
OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK Document: OS221.doc

OSEK/VDX

Operating System

Version 2.2.1

January 16th, 2003

This document is an official release and replaces all previously distributed documents. The OSEK group retains the
right to make changes to this document without notice and does not accept any liability for errors.

All rights reserved. No part of this document may be reproduced, in any form or by any means, without permission in
writing from the OSEK/VDX steering committee.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 2

Preface
OSEK/VDX is a joint project of the automotive industry. It aims at an industry standard for an
open-ended architecture for distributed control units in vehicles.
For detailed information about OSEK project goals and partners, please refer to the “OSEK
Binding Specification”.

This document describes the concept of a real-time operating system, capable of multitasking,
which can be used for motor vehicles. It is not a product description which relates to a specific
implementation.

This document also specifies the OSEK operating system - Application Program Interface.

General conventions, explanations of terms and abbreviations have been compiled in the
additional inter-project "OSEK Overall Glossary" which is part of the "OSEK Binding
Specification".

Regarding implementation and system generation aspects please refer to the "OSEK
Implementation Language" (OIL) specification.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 3

Table of Contents
1 Introduction ...6

1.1 System philosophy..6
1.2 Purpose of this document..8
1.3 Structure of this document..9

2 Summary ...11

3 Architecture of the OSEK operating system ...12
3.1 Processing levels...12
3.2 Conformance classes ..13
3.3 Relationship between OSEK OS and OSEKtime OS...15

4 Task management..16
4.1 Task concept ...16
4.2 Task state model ...16

4.2.1 Extended tasks...16
4.2.2 Basic tasks ...18
4.2.3 Comparison of the task types ..18

4.3 Activating a task ...19
4.4 Task switching mechanism...19
4.5 Task priority..19
4.6 Scheduling policy ...20

4.6.1 Full preemptive scheduling ...20
4.6.2 Non preemptive scheduling...21
4.6.3 Groups of tasks..22
4.6.4 Mixed preemptive scheduling ...23
4.6.5 Selecting the scheduling policy...23

4.7 Termination of tasks ...23

5 Application modes ..24
5.1 Scope of application modes ..24
5.2 Start up performance...24
5.3 Support for application modes..24

6 Interrupt processing...25

7 Event mechanism ..27

8 Resource management...29
8.1 Behaviour during access to occupied resources..29
8.2 Restrictions when using resources..29
8.3 Scheduler as a resource...30
8.4 General problems with synchronisation mechanisms...30

8.4.1 Explanation of priority inversion ..30
8.4.2 Deadlocks ..31

8.5 OSEK Priority Ceiling Protocol ...31
8.6 OSEK Priority Ceiling Protocol with extensions for interrupt levels.........................32
8.7 Internal Resources...34

9 Alarms ...36
9.1 Counters..36
9.2 Alarm management...36

OSEK/VDX Operating System
Specification 2.2.1

4 © by OSEK OSEK OS 2.2.1

9.3 Alarm-callback routines ... 37

10 Messages... 38

11 Error handling, tracing and debugging ... 39
11.1 Hook routines ... 39
11.2 Error handling .. 39
11.3 System start-up... 42
11.4 System shutdown ... 43
11.5 Debugging .. 43

12 Description of system services ... 44
12.1 Definition of system objects... 44
12.2 Conventions ... 44

12.2.1 Type of calls.. 44
12.2.2 Legitimacy of calls.. 44
12.2.3 Error characteristics .. 46

13 Specification of operating system services ... 48
13.1 Common data types.. 48
13.2 Task management... 49

13.2.1 Data types ... 49
13.2.2 Constructional elements.. 50
13.2.3 System services... 50
13.2.4 Constants .. 54
13.2.5 Naming convention... 54

13.3 Interrupt handling... 54
13.3.1 Data types ... 54
13.3.2 System services... 54
13.3.3 Naming convention... 57

13.4 Resource management.. 58
13.4.1 Data types ... 58
13.4.2 Constructional elements.. 58
13.4.3 System services... 58
13.4.4 Constants .. 59

13.5 Event control .. 60
13.5.1 Data types ... 60
13.5.2 Constructional elements.. 60
13.5.3 System services... 60

13.6 Alarms .. 62
13.6.1 Data types ... 62
13.6.2 Constructional elements.. 62
13.6.3 System services... 63
13.6.4 Constants .. 65
13.6.5 Naming convention... 66

13.7 Operating system execution control ... 66
13.7.1 Data types ... 66
13.7.2 System services... 66
13.7.3 Constants .. 67

13.8 Hook routines ... 68
13.8.1 Data Types .. 68
13.8.2 System services... 68

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 5

13.8.3 Constants ...69
13.8.4 Macros...69

14 Implementation and application specific topics ..70
14.1 Implementation hints. ...70

14.1.1 Aspects of implementation..70
14.1.2 Parameters of implementation...70

14.2 Application design hints ...72
14.2.1 Resource management...72
14.2.2 Placement of API calls ..73
14.2.3 Interrupt service routines...73
14.2.4 Priority and preemption...74
14.2.5 Examples of usage of internal Resources..75
14.2.6 Parameter to pass to ShutdownOS ..75
14.2.7 Error handling ...75
14.2.8 Errors and warnings...76

14.3 Implementation specific tools...77

15 Changes from specification 1.0 to 2.2...78
15.1 Changes from specification 1.0 to 2.0r1 ...78

15.1.1 Conceptual changes...78
15.1.2 Clarifications ...79
15.1.3 Changes of the documentation ..80

15.2 Changes from specification 2.0r1 to 2.1 and 2.1r1...80
15.2.1 Behaviour of ChainTask/TerminateTask with allocated resources is

undefined...80
15.2.2 GetTaskID is allowed in ISRs. ..80
15.2.3 Interrupt handling has been clarified and extended...81
15.2.4 Error checking of GetResource/ReleaseResource have been modified.81
15.2.5 Added constant OSTICKSPERBASE...81
15.2.6 ShutdownOS is allowed in ISRs and certain hook routines..............................81
15.2.7 Behaviour of ShutdownOS after ShutdownHook returns is

implementation defined...81
15.2.8 Added constant OSDEFAULTAPPMODE...81
15.2.9 ErrorHook is never called recursively. ..81
15.2.10 Local Messages added to specification. ..81
15.2.11 Startup/shutdown when OSEK and OSEKtime coexist (2.1r1)........................81

15.3 Changes from specification 2.1r1 to 2.2/2.2.1 (ISO version)81
15.3.1 Add alarm-callbacks to alarms ..82
15.3.2 Interrupt handling: changes to functionality..82
15.3.3 Scheduling: add internal resources..82
15.3.4 Error handling ...82
15.3.5 Miscellaneous..82

16 Index..83
16.1 List of figures..84

17 History...85

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 6

1 Introduction
The specification of the OSEK operating system is to represent a uniform environment which
supports efficient utilisation of resources for automotive control unit application software. The
OSEK operating system is a single processor operating system meant for distributed
embedded control units.

1.1 System philosophy
Automotive applications are characterised by stringent real-time requirements. Therefore the
OSEK operating system offers the necessary functionality to support event driven control
systems.

The specified operating system services constitute a basis to enable the integration of software
modules made by various manufacturers. To be able to react to the specific features of the
individual control units as determined by their performance and the requirements of a
minimum consumption of resources, the prime focus was not to achieve 100% compatibility
between the application modules, but their direct portability.

As the operating system is intended for use in any type of control units, it must support time-
critical applications on a wide range of hardware. A high degree of modularity and ability for
flexible configuration are prerequisites to make the operating system suitable for low-end
microprocessors and complex control units alike. These requirements have been supported by
definition of "conformance classes" (see chapter 3.2, Conformance classes) and a certain
capability for application specific adaptations.

For time-critical applications dynamic generation of system objects was left out. Instead,
generation of system objects was assigned to the system generation phase. Error inquiries
within the operating system are obviated to a large extent, so as not to affect the speed of the
overall system unnecessarily. On the other hand, a system version with extended error
inquiries has been defined. It is intended for the test phase and for less time-critical
applications. Even at that stage defined uniform system appearance is ensured.

Standardised interfaces

The interface between the application software and the operating system is defined by system
services. The interface is identical for all implementations of the operating system on various
processor families.

System services are specified in an ISO/ANSI-C-like syntax, however the implementation
language of the system services is not specified.

Scalability

Different conformance classes, various scheduling mechanisms and the configuration features
make the OSEK operating system feasible for a broad spectrum of applications and hardware.

The OSEK operating system is designed to require only a minimum of hardware resources
(RAM, ROM, CPU time) and therefore runs even on 8 bit microcontrollers.

Error checking

The OSEK operating system offers two levels of error checking, extended status for
development phase and standard status for production phase.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 7

The extended status allows for enhanced plausibility checks on calling operating system
services. Due to the additional error checking it requires more execution time and memory
space than the standard version. However, many errors can be found in a test phase. After all
errors have been eliminated, the system can be recompiled with the standard version.

Portability of application software

One of the goals of OSEK is to support the portability and re-usability of application software.
Therefore the interface between the application software and the operation system is defined
by standardised system services with well-defined functionality. Use of standardised system
services reduces the effort to maintain and to port application software and development cost.

Portability means the ability to transfer an application software module from one ECU to
another ECU without bigger changes inside the application. The standardised interface
(service calls, type definitions and constants) to the operating system supports the portability
on source code level. Exchange of object code is not addressed by the OSEK specification.

The application software lies on the operating system and in parallel on an application-
specific Input/Output System interface which is not standardised in the OSEK specification.
The application software module can have several interfaces. There are interfaces to the
operating system for real time control and resource management, but also interfaces to other
software modules to represent a complete functionality in a system and at least to the
hardware, if the application has to work directly with microcontroller modules.

For better portability of application software, the OSEK defines a language for a standardised
configuration information. This language "OIL" (OSEK Implementation Language) supports a
portable description of all OSEK specific objects such as "tasks" and "alarms" etc.

µController

OSEK operation system
Input/Output System

module 1 module 2 module 3 module n

application
software

Figure 1-1 Software interfaces inside ECU1

 During the process to port application software from one ECU to another ECU it is necessary
to consider characteristics of the software development process, the development
environment, and the hardware architecture of the ECU, for example:

1 OSEK OS allows direct interfacing between application and the hardware.

OSEK/VDX Operating System
Specification 2.2.1

8 © by OSEK OSEK OS 2.2.1

� Software development guidelines
� File management system
� Data allocation and stack usage of the compiler
� Memory architecture of the ECU
� Timing behaviour of the ECU
� Different microcontroller specific interfaces e.g. ports, A/D converter, serial

communication and watchdog timer
� Placement of the API calls

 This means that the OSEK specifications are not enough to describe an OSEK implementation
completely. The implementation has to supply specific documentation.

 Support of Portability

 The certification process ensures the conformance of different implementations to the
specification. Chapter 14 of this specification collects implementation specific details which
have to be regarded to increase portability of an application between various OSEK
implementations. Herein, only the operating system interface to the application is considered.

 Special support for automotive requirements

 Specific requirements for an OSEK operating system arise in the application context of
software development for automotive control units. The following features address
requirements such as reliability, real-time capability, and cost sensitivity:
� The OSEK operating system is configured and scaled statically. The user statically

specifies the number of tasks, resources, and services required.
� The specification of the OSEK operating system supports implementations capable of

running on ROM, i.e. the code could be executed from Read-Only-Memory.
� The OSEK operating system supports portability of application tasks.
� The specification of the OSEK operating system provides a predictable and documented

behaviour to enable operating system implementations, which meet automotive real-
time requirements.

� The specification of the OSEK operating system allows the implementation of
predictable performance parameters.

1.2 Purpose of this document
The following description is to be regarded as a generic description which is mandatory for
any implementation of the OSEK operating system. This concerns the general description of
strategy and functionality, the interface of the calls, the meaning and declaration of the
parameters and the possible error codes.

The specification leaves a certain amount of flexibility. On the one hand, the description is
generic enough for future upgrades, on the other hand, there is some explicitly specified
implementation-specific scope in the description.

Any implementation defines all implementation specific issues. The conformance classes
supported by the implementation must be indicated precisely, and the issues identified as
implementation-specific must be documented.

It is assumed that the description of the OSEK operating system is to be updated in the future,
and will be adapted to new requirements. Therefore, each implementation must specify which

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 9

officially authorised version of the OSEK description has been used as a reference description.
Officially authorised versions of the OSEK operating system description are named x.y2. This
document represents ”Version 2.2.1”.

Because this description is mandatory, definitions have only been made where the general
system strategy is concerned. In all other respects, it is up to the system implementation to
determine the optimal adaptation to a specific hardware type.

1.3 Structure of this document
In the following text, the specification chapters are described briefly:

Chapter 2, Summary

This chapter provides a brief introduction to the OSEK operating system concept.

Chapter 3, Architecture of the OSEK operating system

This chapter gives a survey about the design principles and the architecture of the OSEK
operating system.

Chapter 4, Task management

This chapter explains the OSEK task management with the different task types and scheduling
mechanisms.

Chapter 5, Application modes

This chapter describes application modes and how they are supported.

Chapter 6, Interrupt processing

This chapter provides information about the OSEK interrupt strategy and the different types of
interrupt service routines.

Chapter 7, Event mechanism

This chapter explains the event mechanism and the different behaviour depending on the
scheduling.

Chapter 8, Resource management

This chapter describes the OSEK resource management and discusses the benefits and
implementation of the OSEK priority ceiling protocol.

Chapter 9, Alarms

This chapter describes the two-stage concept to support time-based events (e.g. hardware-
timer) as well as non-time-based events (e.g. angle measurement).

Chapter 10, Messages

The message handling for intra processor communication will be added to the OS
specification. Full message handling is described in the OSEK COM specification.

The exact subset to be implemented is yet to be defined.

