

7HVW�WDVN��0HVVDJHBLQG�

SendMessage(TM_PDU)
ReceiveTM_PDU [Message_ind]

OPDU

TM_PDU

SendTM_PDU [Receive (Msg)]

IUT
Message_ind

ReceiveMessage (0VJ)

get message 0VJ

OPDU(0VJ)

6&(1$5,2

,03/(0(17$7,21

���

���

Figure 12 TMP mechanisms for message reception by UT

The message reception protocol can be simplified as presented in Figure 13 to reduce the
protocol overhead. The simplified protocol will be used in almost all situations. The full
protocol is only required when the LT does not want the UT to execute a ReceiveMessage on
message reception. This happens for instance when testing implementation of reception FIFO
mechanisms within the Interaction Layer.

Conformance Methodology 2.0 by 26(. Page 37

APINetwork IUT

SendTM_PDU [Receive(Msg)]

LT UT

7HVW�WDVN��0HVVDJHBLQG�

ReceiveMessage(Msg)
SendMessage(TM_PDU)

ReceiveTM_PDU [Msg]

TM_PDU

SendOPDU (Msg)
OPDU

Figure 13 Simplified protocol for message reception by UT

3.4.� Example of UT specification

Let us consider the following specification of a connection establishment and release protocol.
The SDL specification is presented below. The protocol comprises three phases:

• Establishment request from network by HVWDEBP PDU. If the request is accepted, the
IUT generates the HVWDEBL indication to application� and the� DFNBP acknowledgement
PDU to network. If not accepted, the IUT sends out an HUUBP PDU.

• Establishment response from application with FRQQBU request. The IUT transmits a
FRQQBP PDU to the network.

• Connection release from network by UHOBP�PDU. The IUT generates a UHOBL indication to
application.

To test IUT conformance from a remote LT, the TMP shall be designed so as to return IUT’s
indications to LT and transmit LT requests to UT. TMP actions are as follows:

• the HVWDEBL and UHOBL�indications�are returned in the HVWDEBS and UHOBS�TM_PDUs,

• the FRQQBU�request is transmitted by the�FRQQBS TM_PDU.

Therefore, the UT behaviour consists of:

• sending HVWDEBS (resp. UHOBS)�TM_PDU on HVWDEBL (resp. UHOBL) event reception,

• sending FRQQBU request to IUT on FRQQBS TM_PDU reception.

The related SDL specification is given below.

OK?

estab_i

conn_m

estab_m

START

ack_m

S4

err_m

START

conn_r

S4

S6

rel_i

rel_m

S6

START
 no

 yes

,87�VSHFLILFDWLRQ 87�VSHFLILFDWLRQ

conn_r

estab_i

START

START

conn_p

rel_p

rel_i

estab_p

Figure 14 SDL specification of IUT and UT

Page 38 by 26(. Conformance Methodology 2.0

The Figure below shows the scenario of a successful establishment and release and the
associated test sequence to be observed when the UT is connected to IUT.

%HKDYLRXU�WR�EH�WHVWHG $VVRFLDWHG�WHVW�VHTXHQFH

APINetwork
interface

API

estab_m
estab_i

ack_m

conn_r
conn_m

rel_m
rel_i

FRQQBS

HVWDEBS

UHOBS

estab_m
estab_i

ack_m

conn_r
conn_m

rel_m
rel_i

IUT
Network
interface IUT UT

Figure 15 IUT scenario and associated test sequence

Conformance Methodology 2.0 by 26(. Page 39

4.�Methods of test suite generation

4.1.� Generation of OS test suites

4.1.1.�Generation method and supporting tool

The test suite compares the actual state of an OSEK system with its specified state. As the
internal structure of the OSEK OS is not specified, the test suite will be implemented based on
its API specification.

The implementation under test will be treated as a black box; its internal structure is not taken
into account. Thus, this test suite can only show if the actual behaviour of the OSEK OS
corresponds to the OSEK OS specification. Though, it’s not possible with this method to
detect in case of a failure what exactly caused this failure.

Black box testing also means that intrusions of the tested implementation are not allowed.
Therefore the only interface the test suite is able to use is the API defined in the OSEK OS
specification. Thus the test suite will be an OSEK application which uses the API services to
ensure that each API service is called so much until every error described in the specification
will be provoked at least one time.

Corresponding to the OSEK OS services the test suite will be grouped into the following test
groups:

• Task management

• Interrupt handling

• Resource management

• Event control

• Alarms

• Operating system execution control

• Hook Routines

In addition the different variants have to be taken into account. This leads to a further
grouping corresponding to the Conformance Classes (BCC1, BCC2, ECC1, ECC2) and to the
Scheduling Policies (non-preemptive, full-preemptive, mixed-preemptive).

According to this different divisions the test cases will be grouped in the following order:

1. OS service group

2. Conformance class

3. Scheduling policy

The test cases will be created based on the API specification supported by the Classification-
Tree Method. There are several tools that support this method e. g. CTE by ATS GmbH. This
method has several benefits:

• It supports test case determination from unit to system testing

• Syntax-directed, graphical editor, that allows the user to comfortably create and modify
classification trees in an object-oriented way.

• Automatic test coverage checking to ensure that all system entities are tested.

Page 40 by 26(. Conformance Methodology 2.0

4.1.2.�Test suite example

Figure 16 shows an example for the Classification-Tree of test group Resource Management.
Table 20 shows the resulting test cases and their description.

Figure 16 Classification-Tree of test group Resource Management

Test cases Description

Test case 1 no error message (E_OK): because referred resource is not occupied

Test case 2 an error message (E_ID:) because the resource identifier is invalid

Test case 3 an error message (E_CALLEVEL): because the call is not allowed at the
interrupt level

Test case 4 error message (E_Access): because the calling task has no access to the resource

Test case 5 no error message (E_OK): because at least two resources should be occupied
and released in a nested way

Test case 6 at least two resources should be occupied and released in an overlapping way.
The OS shoud not allow to release resources in an overlapping way.

Test case 7 error message (E_NOFUNC): the task wants to release a resource which is not
accessible or not occupied

Test case 8 error message (E_CALLEVEL): because call is not allowed at interrupt level

Test case 9 error message (E_ID): because the resource identifier is invalid

Table 20 Test cases of test group Resource Management

From these test cases a test suite is derived and specified in that way that all test cases and all
errors defined in the OS specification are called at least once. The development of an
appropriate test suite will be supported by State- and Activity-Charts as described in the
following chapter. The implementation of the resulting test suite is an OSEK application
written in ANSI-C. It is so specified, that it requires only few resources and its source code is
as compact as possible. A possible test suite for the Resource Management is proposed in
Table 21. It consists of two tasks. TASK1 has priority 1. It is allowed to get resource1 and
resource2 but not resource3. TASK2 has priority 0. It is allowed to get resource2 and
resource3. The resource99 is not defined.

Conformance Methodology 2.0 by 26(. Page 41

Steps Description

Step 1 At system start, TASK2 is running.

Step 2 TASK2 gets resource3. That leads to no error (E_OK) (WHVW�FDVH��).

Step 3 TASK2 activates TASK1.

Step 4 Only at the non pre-emptive scheduling: TASK2 calls the scheduler.

Step 5 TASK1 is running.

Step 6 TASK1 gets resource1. That leads to no error (E_OK) (WHVW�FDVH��).

Step 7 TASK1 gets resource99. That leads to an error (E_ID), because resource4
is not defined (WHVW�FDVH��).

Step 8 TASK1 is interrupted by a ISR, which tries to get a resource1. That leads
to an error (E_CALLEVEL) (WHVW�FDVH��).

Step 9 TASK1 gets resource2. That leads to no error (E_OK) (WHVW�FDVH��).

Step 10 TASK1 releases resource1. That leads to an error, because resource1 and
resource2 are overlapped, but there is not error message (WHVW�FDVH��).

Step 11 TASK1 releases resource2. That leads to no error (E_OK) (WHVW�FDVH��).

Step 12 TASK1 releases resource2 again. That leads to an error (E_NOFUNC)
(WHVW�FDVH��).

Step 13 TASK1 is interrupted by a ISR, which calls ReleaseResource(resource1).
That leads to an error (E_CALLEVEL) (WHVW�FDVH��).

Step 14 TASK1 releases resource1. That leads to no error (E_OK) (WHVW�FDVH�).

Step 15 TASK1 releases resource99. That leads to an error (E_ID) (WHVW�FDVH��).

Step 16 TASK1 get resource3. That leads to an error. Because TASK1 is not
allowed to get resource3 (E_ACCESS) (WHVW�FDVH��).

Step 17 TASK1 terminates itself. TASK2 is running.

Step 18 TASK2 releases resource3. That leads to no error (E_OK) (WHVW�FDVH��).

Step 19 TASK2 terminate itself, so no task will run.

Table 21 Possible test suite of test group Resource Management

4.1.3.�Test generation tool

The generation of the test suite shall produce among other things a TTCN description. This
implies the use of SDL (Specification and Description Language) because of several tools that
can semi-automatically generate TTCN test suites from a SDL specification. But there are
some restrictions regarding the use of SDL for specification of the OSEK OS:

• It is not possible to model all OS requirements completely, because the specification or
description of non-functional requirements and constraints of a system is not supported.