2 Version updates (formal changes like spelling) may be named x.y.z

OSEK/VDX Operating System
Specification 2.2.1

10 © by OSEK OSEK OS 2.2.1

Chapter 11, Error handling, tracing and debugging

Description of the mechanisms to achieve centralised error handling. This chapter also
describes the services to initialise and shutdown the system.

Chapter 12, Description of system services

This chapter describes the conventions used for description.

Chapter 13, Specification of operating system services

This chapter describes all operating system services made available to the user. Structure of
the description is identical for any service; it contains all the information the service user
requires.

Chapter 14, Implementation and application specific topics,

This chapter provides a list of all operating system specific topics, including services, data
types, and constants.

Chapter 15, Changes from specification 1.0 to 2.2

This chapter provides a survey of major changes in the operating system specification from
version 1.0 to version 2.0, 2.1, 2.1r1 and 2.2.

Chapter 16, Index

List of all operating system services and figures.

Chapter 17, History

List of all official releases.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 11

2 Summary
The OSEK operating system provides a pool of different services and processing mechanisms.

The OSEK operating system is built according to the user's configuration instructions at
system generation time.

Four conformance classes are available to satisfy different requirements concerning
functionality and capability of the OSEK operating system. Thus, the user can adapt the
operating system to the control task and the target hardware. The operating system cannot be
modified later at execution time.

Applications which have been written for a certain conformance class have to be portable to
OSEK implementations of the same class. This is ensured by a definition of the services, their
scope of capabilities, and the behaviour of each conformance class. Only if all the services of
a conformance class are offered with the determined scope of capabilities, the operating
system implementation conforms to OSEK.

The service groups are structured in terms of functionality.

Task management
� Activation and termination of tasks
� Management of task states, task switching

 Synchronisation

 The operating system supports two means of synchronisation effective on tasks:
� Resource management

Access control for inseparable operations to jointly used (logic) resources or devices, or
for control of a program flow.

� Event control
Event management for task synchronisation.

 Interrupt management
� Services for interrupt processing

 Alarms
� Relative and absolute alarms

 Intra processor message handling
� Services for exchange of data

 Error treatment
� Mechanisms supporting the user in case of various errors

OSEK/VDX Operating System
Specification 2.2.1

12 © by OSEK OSEK OS 2.2.1

3 Architecture of the OSEK operating system

3.1 Processing levels
The OSEK operating system serves as a basis for application programs which are independent
of each other, and provides their environment on a processor. The OSEK operating system
enables a controlled real-time execution of several processes which appear to run in parallel.

The OSEK operating system provides a defined set of interfaces for the user. These interfaces
are used by entities which are competing for the CPU. There are two types of entities:
� Interrupt service routines managed by the operating system
� Tasks (basic tasks and extended tasks)

 The hardware resources of a control unit can be managed by operating system services. These
operating system services are called by a unique interface, either by the application program or
internally within the operating system.

 OSEK defines three processing levels:
� Interrupt level
� Logical level for scheduler
� Task level

Within the task level tasks are scheduled (non, full or mixed preemptive scheduling)
according to their user assigned priority. The run time context is occupied at the beginning of
execution time and is released again once the task is finished.

OSEK operating system

logical level for scheduling activities

interrupt level

runtime
context

preemption: non / full

waiting: yes / no

tasks

1
2

3
n

priority

without OS-services

with OS-services

high

low

task level

Figure 3-1 Processing levels of the OSEK operating system

 The following priority rules have been established:
� Interrupts have precedence over tasks
� The interrupt processing level consists of one or more interrupt priority levels
� Interrupt service routines have a statically assigned interrupt priority level
� Assignment of interrupt service routines to interrupt priority levels is dependent on

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 13

implementation and hardware architecture
� For task priorities and resource ceiling-priorities bigger numbers refer to higher

priorities.
� The task’s priority is statically assigned by the user (the meaning of task priorities is

described in chapter 4.5).

Processing levels are defined for the handling of tasks and interrupt routines as a range of
consecutive values. Mapping of operating system priorities to hardware priorities is
implementation specific.

Please note that assignment of a priority to the scheduler is only a logical concept which can
be implemented without directly using priorities. Additionally, OSEK does not prescribe any
rules concerning the relation of task priorities and hardware interrupt levels of a specific
microprocessor architecture.

3.2 Conformance classes
Various requirements of the application software for the system and various capabilities of a
specific system (e.g. processor, memory) demand different features of the operating system. In
the following description, these operating system features are described as "conformance
classes" (CC).

Conformance classes exist to support the following objectives:
� To provide convenient groups of operating system features for easier understanding and

discussion of the OSEK operating system.
� To allow partial implementations along pre-defined lines. These partial implementations

may be certified as OSEK compliant.
� To create an upgrade path from classes of lesser functionality to classes of higher

functionality with no changes to the application using OSEK related features.

 The complete conformance class must be implemented to be certified. However, system
generation needs only to link those system services that are required for a specific application.
Conformance classes cannot be changed during execution.

 Conformance classes are determined by the following attributes:
� Multiple requesting of task activation, as described in chapter 4.3
� Task types, as described in chapter 4.2
� Number of tasks per priority

All other OSEK features are mandatory if not explicitly stated otherwise.

OSEK/VDX Operating System
Specification 2.2.1

14 © by OSEK OSEK OS 2.2.1

ECC1

BCC2 ECC2

BCC1

BT only BT and ET

1 task/priority
no multiple activations

> 1 task/priority
multiple activations
for basic tasks only

Figure 3-2 Restricted upward compatibility for conformance classes

 The following conformance classes are defined:
� BCC1 (only basic tasks, limited to one activation request per task and one task per

priority, while all tasks have different priorities)
� BCC2 (like BCC1, plus more than one task per priority possible and multiple requesting

of task activation allowed)
� ECC1 (like BCC1, plus extended tasks)
� ECC2 (like ECC1, plus more than one task per priority possible and multiple requesting

of task activation allowed for basic tasks)

 The portability of applications can only be assumed if the minimum requirements are not
exceeded. The minimum requirements for Conformance Classes are shown in the Figure 3-3.

BCC1 BCC2 ECC1 ECC2

Multiple requesting of
task activation

no yes BT3: no
ET: no

BT: yes
ET: no

Number of tasks
which are not in the
suspended state

8 16
(any combination of BT/ET)

More than one task
per priority

no yes no
(both BT/ET)

yes
(both BT/ET)

Number of
events per task

— 8

Number of task
priorities

8 16

Resources RES_SCHEDULER 8 (including RES_SCHEDULER)

Internal resources 2

Alarm 1

Application Mode 1

Figure 3-3 The minimum requirements for Conformance Classes

3 BT = Basic Task, ET = Extended Task

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 15

3.3 Relationship between OSEK OS and OSEKtime OS

OSEKtime OS is an operating system especially tailored to the needs of time triggered
architectures. It allows OSEK OS to coexist with OSEKtime OS. Conceptually, OSEKtime
assigns its idle time to be used by OSEK. OSEK OS interrupts and tasks have less importance
(lower priority) than similar entities in OSEKtime OS.

The OSEK interfaces, and the definition of system calls, do not change if OSEK coexists with
OSEKtime. There are minor exceptions with respect to system startup and shutdown due to
the fact that OSEKtime is responsible for the overall system whereas OSEK is only locally
responsible. These deviations are specifically mentioned within this specification.

On top of this, there is functionality defined within OSEKtime which imposes restrictions on
the implementation of OSEK OS if it is intended to coexist with OSEKtime OS. For more
information, please refer to the specification of the OSEKtime OS.

OSEK/VDX Operating System
Specification 2.2.1

16 © by OSEK OSEK OS 2.2.1

4 Task management

4.1 Task concept
Complex control software can conveniently be subdivided in parts executed according to their
real-time requirements. These parts can be implemented by the means of tasks. A task
provides the framework for the execution of functions. The operating system provides
concurrent and asynchronous execution of tasks. The scheduler organises the sequence of task
execution.

The OSEK operating system provides a task switching mechanism (scheduler, see chapter 4.4,
Task switching mechanism), including a mechanism which is active when no other system or
application functionality is active. This mechanism is called idle-mechanism. Two different
task concepts are provided by the OSEK operating system:
� basic tasks
� extended tasks

 Basic Tasks

 Basic tasks only release the processor, if
� they terminate,
� the OSEK operating system switches to a higher-priority task, or
� interrupt occurs which cause the processor to switch to an interrupt service routine

(ISR).

Extended Tasks

Extended tasks are distinguished from basic tasks by being allowed to use the operating
system call WaitEvent, which may result in a waiting state (see chapter 7, Event mechanism,
and chapter 13.5.3.4, WaitEvent). The waiting state allows the processor to be released and to
be reassigned to a lower-priority task without the need to terminate the running extended task.

In view of the operating system, management of extended tasks is, in principal, more complex
than management of basic tasks and requires more system resources.

4.2 Task state model
The following text describes the task states and the transitions between the states for both task
types.

A task must be able to change between several states, as the processor can only execute one
instruction of a task at any time, while several tasks may be competing for the processor at the
same time. The OSEK operating system is responsible for saving and restoring task context in
conjunction with task state transitions whenever necessary.

4.2.1 Extended tasks
Extended tasks have four task states:
running In the running state, the CPU is assigned to the task, so that its instructions

can be executed. Only one task can be in this state at any point in time,
while all the other states can be adopted simultaneously by several tasks.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 17

ready All functional prerequisites for a transition into the running state exist, and
the task only waits for allocation of the processor. The scheduler decides
which ready task is executed next.

waiting A task cannot continue execution because it has to wait for at least one event
(see chapter 7, Event mechanism).

suspended In the suspended state the task is passive and can be activated.

running

suspendedstart

wait

activate

terminate

release

preempt

ready

waiting

Figure 4-1 Extended task state model

Transition Former
state

New
state

Description

activate suspended ready A new task is set into the ready state by a system
service. The OSEK operating system ensures that the
execution of the task will start with the first
instruction.

start ready running A ready task selected by the scheduler is executed.

wait running waiting The transition into the waiting state is caused by a
system service. To be able to continue operation, the
waiting task requires an event.

release waiting ready At least one event has occurred which a task has
waited for.

preempt running ready The scheduler decides to start another task. The run-
ning task is put into the ready state.

terminate running suspended The running task causes its transition into the
suspended state by a system service.

Figure 4-2 States and status transitions for extended tasks

Termination of a task is only possible if the task terminates itself ("self-termination"). This
restriction reduces complexity of an operating system. There is no provision for a direct
transition from the suspended state into the waiting state. This transition is redundant and
would add to the complexity of the scheduler.

OSEK/VDX Operating System
Specification 2.2.1

18 © by OSEK OSEK OS 2.2.1

4.2.2 Basic tasks
The state model of basic tasks is nearly identical to the extended tasks state model. The only
exception is that basic tasks do not have a waiting state.
running In the running state, the CPU is assigned to the task, so that its instructions

can be executed. Only one task can be in this state at any point in time,
while all the other states can be adopted simultaneously by several tasks.

ready All functional prerequisites for a transition into the running state exist, and
the task only waits for allocation of the processor. The scheduler decides
which ready task is executed next.

suspended In the suspended state the task is passive and can be activated.

running

suspendedstart

activate

terminate

preempt

ready

Figure 4-3 Basic task state model

Transition Former
state

New
state

Description

activate suspended ready4 A new task is set into the ready state by a system
service. The OSEK operating system ensures that the
execution of the task will start with the first
instruction.

start ready running A ready task selected by the scheduler is executed.

preempt running ready The scheduler decides to start another task. The
running task is put into the ready state.

terminate running suspended The running task causes its transition into the
suspended state by a system service.

Figure 4-4 States and status transitions for basic tasks

4.2.3 Comparison of the task types
Basic tasks have no waiting state, and thus only comprise synchronisation points at the
beginning and the end of the task. Application parts with internal synchronisation points have

4 Task activation will not immediately change the state of the task in case of multiple activation requests. If the
task is not suspended, the activation will only be recorded and performed later.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 19

to be implemented by more than one basic task. An advantage of basic tasks is their moderate
requirement regarding run time context (RAM).
An advantage of extended tasks is that they can handle a coherent job in a single task, no
matter which synchronisation requests are active. Whenever current information for further
processing is missing, the extended task switches over into the waiting state. It exits this state
whenever corresponding events signal the receipt or the update of the desired data or events.
Extended tasks also comprise more synchronisation points than basic tasks.

4.3 Activating a task
Task activation is performed using the operating system services ActivateTask or ChainTask.
After activation the task is ready to execute from the first statement.

The OSEK operating system does not support C-like parameter passing when starting a task.
Those parameters should be passed by message communication (see chapter 10, Messages) or
by global variables.

Multiple requesting of task activation

Depending on the conformance class a basic task can be activated once or multiple times.
"Multiple requesting of task activation" means that the OSEK operating system receives and
records parallel activations of a basic task already activated.

The number of multiple requests in parallel is defined in a basic task specific attribute during
system generation. If the maximum number of multiple requests has not been reached, the
request is queued. The requests of basic task activations are queued per priority in activation
order.

4.4 Task switching mechanism
Unlike conventional sequential programming, the principle of multitasking allows the
operating system to execute various tasks concurrently. Therefore the scheduling policy has
clearly to be defined (see chapter 4.6, Scheduling policy).

The entity deciding which task has to be started and the triggering of all necessary OSEK
operating system internal activities is called scheduler. The scheduler is activated whenever a
task switch is possible according to the implemented scheduling policy. The scheduler can be
considered as a resource which can be occupied and released by tasks. Thus, a task can reserve
the scheduler to avoid a task switch until it is released. For further details, please refer to
chapter 8.3, Scheduler as a resource.