• Algorithms are awkward to formulate in SDL, e. g. each interrupts requires a channel to
the involved components.

• Inputs at the same time are stored in random order in the input queue.

Therefore the use of SDL does not seem to be practicable. Anyway, a TTCN description will
be produced for documentation purposes and to keep interfaces for other tools, later on.

Page 42 by 26(. Conformance Methodology 2.0

As OS test sequences are rather state-oriented than protocol-based as it is the case with NM
and COM, it seems to be more appropriate to model the test suite using a CASE-tool which is
based on State- and Activity-Charts like for instance Statemate by i-Logix Inc. State-/Activity-
Charts are used to create an executable specification of a system. They allow to easily create a
graphical model that represents the intended functions and the behaviour of the system.
Compared with a textual description or C-Code, a graphical model has the benefit that it is
easier to understand and to debug. Its behaviour is much more comprehensible and hence
errors can rapidly be discovered and eliminated. There are also analysis tools to verify that the
model meets the needed requirements.

This method comprises the following views of a system.

• 6WDWHFKDUWV describe the timing behaviour of a system and control events and conditions
that cause changes in the system’s operation. Statecharts are evolved from state-
transition diagrams, additionally they permit hierarchical states, concurrent or parallel
processes and timing.

• $FWLYLW\�FKDUWV� represent the functional partitioning of a system and the data and
control interfaces between the functional units. Each activity may be connected to a
Statechart which models its behaviour. Activities can be further decomposed into
smaller functions. The relationships between the functional and behavioural views can
be checked for consistency.

Once a model has been created, Statemate’s Check Model tool can be used to verify that it is
complete and consistent. Statemate also provides a wide array of debugging and monitoring
capabilities to quickly and easily verify that a model is working correctly. Therefore, it is
possible to ensure that all states will be executed and each activity will be activated at least
once during simulation. In addition, the simulation tool permits to connect user-defined code
to a model’s internal activities. In this way, each time this activity will be activated, the user-
defined code will be executed.

The test suite, i. e. the sequence described in Table 21, will be modelled using State- and
Activity-Charts. Each step will be described as a state in a Statechart, while each OSEK API
service will be represented as an event (Figure 17). In each step of the test suite one API
service is called and its result is compared to the value specified for this situation. Calling an
API service call is modelled as the activation of the corresponding activity. At this point
debugging and model checking tools can be used to test for completeness and correctness of
the test suite as far as this is possible. This will verify that all states of the test suite model will
be reached and thus all test cases will be executed.

For automatic code generation during simulation of the test suite, user-defined code will be
attached to the model. This user code is triggered by the events which correspond to the
OSEK API services and will be executed automatically by the simulator tool each time the
event is generated, i. e. each time the corresponding API service is called. This API service
call and some code to check the service’s return value against its specified value will be
written into the test suite’s source file (ANSI C). In this way the code for the test suite will be
generated during simulation of the corresponding Statemate model.

In a further step the generated code will be optimized as far as code size is concerned. This
shall ensure that the test suite can be used even on platforms with low resources (ECU, ...).

Beside code generation of the test suite, an OIL file for configuration of the OSEK OS and a
TTCN description of the test suite for documentation and as interface to other tools will be
created. The OIL file will contain all application specific information needed. It will be up to
the testing person to complete it with OSEK implementation specific matters (ECU type, ...)

Conformance Methodology 2.0 by 26(. Page 43

7KHUH�DUH�WZR�SRLQWV�ZKLFK�DUH�LPSRUWDQW�WR�SRLQW�RXW�

• $OO�WRROV�PHQWLRQHG�DERYH�ZLOO�RQO\�EH�XVHG�IRU�WKH�VSHFLILFDWLRQ�DQG�JHQHUDWLRQ�RI
WKH� WHVW� VXLWH�� 7KH\� ZLOO� QRW� EH� QHHGHG� IRU� WKH� FRQIRUPDQFH� WHVW� LWVHOI�� ,Q� RWKHU
ZRUGV��LW�ZLOO�QRW�EH�QHFHVVDU\�IRU�WKH�26�LPSOHPHQWDWRU�WR�DFTXLUH�DQ\�RI�WKH�WRROV
WR�GR�FRQIRUPDQFH�WHVWLQJ�

• &RGH�ZLOO�EH�JHQHUDWHG�GXULQJ�VLPXODWLRQ�RI�WKH�WHVW�VXLWH�E\�WKH�DWWDFKHG�XVHU�FRGH
IXQFWLRQV�� 7KLV� ZLOO� SURGXFH� DQ� DEVROXWHO\� IODW� DQG� HIILFLHQW� FRGH�� $Q� DGGLWLRQDO
RSWLPL]DWLRQ� SURFHVV� ZLOO� HQVXUH� WKDW� WKH� JHQHUDWHG� FRGH� ZLOO� EH� DV� VPDOO� DQG
UHVRXUFH�VDYLQJ�DV�SRVVLEOH��$V�6WDWHPDWH¶V�FRGH�JHQHUDWRU�ZRQ¶W�EH�XVHG�WKH�FRGH
ZLOO�EH�FRPSDUDEOH�WR�KDQG�ZULWWHQ�FRGH�

7(6768,7(

Step_2

Step_1

&7(

optimizer

&�&RGH

6WDWHPDWH

2,/

77&1

8VHU�FRGH

/GetResource

7HVW�6XLWH
&�&RGH

trigger

Figure 17 Modelling the test suite in Statemate

Page 44 by 26(. Conformance Methodology 2.0

4.2.� Generation of COM and NM test suites

4.2.1.�Generation method

The generation of test suites for COM and NM will be mainly based on the SDL diagrams
attached to the specification. However, the text and figures of the specification will be
conscientiously analysed to derive checkable assertions according to the general principles
presented in § 2.1. The assertions will be compared to the tests obtained from the SDL
diagram analysis in order to generate a complete list of test purposes.

As concerns NM, the protocol is also defined by state/transition graphs. This form is the
official representation. It will supersede the SDL definition in case of conflict.

The SDL diagrams give a graphical representation of the specification. They specify the
protocol automata in a hierarchical manner. Each automaton is represented by an SDL process
whose internal structure is a decision tree comprising:

• At the first level: the list of possible states of the automaton.

• At the second level: the list of events that may happen in a given state. Events can be
external such as a user API call or internal such as an inter-layer API call.

• At the third level: the actions performed by the protocol when receiving a given event in
a given state. Within the sequence of actions, the test of protocol variables may lead to
subdivisions of the decision tree. The last action normally sets the new state of the
protocol automaton.

The sequence of actions includes:

• assignments of protocol variables or of output event parameters,

• tests of protocol variables or of event parameters,

• sending of events. Again, events can be external (to the environment and hence to the
conformance tester) or internal (to the same or another automaton),

• subroutines which may in turn include assignments, tests, sending of events and
subroutines.

The definition method of the conformance tests aims at covering all branches of the
specification tree. Whenever possible, a test purpose is specified for each complete and
different branch (not for each segment). The following rules will be observed:

• Try and cover all protocol states (specification level 1),

• Try and cover all events specified in a given state and those events only (specification
level 2)

5HPDUN�
7KH�DVVHUWLRQ�DERYH�PHDQV�WKDW�PRVW�RI�UREXVWQHVV�WHVWV�DUH�H[FOXGHG�IURP�WKH�VFRSH�RI�26(.
FRQIRUPDQFH�WHVWLQJ��7KH�FRQIRUPDQFH�WHVWV�GR�QRW�DLP�WR�YHULI\�WKDW�WKH�LPSOHPHQWDWLRQ
VKRXOG�DFFHSW�DOO�SRVVLEOH�HYHQWV�LQ�HYHU\�VWDWH�LI�LW�LV�QRW�VSHFLILHG�WKDW�ZD\��)URP�WKH
FRQIRUPDQFH�SRLQW�RI�YLHZ��XQVSHFLILHG�HYHQWV�DUH�FRQVLGHUHG�DV�LPSRVVLEOH��7KH�WHVWV�FDQQRW
SUHGLFW�WKH�LPSOHPHQWDWLRQ�EHKDYLRXU�LQ�VXFK�D�VLWXDWLRQ��ZKHWKHU�LW�VKRXOG�EH��GR�QRW�FDUH
DQG�LJQRUH�WKDW�HYHQW��RU��KDQGOH�LW�DV�DQ�HUURU��

The tests aim to a static coverage of the specification. They will not check all possible
sequences of events. For instance, let us suppose the specification defines two input

Conformance Methodology 2.0 by 26(. Page 45

events Event1 and Event2. Execution of the test suite will arbitrarily lead to send either
Event1 then Event2 or Event2 then Event 1, not both of them unless they are correlated
by the use of the same protocol variables.

• Try and cover all branches of the action tree (specification level 3). Again, the coverage
is static. Let us consider the following specification where two consecutive tests lead to
define four branches B1, B2, B’1, B’2 (Fig. a). Four execution paths are possible B1B’1,
B2B’2, B1B’2 and B2B’1, but two are sufficient to cover the specification as for example
B1B’1 and B2B’2. Only two test purposes will be specified although the implementation
could be designed as in Fig. b and in this case, partially covered by the conformance
tests.

Test 1

B1 B2

Test 2

B’1 B’2

Fig. a: specification

Test 1

B1 B2

Test 2

B’1 B’2

Fig. b: implementation

Test 2

B"1 B"2

In the same manner, the subroutine are covered only once, not at each call, although they
could be expanded each time into the main code of the implementation.