4.5 Task priority
The scheduler decides on the basis of the task priority (precedence) which is the next of the
ready tasks to be transferred into the running state.
The value 0 is defined as the lowest priority of a task. Accordingly bigger numbers define
higher priorities.
To enhance efficiency, a dynamic priority management is not supported. Accordingly the
priority of a task is defined statically, i.e. the user cannot change it at the time of execution.
However, in particular cases the operating system can treat a task with a defined higher
priority. In this context, please refer to chapter 8.5, OSEK Priority Ceiling Protocol.
Tasks of identical priority are supported in the conformance classes BCC2 and ECC2, see
chapter 3.2, Conformance classes.

OSEK/VDX Operating System
Specification 2.2.1

20 © by OSEK OSEK OS 2.2.1

Tasks on the same priority level are started depending on their order of activation, whereby
extended tasks in the waiting state do not block the start of subsequent tasks of identical
priority.
A preempted task is considered to be the first task in the ready list of its current priority.
A task being released from the waiting state is treated like the newest task in the ready queue
of its priority.

Figure 4-5 shows an example implementation of the scheduler using for each priority level.
Several tasks of different priorities are in the ready state; i.e. three tasks of priority 3, one of
priority 2 and one of priority 1, plus two tasks of priority 0. The task which has waited the
longest time, depending on its order of requesting, is shown at the bottom of each queue. The
processor has just processed and terminated a task. The scheduler selects the next task to be
processed (priority 3, first queue). Before priority 2 tasks can be processed, all tasks of higher
priority must have left the running and ready state, i.e. started and then removed from the
queue either due to termination or due to transition into waiting state.

priority high low

FIFO
queue

scheduler

processor

n 3 2 1 0

task

actually processed and
terminated task

next task
to be processed

Figure 4-5 Scheduler: order of events

The following fundamental steps are necessary to determine the next task to be processed:
� The scheduler searches for all tasks in the ready/running state.
� From the set of tasks in the ready/running state, the scheduler determines the set of

tasks with the highest priority.
� Within the set of tasks in the ready/running state and of highest priority, the scheduler

finds the oldest task.

4.6 Scheduling policy

4.6.1 Full preemptive scheduling
Full preemptive scheduling means that a task which is presently running may be rescheduled
at any instruction by the occurrence of trigger conditions pre-set by the operating system. Full
preemptive scheduling will put the running task into the ready state, as soon as a higher-
priority task has got ready. The task context is saved so that the preempted task can be
continued at the location where it was preempted.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 21

With full preemptive scheduling the latency time is independent of the run time of lower
priority tasks. Certain restrictions are related to the increased (RAM-) memory space required
for saving the context, and the enhanced complexity of features necessary for synchronisation
between tasks. As each task can theoretically be rescheduled at any location, access to data
which are used jointly with other tasks must be synchronised.

In Figure 4-6, task T2 with the lower priority does not delay the scheduling of task T1 with
higher priority.

activation
of task T1

termination
of task T1

 Task T2

 Task T1 suspended

running running

running

ready

suspended
rea
dy

Figure 4-6 Full preemptive scheduling

In the case of a full preemptive system, the user must constantly expect preemption of the
running task. If a task fragment must not be preempted, this can be achieved by blocking the
scheduler temporarily via the system service GetResource.

Summarised, rescheduling is performed in all of the following cases:
� Successful termination of a task (system service TerminateTask, see chapter 13.2.3.2).
� Successful termination of a task with explicit activating of a successor task (system

service ChainTask, see chapter 13.2.3.3).
� Activating a task at task level (e.g. system service ActivateTask, see chapter 13.2.3.1,

message notification mechanism, alarm expiration, if task activation is defined, see
chapter 9.2).

� Explicit wait call if a transition into the waiting state takes place (extended tasks only,
system service WaitEvent, see chapter 13.5.3.4).

� Setting an event to a waiting task at task level (e.g. system service SetEvent, see chapter
13.5.3.1, message notification mechanism, alarm expiration, if event setting defined, see
chapter 9.2).

� Release of resource at task level (system service ReleaseResource, see chapter 13.4.3.2)
� Return from interrupt level to task level

During interrupt service routines no rescheduling is performed (see figure 3-1).

Applications using the scheduling strategy ‘full preemptive scheduling’ do not need the
system service Schedule, but other scheduling policies make use of this system service. To
enable portable applications to be written in spite of the different scheduling policies, the user
can enforce a rescheduling via the system service Schedule at locations where he/she assumes
a correct assignment of the CPU.

4.6.2 Non preemptive scheduling
The scheduling policy is described as non preemptive, if task switching is only performed via
one of a selection of explicitly defined system services (explicit points of rescheduling).

OSEK/VDX Operating System
Specification 2.2.1

22 © by OSEK OSEK OS 2.2.1

Non preemptive scheduling imposes particular constraints on the possible timing requirements
of tasks. Specifically the non preemptable section of a running task with lower priority delays
the start of a task with higher priority up to the next point of rescheduling.

In Figure 4-7, task T2 with the lower priority delays task T1 with higher priority up to the next
point of rescheduling (in this case termination of task T2).

activation of
task T1

 latency time for task T1

termination of task T2

 Task T2

 Task T1 suspended

running suspended

runningready

Figure 4-7 Non preemptive scheduling

Points of rescheduling

In the case of a non preemptable task, rescheduling will take place exactly in the following
cases:
� Successful termination of a task (system service TerminateTask, see chapter 13.2.3.2).
� Successful termination of a task with explicit activation of a successor task (system

service ChainTask, see chapter 13.2.3.3).
� Explicit call of scheduler (system service Schedule, see chapter 13.2.3.4).
� A transition into the waiting state takes place (system service WaitEvent, see chapter

13.5.3.4)5.

Implementations of non preemptive systems may prescribe that operating system services
which cause rescheduling may only be called at the highest task program level (not in task
subfunctions)6.

4.6.3 Groups of tasks
The operating system allows tasks to combine aspects of preemptive and non preemptive
scheduling by defining groups of tasks. For tasks which have the same or lower priority as the
highest priority within a group, the tasks within the group behave like non preemptable tasks:
rescheduling will only take place at the points of rescheduling described in chapter 4.6.2. For
tasks with a higher priority than the highest priority within the group, tasks within the group
behave like preemptable tasks (see chapter 4.6.1).

Chapter 8.7 describes the mechanism of defining groups by using internal resources. Non
preemptable tasks are the most common usage of the concept of internal resources; they are
tasks with a special internal resource of highest task priority assigned.

5 The call of WaitEvent does not lead to a waiting state if one of the events passed in the event mask to
WaitEvent is already set. In this case WaitEvent does not lead to a rescheduling.

6 A task switch at these points of scheduling usually requires saving of less task context information.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 23

4.6.4 Mixed preemptive scheduling
If preemptable and non preemptable tasks are mixed on the same system, the resulting policy
is called "mixed preemptive" scheduling. In this case scheduling policy depends on the
preemption properties of the running task. If the running task is non preemptable, then non
preemptive scheduling is performed. If the running task is preemptable, then preemptive
scheduling is performed.

The definition of a non preemptable task makes sense in a full preemptive operating system
� if the execution time of the task is in the same magnitude of the time of a task switch,
� if RAM is to be used economically to provide space for saving the task context, or
� if the task must not be preempted.

Many applications comprise only few parallel tasks with a long execution time, for which a
full preemptive operating system would be convenient and many short tasks with a defined
execution time where non preemptive scheduling would be more efficient. For this configura-
tion, the mixed preemptive scheduling policy was developed as a compromise (see also the
design hint in chapter 14.2.4).

4.6.5 Selecting the scheduling policy
The software developer or the system integrator determines the task execution sequence by
configuring the task priorities and assigning the preemptability as a task attribute.

The task type (basic or extended) is independent from the task’s scheduling type (preemptable
or non preemptable). A full preemptive system may therefore contain basic tasks, and a non
preemptive system extended tasks.

If an operating system service is running, preemption and context switch might be delayed
until the completion of the service.

4.7 Termination of tasks
In the OSEK operating system, a task can only terminate itself ("self-termination").

The OSEK operating system provides the service ChainTask to ensure that a dedicated task
activation is performed just after the termination of the running task. Chaining itself puts the
task into the last element of the priority queue.

Each task has to terminate itself at the end of its code. Ending the task without a call to
TerminateTask or ChainTask is strictly forbidden and causes undefined behaviour.

OSEK/VDX Operating System
Specification 2.2.1

24 © by OSEK OSEK OS 2.2.1

5 Application modes
Application modes are designed to allow an OSEK operating system to come up under
different modes of operation. The minimum number of supported application modes is one. It
is intended only for modes of operation that are totally mutually exclusive. An example of two
exclusive modes of operation would be end-of-line programming and normal operation. Once
the operating system has been started, it is not allowed to change the application mode.

5.1 Scope of application modes
Many ECUs may execute completely independent applications as e.g. factory test, Flash pro-
gramming or normal operation. The application mode is a means to structure the software
running in the ECU according to those different conditions and are a clean mechanism for
development of totally separate systems. Typically each application mode uses its own subset
of all tasks, ISRs, alarms and timing conditions, although there is no limitation to having a
task or ISR running in different modes. Sharing a task/ISR/alarm between different modes is
recommended if the same functionality is needed again. If the functionality is not exactly the
same, there is a trade-off between runtime and resources: either the application mode has to be
dynamically checked, or separate tasks have to be defined.

Having system generation and optimisation in mind, application modes are helpful to reduce
the number of OS objects taken into consideration.

5.2 Start up performance
The start up performance is a safety critical issue for ECUs in automotive applications since
reset conditions may occur during normal operation. As a result the code used to determine
the application mode should be very quick. At start up, the user code using no system services
(see Figure 11-2) will determine the mode and pass it as a parameter to the API-service
StartOS7. It is recommended that only pin states, or similarly easy to assess conditions be used
to determine the mode. The mode has to be determined before the kernel is started and the
resulting code is non-portable. It is clear that a lengthy or complicated starting procedure
should be avoided.

The application mode passed to StartOS allows the operating system to autostart the correct
subset of tasks and alarms. The assignment of autostart tasks and alarms to application modes
is made statically in the OIL file.

5.3 Support for application modes
There is no restriction of application modes to a subset of conformance classes. It is required
for all classes.

There is no impact on the shutdown functionality.

Switching between application modes at runtime is not supported.

7 In case of a system where OSEK and OSEKtime coexist, the application mode passed to OSEKtime is used.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 25

6 Interrupt processing
The functions for processing an interrupt (Interrupt Service Routine: ISR) are subdivided into
two ISR categories:

ISR category 1 The ISR does not use an operating system service8. After the ISR is finished,
processing continues exactly at the instruction where the interrupt has
occurred, i.e. the interrupt has no influence on task management. ISRs of
this category have the least overhead.

ISR category 2 The OSEK operating system provides an ISR-frame to prepare a run-time
environment for a dedicated user routine. During system generation the user
routine is assigned to the interrupt.

Within interrupt service routines, usage of OSEK operating system services is restricted
according to Figure 12-1.

Figure 6-1 ISR categories of the OSEK operating system

Inside the ISR no rescheduling will take place. Rescheduling takes place on termination of the
ISR category 2 if a preemptable task has been interrupted and if no other interrupt is active.
The implementation ensures that tasks are executed according to the OSEK scheduling points
(see chapter 4.6.1 Full preemptive scheduling). To achieve this the implementation may
prescribe restrictions concerning interrupt priority levels for ISRs of all categories and/or
perform checks at configuration time (see chapter 14.2.3.1, Nested interrupts of different
categories).

The maximum number of interrupt priorities depends on the controller used as well as on the
implementation. The scheduling of interrupts is hardware dependent and not specified in

8 exception are some system services to enable and disable interrupts, see Figure 12-1

Categoy 1 Category 2

ISR (isr_name)

{

 code with API calls

}

{

code without any API calls 8

}

OSEK/VDX Operating System
Specification 2.2.1

26 © by OSEK OSEK OS 2.2.1

OSEK. Interrupts are scheduled by hardware while tasks are scheduled by the scheduler.
Regarding the interrupt priority levels there may be restrictions as described in 14.2.3.1.
Interrupts can interrupt tasks (preemptable and non preemptable tasks). If a task is activated
from an interrupt routine the task is scheduled after the end of all active interrupt routines.

In interrupt service routines the system services listed in Figure 12-1 can be used.

Fast Disable/Enable API-functions
OSEK offers fast functions to disable all interrupts (see chapter 13.3.2.1, EnableAllInterrupts,
13.3.2.2, DisableAllInterrupts, 13.3.2.3, ResumeAllInterrupts and 13.3.2.4,
SuspendAllInterrupts), and to disable all interrupts of category 2 (see chapter 13.3.2.5,
ResumeOSInterrupts and 13.3.2.6, SuspendOSInterrupts). Typical usage is to protect short
critical sections. It is not allowed to return from an interrupt within such protected critical
sections, i.e. a “suspend/disable” must have a matching “resume/enable”. The only operating
system service calls allowed between Suspend- and Resume- pairs are further
SuspendOSInterrupts / ResumeOSInterrupts – pairs or SuspendAllInterrupts /
ResumeAllInterrupts – pairs.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 27

7 Event mechanism
The event mechanism
� is a means of synchronisation
� is only provided for extended tasks
� initiates state transitions of tasks to and from the waiting state.

Events are objects managed by the operating system. They are not independent objects, but
assigned to extended tasks. Each extended task has a definite number of events. This task is
called the owner of these events. An individual event is identified by its owner and its name
(or mask). When activating an extended task, these events are cleared by the operating system.
Events can be used to communicate binary information to the extended task to which they are
assigned. The meaning of events is defined by the application, e.g. signalling of an expiring
timer, the availability of a resource, the reception of a message, etc.

Various options are available to manipulate events, depending on whether the dedicated task
is the owner of the event or another task which does not necessarily have to be an extended
task. All tasks can set any events of any not suspended extended task. Only the owner is able
to clear its events and to wait for the reception (= setting) of its events.

Events are the criteria for the transition of extended tasks from the waiting state into the ready
state. The operating system provides services for setting, clearing and interrogation of events
and for waiting for events to occur.

Any task or ISR of category 2 can set an event for a not suspended extended task, and thus
inform the extended task about any status change via this event.

The receiver of an event is an extended task in any case. Consequently, it is not possible for an
interrupt service routine or a basic task to wait for an event. An event can only be cleared by
the task which is the owner of the event. Extended tasks may only clear events they own,
whereas basic tasks must not use the operating system service for clearing events.

An extended task in the waiting state is released to the ready state if at least one event for
which the task is waiting for has occurred. If a running extended task tries to wait for an event
and this event has already occurred, the task remains in the running state.

OSEK/VDX Operating System
Specification 2.2.1

28 © by OSEK OSEK OS 2.2.1

Figure 7-1 explains synchronisation of extended tasks by setting events in case of full
preemptive scheduling, where extended task T1 has the higher priority.

event of
extended task T1

extended task T2

s cheduler

extended task T1

running

set

set eventrunning

waiting running wait for event waiting

runningready

rea
dy

clear event

clear clear

Figure 7-1 Synchronisation of preemptable extended tasks

Figure 7-1 illustrates the procedures which are effected by setting an event: Task T1 waits for
an event. Task T2 sets this event for T1. The scheduler is activated. Subsequently, T1 is
transferred from the waiting state into the ready state. Due to the higher priority of T1 this
results in a task switch, T2 being preempted by T1. T1 resets the event. Thereafter T1 waits
for this event again and the scheduler continues execution of T2.

If non preemptive scheduling is supposed, rescheduling does not take place immediately after
the event has been set (see Figure 7-2, where extended task T1 is of higher priority)

event of
extended task T1

extended task T2

scheduler

extended task T1

set

set eventrunning

waiting clear event waiting

runningready

runningready

rescheduling

wait for event

clearclear

Figure 7-2 Synchronisation of non preemptable extended tasks

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 29

8 Resource management
The resource management is used to co-ordinate concurrent accesses of several tasks with
different priorities to shared resources, e.g. management entities (scheduler), program
sequences, memory or hardware areas.

The resource management is mandatory for all conformance classes.

The resource management can optionally be extended to co-ordinate concurrent accesses of
tasks and interrupt service routines.

Resource management ensures that
� two tasks cannot occupy the same resource at the same time.
� priority inversion can not occur.
� deadlocks do not occur by use of these resources.
� access to resources never results in a waiting state.
If the resource management is extended to the interrupt level it assures in addition that
� two tasks or interrupt routines cannot occupy the same resource at the same time.

 The functionality of resource management is useful in the following cases:
� preemptable tasks
� non preemptable tasks, if the user intends to have the application code executed under

other scheduling policies, too
� resource sharing between tasks and interrupt service routines
� resource sharing between interrupt service routines

If the user requires protection against interruptions not only caused by tasks, but also caused
by interrupts, he/she can also use the operating system services to enable/disable interrupts
which do not cause rescheduling (see chapter 6, Interrupt processing, and chapter 13.3,
Interrupt handling).

8.1 Behaviour during access to occupied resources
OSEK OS prescribes the OSEK priority ceiling protocol (see chapter 8.5) Consequently, no
situation occurs in which a task or an interrupt tries to access an occupied resource.

If the resource concept is used for co-ordination of tasks and interrupts the OSEK operating
system ensures also that an interrupt service routine is only processed if all resources which
might be occupied by that interrupt service routine during its execution have been released.

OSEK strictly forbids nested access to the same resource. In the rare cases when nested access
is needed, it is recommended to use a second resource with the same behaviour as the first
resource. The OIL language especially supports the definition of resources with identical
behaviour (so-called ‘linked resources’).

8.2 Restrictions when using resources
TerminateTask, ChainTask, Schedule, WaitEvent must not be called while a resource is
occupied. Interrupt service routine must not be completed with a resource occupied.

OSEK/VDX Operating System
Specification 2.2.1

30 © by OSEK OSEK OS 2.2.1

In case of multiple resource occupation within one task, the user has to request and release
resources following the LIFO principle (stack like).

8.3 Scheduler as a resource
If a task has to protect itself against preemptions by other tasks, it can lock the scheduler. The
scheduler is treated like a resource which is accessible to all tasks. Therefore a resource with a
predefined name RES_SCHEDULER is generated.
Interrupts are received and processed independent of the state of the resource
RES_SCHEDULER. However, it prevents the rescheduling of tasks.

8.4 General problems with synchronisation mechanisms

8.4.1 Explanation of priority inversion
A typical problem of common synchronisation mechanisms - e.g. the use of semaphores - is
the problem relating to priority inversion.

This means that a lower-priority task delays the execution of higher-priority task. OSEK
prescribes the OSEK Priority Ceiling Protocol (see chapter 8.5) to avoid priority inversion.

Figure 8-1 illustrates sequencing of the common access of two tasks to a semaphore (in a full
preemptive system, task T1 has the highest priority)
Task T4 which has a low priority, occupies the semaphore S1. T1 preempts T4 and requests
the same semaphore. As the semaphore S1 is already occupied, T1 enters the waiting state.
Now the low-priority T4 is interrupted and preempted by tasks with a priority between those
of T1 and T4. T1 can only be executed after all lower-priority tasks have been terminated, and
the semaphore S1 has been released again. Although T2 and T3 do not use semaphore S1,
they delay T1 with their runtime.

task T1

task T2

task T3

task T4

semaphore S1 occupied

access to semaphore S1 denied

semaphore S1 released

suspended

suspended

suspended

suspended

suspended

waiting

running

running

runningrunning

running

running

readyready

ready

ready

rea
dy

Figure 8-1 Priority inversion on occupying semaphores

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 31

8.4.2 Deadlocks
Another typical problem of common synchronisation mechanisms, such as the use of sema-
phores, is the problem of deadlocks. In this case deadlock means the impossibility of task
execution due to infinite waiting for mutually locked resources.

The following scenario results in a deadlock (see Figure 8-2):
Task T1 occupies the semaphore S1 and subsequently cannot continue running, e.g. because it
is waiting for an event. Thus, the lower-priority task T2 is transferred into the running state. It
occupies the semaphore S2. If T1 gets ready again and tries to occupy semaphore S2, it enters
the waiting state again. If now T2 tries to occupy semaphore S1, this results in a deadlock.

task T1

task T2

access to
semaphore S1

e.g wait
for event

access to
semaphore S2

event
happened

access to semaphore S 2
denied

access to
semaphore S1 denied

Deadlock!
waitingrunning

ready waiting

waiting running

running runningready

rea
dy

Figure 8-2 Deadlock situation using semaphores

8.5 OSEK Priority Ceiling Protocol
To avoid the problems of priority inversion and deadlocks the OSEK operating system
requires following behaviour:

� At the system generation, to each resource its own ceiling priority will be statically
assigned.
The ceiling priority will be set at least to the highest priority of all tasks that access a
resource or any of the resources linked to this resource. The ceiling priority must be lower
than the lowest priority of all tasks that do not access the resource, and which have
priorities higher than the highest priority of all tasks that access the resource.

� If a task requires a resource, and its current priority is lower than the ceiling priority of the
resource, the priority of the task will be raised to the ceiling priority of the resource.

� If the task releases the resource, the priority of this task will be reset to the priority which
was dynamically assigned before requiring that resource.

Priority ceiling results in a possible time delay for tasks with priorities equal or below the
resource priority. This delay is limited by the maximum time the resource is occupied by any
lower priority task.

Tasks which might occupy the same resource as the running task do not enter the running
state, due to their lower or equal priority than the running task. If a resource occupied by a
task is released, other task which might occupy the resource can enter the running state. For
preemptable tasks this is a point of rescheduling.

OSEK/VDX Operating System
Specification 2.2.1

32 © by OSEK OSEK OS 2.2.1

task T1

task T2

task T3

task T4

ceiling
priority

request resource request resource

release resource release resource

ready

ready

ready

ready

suspended

suspended

suspended

suspended

suspendedrunning running

running

running

running

runningrunning

running

task T0 runningsuspended suspended

ready

Figure 8-3 Resource assignment with priority ceiling between preemptable tasks.

The example shown in Figure 8-3 illustrates the mechanism of the priority ceiling. Task T0
has the highest, and task T4 the lowest priority. Task T1 and task T4 want to access the same
resource. The system shows clearly that no unbounded priority inversion is entailed. The high-
priority task T1 waits for a shorter time than the maximum duration of resource occupation by
T4.

8.6 OSEK Priority Ceiling Protocol with extensions for interrupt
levels
The extension of resource management to interrupt level is optional.

To determine the ceiling priority of resources which are used in interrupts, virtual priorities
higher than all tasks priorities are assigned to interrupts. The manipulation of software
priorities and of hardware interrupt levels is up to the implementation.

� At the system generation, to each resource its own ceiling priority will be statically
assigned.
The ceiling priority will be set at least to the highest priority of all tasks and interrupt
routines that access a resource or any of the resources linked to this resource. The ceiling
priority must be lower than the lowest priority of all tasks or interrupt routines that do not
access the resource, and which have at the same time higher priorities than the highest
priority of all tasks or interrupt routines that access the resource.

� If a task or interrupt routine requires a resource, and its current priority is lower than the
ceiling priority of the resource, the priority of the task or interrupt will be raised to the
ceiling priority of the resource.

� If the task or interrupt routine releases the resource, the priority of this task or interrupt
will be reset to the priority which was dynamically assigned before requiring that resource.

Tasks or interrupt routines which might occupy the same resource as the running task or
interrupt routine has occupied do not run, due to their lower or equal priority than the running
task or interrupt routine. If a resource occupied by a task is released, another task or interrupt
routine which might occupy the resource could run. For preemptable tasks this is a point of
rescheduling if the new priority of the task is not the virtual priority of an interrupt.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 33

isr INT1

task T3

task T2

task T1

ceiling
priority

request resource

release resource

ready

ready

pending

ready

suspended

suspended suspended

running

running

running

running

isr INT2 execution

execution

interrupted

running

suspended

interrupt occurs

interrupt occurs

Figure 8-4 Resource assignment with priority ceiling between preemptable tasks and
interrupt services routines.

The example shown in figure 7-4 describes the following scenario:

The preemptable task T1 is running and requests a resource shared with the interrupt service
routine INT1. The task T1 activates the higher prior tasks T2 and T3. Because of OSEK
Priority Ceiling Protocol the task T1 is still running. Interrupt INT1 occurs. Because of OSEK
Priority Ceiling Protocol the task T1 is still running, the interrupt INT1 is pending. Interrupt
INT2 occurs. The interrupt service routine INT2 interrupts the task T1 and it is executed.
After INT2 is done the task T1 is continued. The task T1 releases the resource. The interrupt
service routine INT1 is executed, the task T1 is interrupted. After INT1 is done the Task3 is
running. After termination of task T3 the task T2 is running. After termination of task T2 the
task T1 is continued.

The example below shown in figure 7-5 describes the following scenario:

The preemptable task T1 is running. The interrupt INT1 occurs. The task T1 is interrupted and
the interrupt service routine INT1 is executed. The INT1 requests a resource shared with the
interrupt service routine INT2. The higher prior interrupt INT2 occurs. Because of OSEK
Priority Ceiling Protocol the INT1 is still executed, the INT2 is pending. The interrupt INT3
occurs. Because of higher priority than the INT1, the INT3 interrupts this interrupt service
routine and is executed. The INT3 activates the task T2. After the INT3 is done the INT1 is
continued. After the INT1 releases the requested resource the INT2 is executed because of
higher priority than the INT1. After the INT2 is done the INT1 is continued. After the INT1 is
done the task T2 is running because of higher priority than the task T1, the task T1 is ready.
After the task T2 is terminated the task T1 is continued.

OSEK/VDX Operating System
Specification 2.2.1

34 © by OSEK OSEK OS 2.2.1

isr INT2

task T2

task T1

ceiling
priority

request resource

release resource

ready

pending

ready

suspended

running

running

isr INT3 execution

execution

running

suspended

interrupt occurs

interrupt occurs

isr INT1 execution

execution

interrupt occurs

interrupted

interrupted

Figure 8-5 Resource assignment with priority ceiling between interrupt services
routines

8.7 Internal Resources
Internal resources are resources which are not visible to the user and therefor can not be
addressed by the system functions GetResource and ReleaseResource. Instead, they are
managed strictly internally within a clearly defined set of system functions. Besides that, the
behaviour of internal resources is exactly the same as standard resources (priority ceiling
protocol etc.).

Internal resources are restricted to tasks. At most one internal resource can be assigned to a
task during system generation. If an internal resource is assigned to a task, the internal
resource is managed as follows:

� The resource is automatically taken when the task enters the running state9, except when it
has already taken the resource. As a result, the priority of the task is automatically changed
to the ceiling priority of the resource.

� At the points of rescheduling as defined in chapter 4.6.2, the resource is automatically
released.10 The implementation may optimise, e.g. only free/take the resource within the
system service Schedule if there is a need for rescheduling.

The resulting behaviour for tasks which have the same internal resource assigned is described
in chapter 4.6.3, Groups of tasks. Non preemptable tasks are a special group with an internal
resource of the same priority as RES_SCHEDULER assigned (chapter 4.6.2, Non preemptive

9 not when it is activated!
10 internal resources are not released when a task is preempted

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 35

scheduling). Internal resources can be used in all cases when it is necessary to avoid not-
wanted rescheduling within a group of tasks. More than one group (= more than one internal
resource) can be defined in a system. A typical example is presented in chapter 14.2.5.

The general restriction on some system calls that they must not be called with resources
occupied (chapter 8.2) does not apply to internal resources, as internal resources are handled
within those calls. However, all standard resources must be released before the internal
resource can be released (see chapter 8.2, “LIFO principle”).