The test purposes are however meaningful only if the results can be observed by the
conformance tester. Observable outputs consist of information returned by API calls or of
PDUs transmitted by the protocol. Two branches of the specification tree can be differentiated
for the same input only if they produce different outputs. The test purposes should be selected
accordingly. In the figure below where V1 and V2 are non observable internal variables, two
tests can be defined for Input1 and only one for Input 2. For Input 2, the test purpose will
simply be "Send Input 2 and observe that nothing happens".

V1

Fig. b: not testable

a b

V2 =1 V2 =2

V1

a b

Fig. a: testable

Output 1 Output 2

Input 1 Input 2

Page 46 by 26(. Conformance Methodology 2.0

4.2.2.� Impact of test architecture

The test architecture for protocols is composed of a UT and a LT. As the UT implements a
generic behaviour independent of the test case being executed, specifying a test suite amounts
to specify the associated LT behaviour. Therefore, a test case specification is made up of the
sequence of PDUs, including TM_PDUs, exchanged by the LT and the IUT during test
execution. The specification shall also define the verifications the LT has to perform on PDUs
originating from the IUT.

Therefore, the test generation process shall not take into consideration the sole SDL
specification of IUT, but rather the SDL resulting from the combination of IUT and UT
specifications. After the combination, IUT APIs become internal interfaces of the IUT + UT
set. API events will be ignored in test case definitions because they are not directly accessible
to LT. Since they are notified to LT through TM_PDUs, they will be replaced by TM_PDUs
receptions.

To generate the combined specification, the SDL processes defining the IUT and the UT shall
be associated two by two in order to remove their interactions and generate a unique process.
The transformation rules are in most cases quite trivial. Starting from IUT specification, they
consist in replacing API-level inputs and outputs by the corresponding TM_PDUs exchanged
with the LT, i.e.:

• replacing API inputs by incoming TM_PDUs the LT needs to send out to cause
generation of that inputs by the UT,

• replacing API outputs by outgoing TM_PDUs the LT will receive as a notification of
that outputs.

For example, such rules can be applied to the SDL specifications of IUT and UT presented in
Figure 14. The result is shown in Figure 18:

• the FRQQBU API request is replaced by the FRQQBS TM_PDU,

• the HVWDEBL and UHOBL indication events are replaced by the HVWDEBS and UHOBS�TM_PDUs.

OK?

HVWDEBS

conn_m

estab_m

START

ack_m

S4

err_m

START

FRQQBS

S4

S6

UHOBS

rel_m

S6

START
 no

 yes

Figure 18 Combined specification of IUT and UT

Conformance Methodology 2.0 by 26(. Page 47

4.2.3.�Test suite example

Let us consider the following specification of UT + IUT.

V1 = b
V1

a b

V1 = a

Output 1 Output 2

Input 1 Input 3Input 2

The list of test purposes can be defined as follows:

��� �6HQG�,QSXW���DQG�REVHUYH�QRWKLQJ�

��� �6HQG�,QSXW���DQG�REVHUYH�QRWKLQJ�

��� �6HQG�,QSXW���ZKHQ�9�� �D�DQG�REVHUYH�2XWSXW���

��� �6HQG�,QSXW���ZKHQ�9�� �E�DQG�REVHUYH�2XWSXW���

The test cases associated to purposes 1 and 2 are as follows:

The test cases associated to purposes 3 and 4 will look like:

Begin
Start timer T0
Send Input1 (resp. Input2) to implementation
Wait for any implementation output or T0 time-out
If T0 time-out signalled then

Verdict = PASS
If an output is received then

 Stop T0 timer
Verdict = FAIL

End

Begin
Send Input1 (resp. Input2) to implementation
Start timer T1
Send Input 3 to implementation
Wait for any implementation output or T1 time-out
If T1 time-out signalled then

Verdict = INCONC
If Output1 (rep. Output 2) received with expected parameters then

Stop T1 timer
Verdict = PASS

If another output or incorrect parameters are received then
 Stop T1 timer

Verdict = FAIL
End

Page 48 by 26(. Conformance Methodology 2.0

In the above sequence, the first statement �6HQG� ,QSXW�� �UHVS�� ,QSXW���� represents the
preamble of the test case. It serves to place the implementation in the appropriate state
allowing the test purpose to be observed. Furthermore these test cases allow to implicitly
check that V1 was correctly initialised on Input1 or Input2. Nevertheless, the test cases for
those inputs shall be kept, so that if an unspecified event is received, the tests can determine
whether the source of error is Input1, Input2 or Input3.