The tasks which have the same internal resource assigned cover a certain range of priorities. It
is possible to have tasks which do not use this internal resource in the same priority range. The
application has to decide if this makes sense.

OSEK/VDX Operating System
Specification 2.2.1

36 © by OSEK OSEK OS 2.2.1

9 Alarms
The OSEK operating system provides services for processing recurring events. Such events
may be for example timers that provide an interrupt at regular intervals, or encoders at axles
that generate an interrupt in case of a constant change of a (camshaft or crankshaft) angle, or
other regular application specific triggers.

The OSEK operating system provides a two-stage concept to process such events. The
recurring events (sources) are registered by implementation specific counters. Based on
counters, the OSEK operating system software offers alarm mechanisms to the application
software.

9.1 Counters
A counter is represented by a counter value, measured in ”ticks”, and some counter specific
constants.

The OSEK operating system does not provide a standardised API to manipulate counters
directly.

The OSEK operating system takes care of the necessary actions of managing alarms when a
counter is advanced and how the counter is advanced.

The OSEK operating system offers at least one counter that is derived from a (hardware or
software) timer.

9.2 Alarm management
The OSEK operating system provides services to activate tasks, set events or call an alarm-
callback routine when an alarm expires. An alarm-callback routine is a short function
provided by the application.

An alarm will expire when a predefined counter value is reached. This counter value can be
defined relative to the actual counter value (relative alarm) or as an absolute value (absolute
alarm). For example, alarms may expire upon receipt of a number of timer interrupts, when
reaching a specific angular position, or when receiving a message.

Alarms can be defined to be either single alarms or cyclic alarms. In addition the OS provides
services to cancel alarms and to get the current state of an alarm.

More than one alarm can be attached to a counter.

An alarm is statically assigned at system generation time to:
� one counter
� one task or one alarm-callback routine
Depending on configuration, this alarm-callback routine will be called, or this task will be
activated, or an event will be set for this task when the alarm expires. Alarm-callback routines
run with category 2 interrupts disabled. System services allowed in alarm-callback routines
are listed in Figure 12-1. Task activation and event setting when an alarm expires have the
same properties as normal task activation and event setting.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 37

source for counter

implementation
OS internal

alarms

counter

application
view

Figure 9-1 Layered model of alarm management

Counters and alarms are defined statically. The assignment of alarms to counters, as well as
the action to be performed when an alarm expires, is defined statically, too.

Dynamic parameters are the counter value when an alarm has to expire, and the period for
cyclic alarms.

9.3 Alarm-callback routines
Alarm-callback routines can have neither parameter nor return value.

The following format of the alarm-callback prototype shall apply:
ALARMCALLBACK(AlarmCallbackRoutineName);

Example for an alarm-callback routine:
ALARMCALLBACK(BrakePedalStroke)
{

/* do application processing */
}

The processing level of alarm-callback routines is the one used by the scheduler, or ISR,
depending on implementations.

OSEK/VDX Operating System
Specification 2.2.1

38 © by OSEK OSEK OS 2.2.1

10 Messages
For an OSEK implementation to be compliant, message handling for intra processor
communication has to be offered. The minimum functionality required is CCCA as described
in the OSEK COM specification. CCCB is the only other acceptable class as it is a superset of
CCCA.

If an implementation offers even more functionality which is specified in other conformance
classes described in the OSEK COM specification, the implementation must stick to syntax
and semantic of the respective OSEK COM functionality.

Please note that for messages the rules stated in the OSEK COM specification are valid. For
example, OSEK COM system interfaces do not call ErrorHook. However, if the OSEK COM
functionality internally calls OS system function like ActivateTask, ErrorHook will be called
if necessary from ActivateTask. For more details, refer to the OSEK COM specification.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 39

11 Error handling, tracing and debugging

11.1 Hook routines
The OSEK operating system provides system specific hook routines to allow user-defined
actions within the OS internal processing.

Those hook routines are
� called by the operating system, in a special context depending on the implementation of

the operating system
� higher prior than all tasks
� not interrupted by category 2 interrupt routines.
� part of the operating system
� implemented by the user with user defined functionality
� standardised in interface, but not standardised in functionality (environment and

behaviour of the hook routine itself), therefore usually hook routines are not portable
� are only allowed to use a subset of API functions (see Figure 12-1).
� mandatory, but configurable via OIL

 In the OSEK operating system hook routines may be used for:
� system start-up (see chapter 11.3, System start-up).

The corresponding hook routine (StartupHook) is called after the operating system start-
up and before the scheduler is running.

� system shutdown (see chapter 11.4, System shutdown).
The corresponding hook routine (ShutdownHook) is called when a system shutdown is
requested by the application or by the operating system in case of a severe error.

� tracing or application dependent debugging purposes as well as user defined extensions
of the context switch (see chapter 11.5, Debugging).

� error handling.
Each implementation of OSEK has to describe the conventions for the hook routines.

If the application calls a not allowed API service in hook routines the behaviour is not
defined. If an error is raised, the implementation should return an implementation specific
error code.

Most operating system services are not allowed for hook routines. This restriction is necessary
to reduce system complexity.

11.2 Error handling
General remarks

An error service is provided to handle temporarily and permanently occurring errors within
the OSEK operating system. Its basic framework is predefined and has to be completed by the
user. This gives the user a choice of efficient centralised or decentralised error handling.

Two different kinds of errors are distinguished:
� Application errors

OSEK/VDX Operating System
Specification 2.2.1

40 © by OSEK OSEK OS 2.2.1

The operating system could not execute the requested service correctly, but assumes the
correctness of its internal data.
In this case, centralised error treatment is called. Additionally the operating system
returns the error by the status information for decentralised error treatment. It is up to
the user to decide what to do depending on which error has occurred.

� Fatal errors
The operating system can no longer assume correctness of its internal data.
In this case the operating system calls the centralised system shutdown.

All those error services are assigned with a parameter that specifies the error.

The OSEK operating system offers two levels of error checking, standard status and extended
status. If a task is activated in the version with standard status, "E_OK" or “Too many task
activations” could be returned. Moreover, in a version with extended status, the additional
return values "Task is invalid" or "Task still occupies resources", etc. can be returned. These
extended return values must no longer occur in the target application at the time of execution,
i.e. the corresponding errors are not intercepted in the run time version of the operating
system.

The return value of the OSEK API-services has precedence over the output parameters. If an
API service returns an error, the values of the output parameters are undefined.

Error hook routine

The error hook routine (ErrorHook) is called if a system service returns a StatusType value
not equal to E_OK. The hook routine ErrorHook is not called if a system service is called
from the ErrorHook itself (i.e., a recursive call of error hook never occurs). Any possibly
occurring error by calling system services from the ErrorHook can only be detected by
evaluating the return value.

ErrorHook also is called if an error is detected during task activation or event setting, for
example upon alarm expiration or message arrival.

Error management

To allow for an effective error management in ErrorHook, the user can access additional
information. The following figure summarises the logical architecture for error management.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 41

ErrorHook

OSErrorGetServiceId ()

Void ErrorHook (StatusType error)

(Switch) error

(Switch)

E_OS_STATE

E_OS_ACCESS E_OS_ID

SetRelAlarm

SetEventSetAbsAlarm

GetEvent

Calling_Task = GetTaskID()
Param1 = OSError_SetRelAlarm_AlarmID()
Param2 = OSError_SetRelAlarm_increment()
Param3 = OSError_SetRelAlarm_cycle()

Figure 11-1 Example of centralised error handling (extended status)

The macro OSErrorGetServiceId() provides the service identifier where the error has been
risen. The service identifier is of type OSServiceIdType. Possible values are
OSServiceId_xxxx, where xxxx is the name of the system service. Implementation of
OSErrorGetServiceId is mandatory. If parameters of the system service which called
ErrorHook are supplied, the following access macro name building scheme is used:
OSError_Name1_Name2 whereby:
� Name1: is the name of the system service
� Name2: is the official name of the parameter within the OSEK OS specification

For example the macros to access the parameters of SetRelAlarm are:
� OSError_SetRelAlarm_AlarmID()
� OSError_SetRelAlarm_increment()
� OSError_SetRelAlarm_cycle()

The macro to access the first parameter of a system service is mandatory if the parameter is an
object identifier. For optimisation purposes, the macro access can be switched off within the
OIL-Specification.

OSEK/VDX Operating System
Specification 2.2.1

42 © by OSEK OSEK OS 2.2.1

11.3 System start-up
Initialisation after a processor reset is up to the implementation, but OSEK OS offers support
for a standardised way of initialisation.

Interfaces for initialisation of hardware, operating system and application have to be clearly
defined by the implementation.

OSEK OS does not force the application to define special tasks which have to be started after
the operating system initialisation, but it allows the user to specify autostart tasks and autostart
alarms during system generation.

After a reset of the CPU, hardware-specific application software is executed (no operating
system context). The non-portable section ends with the detection of the application mode.
For safety reasons this detection should not rely on system history.

In case of a system where OSEK OS and OSEKtime OS coexist (not reflected in Figure 11-2),
the OSEKtime initialisation will always run first, and the remaining parts of the OSEK
initialisation will be performed after OSEKtime enters the idle loop, which will cause
OSEKtime to automatically call StartOS with the application mode already passed to
OSEKtime as parameter.

Otherwise, the portable section of the application starts with the call to a function which starts
up the operating system, i.e. StartOS with the application mode as a parameter. After the
operating system is initialised (scheduler is not running), StartOS calls the hook routine
StartupHook, where the user can place the initialisation code for all his operating system
dependent initialisation. In order to structure the initialisation code in StartupHook according
to the started application mode, the service GetActiveApplicationMode is provided. After
returning from that hook routine the operating systems enables the interrupts and starts the
scheduler. After that the system is running and executes user tasks.

(Re-)Start

hardware-specific
initialization code

call to
StartOS

OS executes
operating system
initialization code

OS executes
StartupHook

OS kernel
is running

first user
task is
running

During StartupHook
all user interrupts are disabled

1 4 532

Figure 11-2 System start-up

(1) After a reset, the user is free to execute (non-portable) hardware specific code. Interrupts
of category 2 are not allowed to run until the phase 5. The non-portable section ends by
detection of the application mode.

(2) Call StartOS with the application mode as a parameter. This call starts the operating
system (if OSEKtime is present, this is done automatically).

(3) The operating system performs internal start-up functions and
(4) calls the hook routine StartupHook, where the user may place initialisation procedures.

During this hook routine, all user interrupts are disabled.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 43

(5) The operating system enables user interrupts and starts the scheduling activity. The
operating system starts the autostart tasks and alarms11 declared for the current application
mode. The activation order of autostarted tasks of equal priority is not defined. Autostart
of tasks is performed before autostart of alarms.

11.4 System shutdown
The OSEK OS specification defines a service to shut down the operating system,
ShutdownOS.

This service can be requested by the application or by the operating system due to a fatal error.

When ShutdownOS is called the operating system will call the hook routine ShutdownHook
and shut down afterwards.

The user is usually free to define any system behaviour in ShutdownHook e.g. not to return
from the routine. (See chapter 13.7.2.3, ShutdownOS). However, in case of a system where
OSEK OS coexists with OSEKtime OS, there are restrictions with respect to functionality
which may be performed in ShutdownHook. It is possible that only OSEK OS is shut down,
whereas OSEKtime OS remains intact. Consequently, I/O devices which are handled within
OSEKtime must not be reset in ShutdownHook, and ShutdownHook must return.

11.5 Debugging
Two hook routines (PreTaskHook and PostTaskHook) are called on task context switches.
These two hook routines may be used for debugging or time measurement (including context
switch time). Therefore PostTaskHook is called each time directly before the old task leaves
the RUNNING state; PreTaskHook is called each time directly after a new task enters the
RUNNING state. Because the task is still/already in the RUNNING state, GetTaskId will not
return INVALID_TASK.

task T1

task T2 ready

suspendedrunning

running

PostTask
Hook

PreTask
Hook

OS internal
activitie s

Figure 11-3 PreTaskHook and PostTaskHook

When ShutdownOS is called while a task is running ShutdownOS may or may not call
PostTaskHook. If PostTaskHook is called it is undefined if it is called before or after
ShutdownHook.

11Counters are - if possible - set to zero by the system initialisation before alarms are autostarted. Exception:
calendar timers etc. For autostarted alarms, all values are relative values.

OSEK/VDX Operating System
Specification 2.2.1

44 © by OSEK OSEK OS 2.2.1

12 Description of system services

12.1 Definition of system objects
Within the OSEK operating system all system objects have to be determined statically by the
user. The operating system supplier provides the definition of the operating system objects.
The actual creation of the objects (unique names and specific characteristics) is done during
the system generation phase. The declarations done in the application source are external
references to those operating system objects. There are no system services available to
dynamically create system objects. Declarations provide information that a system object is to
be used which has been created at another location. The names are used as identifications
within the system services.

Usually the scope of those names is like an external variable in C-language.

Internal representation of system objects is implementation specific. There are various
alternatives for implementation of system objects. For example, a TaskType could be
implemented either as a pointer to the data structure of the task or as an index to the
corresponding list element. Application programmers cannot assume a specific representation.
The creation of system objects may require additional tools. They enable the user to add or to
modify values which have been specified in definitions. Consequently, the system generation
and the tools used to this effect are also implementation-specific.

12.2 Conventions

12.2.1 Type of calls
The system service interface is ISO/ANSI-C. Its implementation is normally a function call,
but may also be solved differently, as required by the implementation - for example by macros
of the C pre-processor. A specific type of implementation cannot be assumed.

12.2.2 Legitimacy of calls
System services are called from tasks, interrupt service routines, hook routines, and alarm-
callbacks. Depending on the system service, there may be restrictions regarding the
availability. Further restrictions are imposed by the conformance classes.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 45

The following table lists all system services and shows in which situation they are allowed to
be called (�).

Service

T
as

k

IS
R

 c
at

eg
or

y
1

IS
R

 c
at

eg
or

y
2

E
rr

or
H

oo
k12

Pr
eT

as
kH

oo
k12

Po
st

T
as

kH
oo

k12

St
ar

tu
pH

oo
k12

Sh
ut

do
w

nH
oo

k12

al
ar

m
- c

al
lb

ac
k12

ActivateTask � �

TerminateTask �

ChainTask �

Schedule �

GetTaskID � �
13

�
13 � �

GetTaskState � � � � �

DisableAllInterrupts � � �

EnableAllInterrupts � � �

SuspendAllInterrupts � � � � � � �

ResumeAllInterrupts � � � � � � �

SuspendOSInterrupts � � �

ResumeOSInterrupts � � �

GetResource � �

ReleaseResource � �

SetEvent � �

ClearEvent �

GetEvent � � � � �

WaitEvent �

GetAlarmBase � � � � �

GetAlarm � � � � �

SetRelAlarm � �

SetAbsAlarm � �

CancelAlarm � �

GetActiveApplicationMode � � � � � � �

StartOS

ShutdownOS � � � �

Figure 12-1 API service restrictions

12 Behaviour is undefined if system services defined in other OSEK specifications (e.g. COM, NM) are called
13 It may happen that currently no task is running. In this case the service returns the task ID INVALID_TASK
(see chapter 13.2.3.5 GetTaskID).

OSEK/VDX Operating System
Specification 2.2.1

46 © by OSEK OSEK OS 2.2.1

12.2.3 Error characteristics
To keep the system efficient and fast, the OSEK operating system does not test all errors. If
the application uses operating system services incorrectly, undefined system behaviour may
result.

Most system services return a status to the user. The return status is E_OK if it was possible to
execute the system service without any restrictions. If the system recognises an exceptional
condition which restricts execution of the system service, a different status is returned.

A status other than E_OK may be information which is not considered to be an error
("warning"). An example is the return status of the system service CancelAlarm, which
informs that the alarm to be cancelled has already expired. A user program is thus informed
that e.g. a task activation has taken place which was not wanted. The detection of “warnings”
is part of the system services.

If it is possible to exclude errors before run time, the run time version may omit checking of
these errors. If the only possible return status is E_OK, the implementation is free not to return
a status.

All return values of a system service are listed under the individual descriptions. The return
status distinguishes between the ”standard” and ”extended” status. The ”standard” version
fulfils the requirements of a debugged application system as described before. With respect to
the description above, a status other than E_OK which is returned in standard mode is a
“warning”. The "extended" version is considered to support testing of not yet fully debugged
applications. It comprises extended error checking compared to the standard version.

The sequence of error checking within the operating system is not specified. Whenever
multiple errors occur, it is implementation dependent which status is returned to the
application.

In case of application errors, the OSEK operating system will call the hook routine ErrorHook
if defined. The purpose of ErrorHook is to treat status information centralised.

The ErrorHook routine is only called if a return value other than E_OK is generated.

The ErrorHook routine is configured within the OIL file.

For ErrorHook routine management we have to distinguish the standard mode corresponding
to standard status management and the extended mode corresponding to extended status
management.

The system passes additional information to the ErrorHook routine. For performance reasons
and stack consumption a global structure including complementary information about the last
error is used. This global structure is filled at execution time depending on given services and
given implementation constraints. To allow efficient and adaptive implementation, the format
of this error management structure is not prescribed. However, in order to achieve source code
portability in the ErrorHook routine standardised macros to access to the different parameters
are defined.

In case of fatal errors, the system service does not return to the application, but activates
ShutdownOS. An example is a non-detected incorrect parameter of a system service which
generates an inconsistency in the system. The parameter passed to ShutdownOS is an

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 47

implementation dependent system error code. System error codes occupy a range of numbers
of their own and do not conflict with the states of the operating system services.

The functionality of ShutdownOS is implementation-specific. Possible implementations are to
stop the application or to issue an assertion. The application itself can access ShutdownOS to
shut down the operating system in a controlled fashion.

Calling of ShutdownOS is also recommended when processing non-assignable errors, for
example "illegal instruction code". This is not mandatory because hardware support is
necessary, which cannot be taken for granted.

OSEK/VDX Operating System
Specification 2.2.1

48 © by OSEK OSEK OS 2.2.1

13 Specification of operating system services
Structure of the description

Operating system services are arranged in logical groups. A coherent description is provided
for all services of the task management, the interrupt management, etc.

The description of each logical group starts with data type definitions. A description of the
group-specific constructional elements and system services follows. The last items are a
description of constants, and of any additional conventions.

Constructional elements

The description of constructional elements contains the following fields:
Syntax: Interface in C-like syntax.
Parameter (In): List of all input parameters.
Description: Explanation of the constructional element.
Particularities: Explanation of restrictions relating to the utilisation.
Conformance: Specifies the conformance classes where the constructional

element is provided.
Service description

A service description contains the following fields:
Syntax: Interface in C-like syntax.
Parameter (In): List of all input parameters.
Parameter (Out): List of all output parameters.
Description: Explanation of the functionality of the operating system service.
Particularities: Explanation of restrictions relating to the utilisation of the op-

erating system service.
Status: List of possible return values.

Standard: � List of return values provided in the operating system's stan-
dard version. Special case: Service does not return.

Extended: � List of additional return values in the operating system's ex-
tended version.

Conformance: Specifies the conformance classes where the operating system
service is provided.

The specification of operating system services uses the following naming conventions for data
types:

...Type: describes the values of individual data (including pointers).

...RefType: describes a pointer to the ...Type (for call by reference).

13.1 Common data types
StatusType
This data type is used for all status information the API services offer. Naming convention: all
errors for API services start with E_. Those reserved for the operating system will begin with
E_OS_.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 49

The normal return value is E_OK which is associated with the value 0.

The following error values are defined:

All errors of API services:
� E_OS_ACCESS = 1,
� E_OS_CALLEVEL = 2,
� E_OS_ID = 3,
� E_OS_LIMIT = 4,
� E_OS_NOFUNC = 5,
� E_OS_RESOURCE = 6,
� E_OS_STATE = 7,
� E_OS_VALUE = 8
If the only possible return status is E_OK, the implementation is free not to return a status;
this is not separately stated in the description of the individual services.

 Internal errors of the operating system:

 These errors are implementation specific and not part of the portable section. The error names
reside in the same name-space as the errors for API services mentioned above, i.e. the range of
numbers must not overlap.

 To show the difference in use, the names internal errors must start with E_OS_SYS_

 Examples:
� E_OS_SYS_STACK
� E_OS_SYS_PARITY
� ... and other implementation-specific errors, which have to be described in the vendor-

specific documentation.
The names and range of numbers of the internal errors of the OSEK operating system do not
overlap the names and range of numbers of other OSEK services (i.e. communication and
network management) or the range of numbers of the API error values. For details please refer
to the “OSEK Binding Specification”.

13.2 Task management

13.2.1 Data types
TaskType
This data type identifies a task.

TaskRefType
This data type points to a variable of TaskType.

TaskStateType
 This data type identifies the state of a task.

TaskStateRefType
This data type points to a variable of the data type TaskStateType.

OSEK/VDX Operating System
Specification 2.2.1

50 © by OSEK OSEK OS 2.2.1

13.2.2 Constructional elements

13.2.2.1 DeclareTask
Syntax: DeclareTask (<TaskIdentifier>)
Parameter (In):

TaskIdentifier Task identifier (C-identifier)
Description: DeclareTask serves as an external declaration of a task. The

function and use of this service are similar to that of the exter-
nal declaration of variables.

Particularities: -
Conformance: BCC1, BCC2, ECC1, ECC2

13.2.3 System services

13.2.3.1 ActivateTask
Syntax: StatusType ActivateTask (TaskType <TaskID>)
Parameter (In):

TaskID Task reference
Parameter (Out): none
Description: The task <TaskID> is transferred from the suspended state into

the ready state14. The operating system ensures that the task
code is being executed from the first statement.

Particularities: The service may be called from interrupt level and from task
level (see Figure 12-1).
Rescheduling after the call to ActivateTask depends on the
place it is called from (ISR, non preemptable task, preemptable
task).
If E_OS_LIMIT is returned the activation is ignored.
When an extended task is transferred from suspended state
into ready state all its events are cleared.

Status:
Standard: � No error, E_OK

� Too many task activations of <TaskID>, E_OS_LIMIT
Extended: � Task <TaskID> is invalid, E_OS_ID

Conformance: BCC1, BCC2, ECC1, ECC2

14 ActivateTask will not immediately change the state of the task in case of multiple activation requests. If the
task is not suspended, the activation will only be recorded and performed later.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 51

13.2.3.2 TerminateTask
Syntax: StatusType TerminateTask (void)
Parameter (In): none
Parameter (Out): none
Description: This service causes the termination of the calling task. The

calling task is transferred from the running state into the
suspended state15.

Particularities: An internal resource assigned to the calling task is
automatically released. Other resources occupied by the task
must have been released before the call to TerminateTask. If a
resource is still occupied in standard status the behaviour is
undefined.
If the call was successful, TerminateTask does not return to the
call level and the status can not be evaluated.
If the version with extended status is used, the service returns
in case of error, and provides a status which can be evaluated
in the application.
If the service TerminateTask is called successfully, it enforces a
rescheduling.
Ending a task function without call to TerminateTask or
ChainTask is strictly forbidden and may leave the system in an
undefined state.

Status:
Standard: No return to call level
Extended: � Task still occupies resources, E_OS_RESOURCE

� Call at interrupt level, E_OS_CALLEVEL
Conformance: BCC1, BCC2, ECC1, ECC2

13.2.3.3 ChainTask
Syntax: StatusType ChainTask (TaskType <TaskID>)
Parameter (In):

TaskID Reference to the sequential succeeding task to be activated.
Parameter (Out): none
Description: This service causes the termination of the calling task. After

termination of the calling task a succeeding task <TaskID> is
activated. Using this service, it ensures that the succeeding
task starts to run at the earliest after the calling task has been
terminated.

Particularities: If the succeeding task is identical with the current task, this
does not result in multiple requests. The task is not transferred
to the suspended state.
An internal resource assigned to the calling task is
automatically released, even if the succeeding task is identical

15 In case of tasks with multiple activation requests, terminating the current instance of the task automatically
puts the next instance of the same task into the ready state.

OSEK/VDX Operating System
Specification 2.2.1

52 © by OSEK OSEK OS 2.2.1

with the current task. Other resources occupied by the calling
task must have been released before ChainTask is called. If a
resource is still occupied in standard status the behaviour is
undefined.
If called successfully, ChainTask does not return to the call
level and the status can not be evaluated.
In case of error the service returns to the calling task and
provides a status which can then be evaluated in the
application.
If the service ChainTask is called successfully, this enforces a
rescheduling.
Ending a task function without call to TerminateTask or
ChainTask is strictly forbidden and may leave the system in an
undefined state.
If E_OS_LIMIT is returned the activation is ignored.
When an extended task is transferred from suspended state
into ready state all its events are cleared.

Status:
Standard: � No return to call level

� Too many task activations of <TaskID>, E_OS_LIMIT
Extended: � Task <TaskID> is invalid, E_OS_ID

� Calling task still occupies resources, E_OS_RESOURCE
� Call at interrupt level, E_OS_CALLEVEL

Conformance: BCC1, BCC2, ECC1, ECC2

13.2.3.4 Schedule
Syntax: StatusType Schedule (void)
Parameter (In): none
Parameter (Out): none
Description: If a higher-priority task is ready, the internal resource of the task

is released, the current task is put into the ready state, its
context is saved and the higher-priority task is executed.
Otherwise the calling task is continued.

Particularities: Rescheduling can only take place if an internal resource is
assigned to the calling task during system generation. For
these tasks, Schedule enables a processor assignment to other
tasks with lower or equal priority than the ceiling priority of the
internal resource and higher priority than the priority of the
calling task in application-specific locations. When returning
from Schedule, the internal resource has been taken again.
This service has no influence on tasks with no internal resource
assigned (preemptable tasks).

Status:
Standard: � No error, E_OK
Extended: � Call at interrupt level, E_OS_CALLEVEL

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 53

� Calling task occupies resources, E_OS_RESOURCE
Conformance: BCC1, BCC2, ECC1, ECC2

13.2.3.5 GetTaskID
Syntax: StatusType GetTaskID (TaskRefType <TaskID>)
Parameter (In): none
Parameter (Out):

TaskID Reference to the task which is currently running
Description: GetTaskID returns the information about the TaskID of the task

which is currently running.
Particularities: Allowed on task level, ISR level and in several hook routines

(see Figure 12-1).
This service is intended to be used by library functions and
hook routines.
If <TaskID> can’t be evaluated (no task currently running), the
service returns INVALID_TASK as TaskType.

Status:
Standard: � No error, E_OK
Extended: � No error, E_OK

Conformance: BCC1, BCC2, ECC1, ECC2

13.2.3.6 GetTaskState
Syntax: StatusType GetTaskState (TaskType <TaskID>,

TaskStateRefType <State>)
Parameter (In):

TaskID Task reference
Parameter (Out):

State Reference to the state of the task <TaskID>
Description: Returns the state of a task (running, ready, waiting, suspended)

at the time of calling GetTaskState.
Particularities: The service may be called from interrupt service routines, task

level, and some hook routines (see Figure 12-1).
Within a full preemptive system, calling this operating system
service only provides a meaningful result if the task runs in an
interrupt disabling state at the time of calling.
When a call is made from a task in a full preemptive system,
the result may already be incorrect at the time of evaluation.
When the service is called for a task, which is multiply
activated, the state is set to running if any instance of the task
is running.