This example also shows a general method for managing implementation’s output events. A
timer is started before sending the input that should normally cause the output. The tester then
waits for that output up to the timer expiry. When timer expires, verdict is set to INCONC
because in actual implementations, the tester cannot determine whether lack of reception is
due non conformance or to transfer problems (e.g. network failure) between the
implementation and the tester.

As a more complete example, let us consider again the SDL specification of connection
handling protocol shown in Figure 14. A test purpose can be defined as follows:

�ZKHQ�conn_p�LV�VHQW�WR�,87�LQ�VWDWH�6���D�conn_m�3'8�ZLOO�HYHQWXDOO\�EH�DQVZHUHG�

This test purpose can be formalised by the following automaton where ! and ? are standard
notations representing an output and an input respectively.

0 Accept

��FRQQBS

1

"�FRQQBP

2

Figure 19 details the abstract test case using the same notations. The test case contains a
preamble that brings the specification in a state in which FRQQBS can be received. After the
test case has succeeded, a postamble brings the specification in its initial state (provided it can
be reached at all). Unexpected receptions yield FAIL verdicts while time-outs lead to
INCONC. The tree subdivision at S1 node aims to enable reception of HVWDEBS and DFNBP in
any order.

START

S1

! estab_m

? estab_p

? ack_m

S2

 ? estab_p

 ? ack_m

S3

S4

S6

? conn_m
S5

! conn_p

? rel_p
S7

! rel_m

PREAMBLE

POSTAMBLE

7(67

START

 ? err_m

Time-out

Time-out
 PASS

Time-out

INCONC

Time-out

INCONC

INCONC

INCONC

FAIL
?other?other

?other

FAIL

?other

FAIL

Figure 19 Test case for connection handling protocol

Conformance Methodology 2.0 by 26(. Page 49

4.2.4.�Test generation tools

The generation of test suites from the SDL specifications will be achieved with the help of a
case tool. The same environment has been already employed to develop the SDL
specifications of OSEK COM and NM. It incorporates a TTCN toolset allowing to develop
TTCN test cases and comprising an editor, an analyser, a simulator and a code generator. This
environment will be used to generate syntactically correct specifications of the COM and NM
test suites.

The toolset also allows a combined simulation of TTCN tests and SDL specifications. In such
simulations, the TTCN test cases are executed against the SDL specification which plays the
role of the IUT. In the OSEK context, TTCN versus SDL simulations will have two
objectives:

• to validate test cases,

• to verify the ratio of specification coverage by the test suite. This information is
provided by the tool after each simulation. Traceability information is also supplied
about the SDL branches covered by the tests. It will be exploited to eliminate
redundancies and improve the completeness of the test suites.

As a conclusion, Figure 20 describes the complete test generation process that is anticipated to
support the OSEK COM and NM conformance. TTCN test cases are first written and
compiled to eliminate syntax and semantics errors (step 1). Then, they can be simulated
against the SDL specification and therefore test suite conformance to the OSEK specification
can be verified (step 2). As the TTCN specification only represents the Lower Tester part of
the test architecture, the OSEK/SDL specification needs to be associated with the SDL of
Upper Tester to simulate the complete test architecture.

The next step (3) is the implementation of conformance tests:

• The Upper Tester is developed from the SDL specification by the tool provider and
delivered to the IUT implementator. The latter has in turn to adapt the software to the
target environment.

• The Lower Tester is developed from the TTCN specification by the tool provider. The
main part is automatically generated by the code generator provided by the case tool.
Adapation is also required to install the software in tester’s target environment.

,W�VKRXOG�EH�SRLQWHG�RXW�WKDW�WKH�GHYHORSPHQW�WRROV�PHQWLRQHG�DERYH�ZLOO�RQO\�EH�XVHG
IRU� WKH� VSHFLILFDWLRQ� DQG� JHQHUDWLRQ� RI� WKH� WHVW� VXLWHV�� 7KH\� ZLOO� QRW� EH� QHHGHG� IRU
FRQIRUPDQFH� WHVWV� H[HFXWLRQ�� ,Q� RWKHU� ZRUGV�� LW� ZLOO� QRW� EH� QHFHVVDU\� IRU� 26(.
LPSOHPHQWDWRUV�WR�DFTXLUH�DQ\�RI�WKH�FDVH�WRROV�WR�GR�FRQIRUPDQFH�WHVWLQJ�

Page 50 by 26(. Conformance Methodology 2.0

EQUIPMENT

UNDER TEST

Upper Tester
+

IUT

OSEK COM or NM
+ Upper Tester

(SDL)

COM or NM test suites
(TTCN)

Lower tester
(C)

NETWORK

CONFORMANCE
TESTING

(1)
Case Tool

(3)
Case Tool

(2)
Case Tool

Upper tester
(C)

TEST

EQUIPMENT

Lower Tester

(3)
Tool supplier

Tool + OSEK
supplier

Tool
supplier

Figure 20 Test suites generation and implementation process

Conformance Methodology 2.0 by 26(. Page 51

5.�TTCN overview

The three OSEK test suites for OS, COM and NM will be specified in TTCN language. TTCN
[6] is the standardised test notation for the description of OSI conformance tests. It combines
a tree notation for dynamic test behaviour description with a tabular representation of the
language constructs. TTCN has two representations: a graphical form suitable for human
readability and a textual form for automatic processing of test suites. Both forms are strictly
equivalent.