Status:
Standard: � No error, E_OK
Extended: � Task <TaskID> is invalid, E_OS_ID

Conformance: BCC1, BCC2, ECC1, ECC2

OSEK/VDX Operating System
Specification 2.2.1

54 © by OSEK OSEK OS 2.2.1

13.2.4 Constants
RUNNING � Constant of data type TaskStateType for task state running.
WAITING � Constant of data type TaskStateType for task state waiting.
READY � Constant of data type TaskStateType for task state ready.
SUSPENDED � Constant of data type TaskStateType for task state suspended.
INVALID_TASK � Constant of data type TaskType for a not defined task.

13.2.5 Naming convention
The operation system must be able to assign the entry address of the task function to the name
of the corresponding task for identification. With the entry address the operating system is
able to call the task.

Within the application, a task is defined according to the following pattern:
TASK (TaskName)
{
}

With the macro TASK the user may use the same name for "task identification" and "name of
task function".

The task identification will be generated from the TaskName during system generation time.16

13.3 Interrupt handling

13.3.1 Data types
No special data types are defined for the OSEK interrupt handling functionality.

13.3.2 System services

13.3.2.1 EnableAllInterrupts
Syntax: void EnableAllInterrupts (void)
Parameter (In): none
Parameter (Out): none
Description: This service restores the state saved by DisableAllInterrupts.
Particularities: The service may be called from an ISR category 1 and category

2 and from the task level, but not from hook routines.
This service is a counterpart of DisableAllInterrupts service,
which must have been called before, and its aim is the
completion of the critical section of code. No API service calls
are allowed within this critical section.
The implementation should adapt this service to the target
hardware providing a minimum overhead. Usually, this service
enables recognition of interrupts by the central processing unit.

16 The pre-processor could for example generate the name of the task function by using the pre-processor symbol
sequence ## to add a string „Func“ to the task name:
 #define TASK(TaskName) StatusType Func ## TaskName(void)
With this macro, TASK(MyTask) has the entry function FuncMyTask

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 55

Status:
Standard: � none
Extended: � none

Conformance: BCC1, BCC2, ECC1, ECC2

13.3.2.2 DisableAllInterrupts
Syntax: void DisableAllInterrupts (void)
Parameter (In): none
Parameter (Out): none
Description: This service disables all interrupts for which the hardware

supports disabling. The state before is saved for the
EnableAllInterrupts call.

Particularities: The service may be called from an ISR category 1 and category
2 and from the task level, but not from hook routines.
This service is intended to start a critical section of the code.
This section must be finished by calling the EnableAllInterrupts
service. No API service calls are allowed within this critical
section.
The implementation should adapt this service to the target
hardware providing a minimum overhead. Usually, this service
disables recognition of interrupts by the central processing unit.
Note that this service does not support nesting. If nesting is
needed for critical sections e.g. for libraries
SuspendOSInterrupts/ResumeOSInterrupts or
SuspendAllInterrupt/ResumeAllInterrupts should be used.

Status:
Standard: � none
Extended: � none

Conformance: BCC1, BCC2, ECC1, ECC2

13.3.2.3 ResumeAllInterrupts
Syntax: void ResumeAllInterrupts (void)
Parameter (In): none
Parameter (Out): none
Description: This service restores the recognition status of all interrupts

saved by the SuspendAllInterrupts service.
Particularities: The service may be called from an ISR category 1 and category

2, from alarm-callbacks and from the task level, but not from all
hook routines.
This service is the counterpart of SuspendAllInterrupts service,
which must have been called before, and its aim is the
completion of the critical section of code. No API service calls
beside SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed
within this critical section.

OSEK/VDX Operating System
Specification 2.2.1

56 © by OSEK OSEK OS 2.2.1

The implementation should adapt this service to the target
hardware providing a minimum overhead.
SuspendAllInterrupts/ResumeAllInterrupts can be nested. In
case of nesting pairs of the calls SuspendAllInterrupts and
ResumeAllInterrupts the interrupt recognition status saved by
the first call of SuspendAllInterrupts is restored by the last call
of the ResumeAllInterrupts service.

Status:
Standard: � none
Extended: � none

Conformance: BCC1, BCC2, ECC1, ECC2

13.3.2.4 SuspendAllInterrupts
Syntax: void SuspendAllInterrupts (void)
Parameter (In): none
Parameter (Out): none
Description: This service saves the recognition status of all interrupts and

disables all interrupts for which the hardware supports
disabling.

Particularities: The service may be called from an ISR category 1 and category
2, from alarm-callbacks and from the task level, but not from all
hook routines.
This service is intended to protect a critical section of code from
interruptions of any kind. This section must be finished by
calling the ResumeAllInterrupts service. No API service calls
beside SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed
within this critical section.
The implementation should adapt this service to the target
hardware providing a minimum overhead.

Status:
Standard: � none
Extended: � none

Conformance: BCC1, BCC2, ECC1, ECC2

13.3.2.5 ResumeOSInterrupts
Syntax: void ResumeOSInterrupts (void)
Parameter (In): none
Parameter (Out): none
Description: This service restores the recognition status of interrupts saved

by the SuspendOSInterrupts service.
Particularities: The service may be called from an ISR category 1 and category

2 and from the task level, but not from hook routines.
This service is the counterpart of SuspendOSInterrupts service,
which must have been called before, and its aim is the
completion of the critical section of code. No API service calls

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 57

beside SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed
within this critical section.
The implementation should adapt this service to the target
hardware providing a minimum overhead.
SuspendOSInterrupts/ResumeOSInterrupts can be nested. In
case of nesting pairs of the calls SuspendOSInterrupts and
ResumeOSInterrupts the interrupt recognition status saved by
the first call of SuspendOSInterrupts is restored by the last call
of the ResumeOSInterrupts service.

Status:
Standard: � none
Extended: � none

Conformance: BCC1, BCC2, ECC1, ECC2

13.3.2.6 SuspendOSInterrupts
Syntax: void SuspendOSInterrupts (void)
Parameter (In): none
Parameter (Out): none
Description: This service saves the recognition status of interrupts of

category 2 and disables the recognition of these interrupts.
Particularities: The service may be called from an ISR and from the task level,

but not from hook routines.
This service is intended to protect a critical section of code.
This section must be finished by calling the
ResumeOSInterrupts service. No API service calls beside
SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed
within this critical section.
The implementation should adapt this service to the target
hardware providing a minimum overhead.
It is intended only to disable interrupts of category 2. However,
if this is not possible in an efficient way more interrupts may be
disabled.

Status:
Standard: � none
Extended: � none

Conformance: BCC1, BCC2, ECC1, ECC2

13.3.3 Naming convention
Within the application, an interrupt service routine of category 2 is defined according to the
following pattern:

OSEK/VDX Operating System
Specification 2.2.1

58 © by OSEK OSEK OS 2.2.1

ISR (FuncName)
{
}

The keyword ISR is evaluated by the system generation to clearly distinguish between func-
tions and interrupt service routines in the source code.

For category 1 interrupt service routines no naming convention is prescribed, their definition
is implementation specific.

13.4 Resource management

13.4.1 Data types
ResourceType

Data type for a resource.

13.4.2 Constructional elements

13.4.2.1 DeclareResource
Syntax: DeclareResource (<ResourceIdentifier>)
Parameter (In):

ResourceIdentifier Resource identifier (C-identifier)
Description: DeclareResource serves as an external declaration of a re-

source. The function and use of this service are similar to that
of the external declaration of variables.

Particularities: -
Conformance: BCC1, BCC2, ECC1, ECC2

13.4.3 System services

13.4.3.1 GetResource
Syntax: StatusType GetResource (ResourceType <ResID>)
Parameter (In):

ResID Reference to resource
Parameter (Out): none
Description: This call serves to enter critical sections in the code that are

assigned to the resource referenced by <ResID>. A critical
section must always be left using ReleaseResource.

Particularities: The OSEK priority ceiling protocol for resource management is
described in chapter 8.5.
Nested resource occupation is only allowed if the inner critical
sections are completely executed within the surrounding critical
section (strictly stacked, see chapter 8.2, Restrictions when
using resources). Nested occupation of one and the same
resource is also forbidden!
Corresponding calls to GetResource and ReleaseResource
should appear within the same function on the same function
level.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 59

Services which are points of rescheduling for non preemptable
tasks (TerminateTask, ChainTask, Schedule and WaitEvent,
see chapter 4.6.2) must not be used in critical sections.
Additionally, critical sections must be left before completion of
an interrupt service routine.
Generally speaking, critical sections should be short.
The service may be called from an ISR and from task level (see
Figure 12-1).

Status:
Standard: � No error, E_OK
Extended: � Resource <ResID> is invalid, E_OS_ID

� Attempt to get a resource which is already occupied by any task
or ISR, or the statically assigned priority of the calling task or
interrupt routine is higher than the calculated ceiling priority,
E_OS_ACCESS

Conformance: BCC1, BCC2, ECC1, ECC2

13.4.3.2 ReleaseResource
Syntax: StatusType ReleaseResource (ResourceType <ResID>)
Parameter (In):

ResID Reference to resource
Parameter (Out): none
Description: ReleaseResource is the counterpart of GetResource and

serves to leave critical sections in the code that are assigned to
the resource referenced by <ResID>.

Particularities: For information on nesting conditions, see particularities of
GetResource.
The service may be called from an ISR and from task level (see
Figure 12-1).

Status:
Standard: � No error, E_OK
Extended: � Resource <ResID> is invalid, E_OS_ID

� Attempt to release a resource which is not occupied by any task
or ISR, or another resource has to be released before,
E_OS_NOFUNC

� Attempt to release a resource which has a lower ceiling priority
than the statically assigned priority of the calling task or
interrupt routine, E_OS_ACCESS

Conformance: BCC1, BCC2, ECC1, ECC2

13.4.4 Constants
RES_SCHEDULER � Constant of data type ResourceType (see chapter 8, Resource

management).

OSEK/VDX Operating System
Specification 2.2.1

60 © by OSEK OSEK OS 2.2.1

13.5 Event control

13.5.1 Data types
EventMaskType

Data type of the event mask.

EventMaskRefType

Reference to an event mask.

13.5.2 Constructional elements

13.5.2.1 DeclareEvent
Syntax: DeclareEvent (<EventIdentifier>)
Parameter (In):

EventIdentifier Event identifier (C-identifier)
Description: DeclareEvent serves as an external declaration of an event.

The function and use of this service are similar to that of the
external declaration of variables.

Particularities: -
Conformance: ECC1, ECC2

13.5.3 System services

13.5.3.1 SetEvent
Syntax: StatusType SetEvent (TaskType <TaskID>

EventMaskType <Mask>)
Parameter (In):

TaskID Reference to the task for which one or several events are to be
set.

Mask Mask of the events to be set
Parameter (Out): none
Description: The service may be called from an interrupt service routine and

from the task level, but not from hook routines.
The events of task <TaskID> are set according to the event
mask <Mask>. Calling SetEvent causes the task <TaskID> to
be transferred to the ready state, if it was waiting for at least
one of the events specified in <Mask>.

Particularities: Any events not set in the event mask remain unchanged.
Status:

Standard: � No error, E_OK
Extended: � Task <TaskID> is invalid, E_OS_ID

� Referenced task is no extended task, E_OS_ACCESS
� Events can not be set as the referenced task is in the

suspended state, E_OS_STATE
Conformance: ECC1, ECC2

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 61

13.5.3.2 ClearEvent
Syntax: StatusType ClearEvent (EventMaskType <Mask>)
Parameter (In)

Mask Mask of the events to be cleared
Parameter (Out) none
Description: The events of the extended task calling ClearEvent are cleared

according to the event mask <Mask>.
Particularities: The system service ClearEvent is restricted to extended tasks

which own the event.
Status:

Standard: � No error, E_OK
Extended: � Call not from extended task, E_OS_ACCESS

� Call at interrupt level, E_OS_CALLEVEL
Conformance: ECC1, ECC2

13.5.3.3 GetEvent
Syntax: StatusType GetEvent (TaskType <TaskID>

EventMaskRefType <Event>)
Parameter (In):

TaskID Task whose event mask is to be returned.
Parameter (Out):

Event Reference to the memory of the return data.
Description: This service returns the current state of all event bits of the task

<TaskID>, not the events that the task is waiting for.
The service may be called from interrupt service routines, task
level and some hook routines (see Figure 12-1).
The current status of the event mask of task <TaskID> is
copied to <Event>.

Particularities: The referenced task must be an extended task.
Status:

Standard: � No error, E_OK
Extended: � Task <TaskID> is invalid, E_OS_ID

� Referenced task <TaskID> is not an extended task,
E_OS_ACCESS

� Referenced task <TaskID> is in the suspended state,
E_OS_STATE

Conformance: ECC1, ECC2

13.5.3.4 WaitEvent
Syntax: StatusType WaitEvent (EventMaskType <Mask>)
Parameter (In):

Mask Mask of the events waited for.
Parameter (Out): none
Description: The state of the calling task is set to waiting, unless at least one

of the events specified in <Mask> has already been set.

OSEK/VDX Operating System
Specification 2.2.1

62 © by OSEK OSEK OS 2.2.1

Particularities: This call enforces rescheduling, if the wait condition occurs. If
rescheduling takes place, the internal resource of the task is
released while the task is in the waiting state.
This service must only be called from the extended task owning
the event.

Status:
Standard: � No error, E_OK
Extended: � Calling task is not an extended task, E_OS_ACCESS

� Calling task occupies resources, E_OS_RESOURCE
� Call at interrupt level, E_OS_CALLEVEL

Conformance: ECC1, ECC2

13.6 Alarms

13.6.1 Data types
TickType

This data type represents count values in ticks.

TickRefType

This data type points to the data type TickType.