TTCN test suites are structured in several parts: declarations, constraints and dynamic
behaviour. The following sections aim at providing an overall description of the language. A
complete definition can be found in document [6]. The structure of TTCN test suites is
detailed throughout examples. For protocols, they are drawn from the connection handling
scenario presented before.

5.1.� Declarations

The declaration part begins with the description of a test architecture which is formalised by
the definition of Points of Control and Observation (PCO). The PCOs specify the
conformance tests’ access points to the IUT:

• in OS conformance, the OS-API will be the only PCO,

• in COM and NM conformance, the TTCN test cases will specify the exchange of PDUs
between target equipment and tester according to the coordinated test architecture
principle detailed before. The test architecture comprises two PCOs placed at the lower
interface of the IUT:

− one for OSEK frame exchanges between LT and IUT,

− one for TM_PDU exchanges between LT and UT.

The PCO definition includes the declaration of a name, a type and a role which can be either
UT for Upper Tester or LT for Lower Tester.

PCO Declarations
PCO Name PCO Type Role Comments
TMP DataBus_PCO LT TMP access point
Detailed Comments :

Table 22 PCO declaration

The declaration part also includes data-type and operation declarations which can be external
(any implementation dependent language) or internal. Internal declarations are specified in a
TTCN specific syntax or in ASN.1, the ISO standard of data presentation. Data types allow to
describe the format of data exchanged by the tester and the target equipment. Within OSEK
conformance, data types will define:

• The formats of APIs controlled by the OS tester. API procedures are called ASP
(Abstract Syntax Primitives) in TTCN notation.

• The formats of PDUs exchanged by the COM and NM testers, including OPDUs and
TM_PDUs,

Page 52 by 26(. Conformance Methodology 2.0

ASP Type Definition
ASP Name : ActivateTask
PCO Type : API_PCO
Comments : task activation procedure
Parameter Name Parameter Type Comments
TaskID TaskType Task reference
Detailed Comments :

PDU Type Definition
PDU Name : estab_m
PCO Type : DataBus_PCO
Comments : connection establishment request
Field Name Field Type Comments
ConNum
PCI

ConNumType
PCI_Type

Connection Number
Protocol Control Information

Detailed Comments :

Table 23 ASP and PDU type declarations

The declaration part of a TTCN test suite also aims at defining internal data of the tester:

• Internal variables enable the specification of complex tests, e.g. sequence number for
identifying PDUs of segmented data transfer. They can be declared with a test case
limited or global scope.

• Test suite parameters allow to specify IUT’s parameters that will be used to select the
applicable test cases or to enable the communication between tester and IUT, such as
addressing information. Through parameterization, test suites can be made generic or
general to several implementations of a family of protocols. Parameters are usually
defined in associated parameter files.

• Timers allow to set time-outs for IUT answers to tester’s stimuli. Very much like
parameters, the duration of these timers can be defined in external parameter files.

Timer Declarations
Timer Name Duration Unit Comments
ack_t 10 sec Wait for PDU acknowledgement
Detailed Comments :

Table 24 Timer declaration

5.2.� Constraints

TTCN constraint declarations specify the values of ASP parameters and PDU fields used by
the tester in send or receive operations:

• In send operations, they define the actual values assigned to ASP parameters or to PDU
fields.

• In receive operations, they define the values to be matched by the fields of received
PDUs or by the parameters of received ASPs.

Constraints can be either declared in constraint tables or directly specified inside dynamic
behaviour descriptions.

Conformance Methodology 2.0 by 26(. Page 53

ASP Constraint Declaration
Constraint Name : Activate_10
PDU Type : ActivateTask
Derivation Path :
Comments : activate task number 10
Parameter Name Parameter Value Comments
TaskID 10 Task reference
Detailed Comments :

PDU Constraint Declaration
Constraint Name : estab_m0
PDU Type : estab_m
Derivation Path :
Comments : establishment request for connection number 10
Field Name Field Value Comments
ConNum
PCI

10
EstabPCIValue

Connection Number
Protocol Control Information

Detailed Comments :

Table 25 ASP and PDU constraint declarations

5.3.� Dynamic behaviour

Dynamic behaviours of the tester are specified within test cases and test steps. They consist in
a tree-like structure, describing sets of sequences of interactions with the IUT or internal
events (timers related events). Interactions with the IUT are either an ASP send or an ASP
receive in OS conformance, or either a PDU send or a PDU receive in COM and NM
conformance. Timers can be set and reset. Diagnostics can be produced (FAIL, PASS or
INCONC) at any place in test cases. Complex behaviours can be expressed with the help of
usual control structures : conditional, loop, alternative choice and test step (procedure) call.

The table below provides the TTCN translation of the test case specified in Figure 19.

The hierarchy of tests is represented by the successive indentation levels of the behaviour
description. Statements at the same level like /"�HVWDEBS, /"�DFNBP, ... represent the possible
choices a this level. In /"�HVWDEBS

• / specifies the PCO at which the event will occur. It can be omitted if there is only one
PCO.

• "�stands for a tester input. Conversely ��indicates an output.

• HVWDEBS� is the data type identifier of the input/output. It must have been previously
defined in a data type declaration.

A time-out is associated to each expected input of the tester, such as DFNBW�for DFNBP�PDU.
The START, CLEAR and TIMEOUT statements are used to manage timers.

The constraint column specifies the actual values of inputs/outputs which must have been
previously defined in a TTCN constraint table.

The possible verdicts are shown in the verdict column. The parentheses of (PASS) stand for a
temporary verdict.

Page 54 by 26(. Conformance Methodology 2.0

Test Case Dynamic Behaviour
Test Case Name :
Group :
Purpose :
Default :
Comments :
Nr Label Behaviour Description Constraints

Ref
Verdict Comments

1 L! estab_m, START err_t, START ack_t, START estab_t estab_m0
2 L? estab_p, CLEAR estab_t, CLEAR err_t estab_i1
3 L? ack_m, CLEAR ack_t
4 L1 L! conn_p, START conn_t conn_r2
5 L? conn_m, CLEAR conn_t conn_m3 (PASS)
6 L! rel_m, START rel_t rel_m4
7 L? rel_p, CLEAR rel_t rel_i5 PASS
8 ? TIMEOUT rel_t FAIL
9 ? TIMEOUT conn_t FAIL

10 ? TIMEOUT ack_t FAIL
11 L? ack_m, CLEAR ack_t, CLEAR err_t
12 L? estab_p, CLEAR estab_t estab_i1
13 GOTO L1
14 ? TIMEOUT estab_t FAIL
15 L? err_m, CLEAR estab_t, CLEAR ack_t, CLEAR err_t INCONC
16 ? TIMEOUT estab_t FAIL
17 ? TIMEOUT ack_t FAIL
18 ? TIMEOUT err_t FAIL

Table 26 Test case dynamic behaviour

Conformance Methodology 2.0 by 26(. Page 55

6.�Abbreviations
API Application Programming Interface

COM Communication

DLL Data Link Layer

ECU Electronic Control Unit

IL Interaction Layer

ISO International Standard Organization

ISR Interrupt Service Routine

IUT Implementation Under Test

LT Lower Tester

NM Network Management

OPDU OSEK Protocol Data Unit

OS Operating System

PDU Protocol Data Unit

PCO Point of Control and Observation

SDL Specification and Description Language

TMP Test Management Protocol

TM_PDU Test Management - Protocol Data Unit

TTCN Tree and Tabular Combined Notation

UT Upper Tester

Page 56 by 26(. Conformance Methodology 2.0

7.�References

[1] OSEK/VDX Certification Procedure - F. Kaag, J. Minuth, K.J. Neumann, H.
Kuder - Proceedings of the 1st International Workshop on Open Systems in
Automotive Networks - October 1995.

[2] OSEK/VDX Operating System - Version 2.0 Revision 1 - 15 October 1997

[3] OSEK/VDX Communication - Version 2.1 - revision 1- 17th June 1998.

[4] OSEK Network Management - Concept and Application Programming Interface-
Version 2.50 - 31th of May 1998.

[5] ISO/IEC 9646-1 - Information technology, Open Systems Interconnection,
Conformance testing methodology and framework, SDUW� ���� *HQHUDO� &RQFHSWV,
1992.

[6] ISO/IEC 9646-3 - Information technology, Open Systems Interconnection,
Conformance testing, methodology and framework, SDUW�����7KH�7UHH�DQG�7DEXODU
&RPELQHG�1RWDWLRQ��77&1�� 1992.

[7] OSEK/VDX - Overall Glossary - 23 September 1997

[8] OSEK/VDX - System Generation - OIL: OSEK Implementation Language -
Version 2.0 - 16 December 1997