AlarmBaseType

This data type represents a structure for storage of counter characteristics. The individual
elements of the structure are:
maxallowedvalue � Maximum possible allowed count value in ticks
ticksperbase � Number of ticks required to reach a counter-specific (significant)

unit.
mincycle � Smallest allowed value for the cycle-parameter of

SetRelAlarm/SetAbsAlarm) (only for systems with extended
status).

All elements of the structure are of data type TickType.

AlarmBaseRefType

This data type points to the data type AlarmBaseType.

AlarmType

This data type represents an alarm object.

13.6.2 Constructional elements

13.6.2.1 DeclareAlarm
Syntax: DeclareAlarm (<AlarmIdentifier>)
Parameter (In):

AlarmIdentifier Alarm identifier (C-identifier)
Description: DeclareAlarm serves as external declaration of an alarm

element.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 63

Particularities: Conformance: BCC1, BCC2, ECC1, ECC2

13.6.3 System services

13.6.3.1 GetAlarmBase
Syntax: StatusType GetAlarmBase (AlarmType <AlarmID>,

AlarmBaseRefType <Info>)
Parameter (In):

AlarmID Reference to alarm
Parameter (Out):

Info Reference to structure with constants of the alarm base.
Description: The system service GetAlarmBase reads the alarm base

characteristics. The return value <Info> is a structure in which
the information of data type AlarmBaseType is stored.

Particularities: Allowed on task level, ISR, and in several hook routines (see
Figure 12-1).

Status:
Standard: � No error, E_OK
Extended: � Alarm <AlarmID> is invalid, E_OS_ID

Conformance: BCC1, BCC2, ECC1, ECC2

13.6.3.2 GetAlarm
Syntax: StatusType GetAlarm (AlarmType <AlarmID>

TickRefType <Tick>)
Parameter (In):

AlarmID Reference to an alarm
Parameter (Out):

Tick Relative value in ticks before the alarm <AlarmID> expires.
Description: The system service GetAlarm returns the relative value in ticks

before the alarm <AlarmID> expires.
Particularities: It is up to the application to decide whether for example a

CancelAlarm may still be useful.
If <AlarmID> is not in use, <Tick> is not defined.
Allowed on task level, ISR, and in several hook routines (see
Figure 12-1).

Status:
Standard: � No error, E_OK

� Alarm <AlarmID> is not used, E_OS_NOFUNC
Extended: � Alarm <AlarmID> is invalid, E_OS_ID

Conformance: BCC1, BCC2, ECC1, ECC2

13.6.3.3 SetRelAlarm
Syntax: StatusType SetRelAlarm (AlarmType <AlarmID>,

TickType <increment>,
TickType <cycle>)

OSEK/VDX Operating System
Specification 2.2.1

64 © by OSEK OSEK OS 2.2.1

Parameter (In):
AlarmID Reference to the alarm element
increment Relative value in ticks
cycle Cycle value in case of cyclic alarm. In case of single alarms,

cycle has to be zero.
Parameter (Out): none
Description: The system service occupies the alarm <AlarmID> element.

After <increment> ticks have elapsed, the task assigned to the
alarm <AlarmID> is activated or the assigned event (only for
extended tasks) is set or the alarm-callback routine is called.

Particularities: The behaviour of <increment> equal to 0 is up to the
implementation.
If the relative value <increment> is very small, the alarm may
expire, and the task may become ready or the alarm-callback
may be called before the system service returns to the user.
If <cycle> is unequal zero, the alarm element is logged on
again immediately after expiry with the relative value <cycle>.
The alarm <AlarmID> must not already be in use.
To change values of alarms already in use the alarm has to be
cancelled first.
If the alarm is already in use, this call will be ignored and the
error E_OS_STATE is returned.
Allowed on task level and in ISR, but not in hook routines.

Status:
Standard: � No error, E_OK

� Alarm <AlarmID> is already in use, E_OS_STATE
Extended: � Alarm <AlarmID> is invalid, E_OS_ID

� Value of <increment> outside of the admissible limits (lower
than zero or greater than maxallowedvalue), E_OS_VALUE

� Value of <cycle> unequal to 0 and outside of the admissible
counter limits (less than mincycle or greater than
maxallowedvalue), E_OS_VALUE

Conformance: BCC1, BCC2, ECC1, ECC2; Events only ECC1, ECC2

13.6.3.4 SetAbsAlarm
Syntax: StatusType SetAbsAlarm (AlarmType <AlarmID>,

TickType <start>,
TickType <cycle>)

Parameter (In):
AlarmID Reference to the alarm element
start Absolute value in ticks
cycle Cycle value in case of cyclic alarm. In case of single alarms,

cycle has to be zero.
Parameter (Out): none
Description: The system service occupies the alarm <AlarmID> element.

When <start> ticks are reached, the task assigned to the alarm

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 65

<AlarmID> is activated or the assigned event (only for extended
tasks) is set or the alarm-callback routine is called.

Particularities: If the absolute value <start> is very close to the current counter
value, the alarm may expire, and the task may become ready or
the alarm-callback may be called before the system service
returns to the user.
If the absolute value <start> already was reached before the
system call, the alarm will only expire when the absolute value
<start> will be reached again, i.e. after the next overrun of the
counter.
If <cycle> is unequal zero, the alarm element is logged on
again immediately after expiry with the relative value <cycle>.
The alarm <AlarmID> must not already be in use.
To change values of alarms already in use the alarm has to be
cancelled first.
If the alarm is already in use, this call will be ignored and the
error E_OS_STATE is returned.
Allowed on task level and in ISR, but not in hook routines.

Status:
Standard: � No error, E_OK

� Alarm <AlarmID> is already in use, E_OS_STATE
Extended: � Alarm <AlarmID> is invalid, E_OS_ID

� Value of <start> outside of the admissible counter limit (less
than zero or greater than maxallowedvalue), E_OS_VALUE

� Value of <cycle> unequal to 0 and outside of the admissible
counter limits (less than mincycle or greater than
maxallowedvalue), E_OS_VALUE

Conformance: BCC1, BCC2, ECC1, ECC2; Events only ECC1, ECC2

13.6.3.5 CancelAlarm
Syntax: StatusType CancelAlarm (AlarmType <AlarmID>)
Parameter (In):

AlarmID Reference to an alarm
Parameter (Out): none
Description: The system service cancels the alarm <AlarmID>.
Particularities: Allowed on task level and in ISR, but not in hook routines.

Status:
Standard: � No error, E_OK

� Alarm <AlarmID> not in use, E_OS_NOFUNC
Extended: � Alarm <AlarmID> is invalid, E_OS_ID

Conformance: BCC1, BCC2, ECC1, ECC2

13.6.4 Constants
For all counters, the return values of GetAlarmbase are also available as constants:
OSMAXALLOWEDVALUE_x � Maximum possible allowed value of counter x in ticks.

OSEK/VDX Operating System
Specification 2.2.1

66 © by OSEK OSEK OS 2.2.1

OSTICKSPERBASE_x � Number of ticks required to reach a specific unit of counter x.
OSMINCYCLE_x � Minimum allowed number of ticks for a cyclic alarm of counter

x.

Thus, if the counter name is known, it is not necessary to call GetAlarmBase.

There always exists at least one counter which is a time counter (system counter). The
constants of this counter are additionally accessible via the following constants:

OSMAXALLOWEDVALUE � Maximum possible allowed value of the system counter in ticks.
OSTICKSPERBASE � Number of ticks required to reach a specific unit of the system

counter.
OSMINCYCLE � Minimum allowed number of ticks for a cyclic alarm of the

system counter.

Additionally the following constant is supplied:
OSTICKDURATION � Duration of a tick of the system counter in nanoseconds.

13.6.5 Naming convention
Within the application, an alarm-callback is defined according to the following pattern:

ALARMCALLBACK (AlarmCallBackName)
{
}

13.7 Operating system execution control

13.7.1 Data types
AppModeType

This data type represents the application mode.

13.7.2 System services

13.7.2.1 GetActiveApplicationMode
Syntax AppModeType GetActiveApplicationMode (void)
Description: This service returns the current application mode. It may be

used to write mode dependent code.
Particularities: See chapter 5 for a general description of application modes.

Allowed for task, ISR and all hook routines.
Conformance: BCC1, BCC2, ECC1, ECC2

13.7.2.2 StartOS
Syntax void StartOS (AppModeType <Mode>)
Parameter (In):

Mode application mode

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 67

Parameter (Out): none
Description: The user can call this system service to start the operating

system in a specific mode, see chapter 5, Application modes.
Particularities: Only allowed outside of the operating system, therefore

implementation specific restrictions may apply. See also
chapter 11.3, System start-up, especially with respect to
systems where OSEK and OSEKtime coexist. This call does
not need to return.

Conformance: BCC1, BCC2, ECC1, ECC2

13.7.2.3 ShutdownOS
Syntax void ShutdownOS (StatusType <Error>)
Parameter (In):

Error error occurred
Parameter (Out): none
Description: The user can call this system service to abort the overall

system (e.g. emergency off). The operating system also calls
this function internally, if it has reached an undefined internal
state and is no longer ready to run.
If a ShutdownHook is configured the hook routine
ShutdownHook is always called (with <Error> as argument)
before shutting down the operating system.
If ShutdownHook returns, further behaviour of ShutdownOS is
implementation specific.
In case of a system where OSEK OS and OSEKtime OS
coexist, ShutdownHook must return.
<Error> must be a valid error code supported by OSEK OS. In
case of a system where OSEK OS and OSEKtime OS coexist,
<Error> might also be a value accepted by OSEKtime OS. In
this case, if enabled by an OSEKtime configuration parameter,
OSEKtime OS will be shut down after OSEK OS shutdown.

Particularities: After this service the operating system is shut down.
Allowed at task level, ISR level, in ErrorHook and StartupHook,
and also called internally by the operating system.
If the operating system calls ShutdownOS it never uses E_OK
as the passed parameter value.

Conformance: BCC1, BCC2, ECC1, ECC2

13.7.3 Constants
OSDEFAULTAPPMODE � Default application mode, always a valid parameter to StartOS.

OSEK/VDX Operating System
Specification 2.2.1

68 © by OSEK OSEK OS 2.2.1

13.8 Hook routines

13.8.1 Data Types
OSServiceIdType
This data type represents the identification of system services.

13.8.2 System services

13.8.2.1 ErrorHook
Syntax void ErrorHook (StatusType <Error>)
Parameter (In):

Error error occurred
Parameter (Out): none
Description: This hook routine is called by the operating system at the end

of a system service which returns StatusType not equal E_OK.
It is called before returning to the task level.
This hook routine is called when an alarm expires and an error
is detected during task activation or event setting.
The ErrorHook is not called, if a system service called from
ErrorHook does not return E_OK as status value. Any error by
calling of system services from the ErrorHook can only be
detected by evaluating the status value.

Particularities: See chapter 11.1 for general description of hook routines.
Conformance: BCC1, BCC2, ECC1, ECC2

13.8.2.2 PreTaskHook
Syntax void PreTaskHook (void)
Parameter (In): none
Parameter (Out): none
Description: This hook routine is called by the operating system before

executing a new task, but after the transition of the task to the
running state (to allow evaluation of the TaskID by GetTaskID).

Particularities: See chapter 11.1 for general description of hook routines.
Conformance: BCC1, BCC2, ECC1, ECC2

13.8.2.3 PostTaskHook
Syntax void PostTaskHook (void)
Parameter (In): none
Parameter (Out): none
Description: This hook routine is called by the operating system after

executing the current task, but before leaving the task's running
state (to allow evaluation of the TaskID by GetTaskID).

Particularities: See chapter 11.1 for general description of hook routines.
Conformance: BCC1, BCC2, ECC1, ECC2

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 69

13.8.2.4 StartupHook
Syntax void StartupHook (void)
Parameter (In): none
Parameter (Out): none
Description: This hook routine is called by the operating system at the end

of the operating system initialisation and before the scheduler is
running. At this time the application can initialise device drivers
etc.

Particularities: See chapter 11.1 for general description of hook routines.
Conformance: BCC1, BCC2, ECC1, ECC2

13.8.2.5 ShutdownHook
Syntax void ShutdownHook (StatusType <Error>)
Parameter (In):

Error error occurred
Parameter (Out): none
Description: This hook routine is called by the operating system when the

OS service ShutdownOS has been called. This routine is called
during the operating system shut down.

Particularities: ShutdownHook is a hook routine for user defined shutdown
functionality, see chapter 11.4.

Conformance: BCC1, BCC2, ECC1, ECC2

13.8.3 Constants
OSServiceId_xx � unique identifier of system service xx. Example:

OSServiceId_ActivateTask. OSServiceId_xx is of type
OSServiceIdType.

13.8.4 Macros
OSErrorGetServiceId � provides the service identifier where the error has been risen.

The service identifier is of type OsServiceIdType. Possible
values are OSServiceId_xx, where xx is the name of the system
service.

OSError_x1_x2 � names of macros to access (within ErrorHook) parameters of
the system service which called ErrorHook, where x1 is the
name of the system service and x2 is the parameter name.

OSEK/VDX Operating System
Specification 2.2.1

70 © by OSEK OSEK OS 2.2.1

14 Implementation and application specific topics
This chapter is neither normative nor mandatory. It provides information for implementers
and application programmers.

14.1 Implementation hints.
OSEK specifies an operating system interface and its functionality. Implementation aspects
are not prescribed. There is no restriction on the implementation of the operating system as
long as the implementation corresponds to any of the defined conformance classes.

14.1.1 Aspects of implementation
The range of automotive applications varies greatly such that no performance characteristics
of the operating system implementation can be specified, i.e. as to the execution time and
memory space required.

As a result,
� the OSEK operating system can be implemented with various degrees of efficiency.
� The linker needs only to link those objects and services of the operating system which

are actually used.
� the operating system used in a product (e.g. in a control unit's EPROM) cannot be de-

scribed as OSEK operating system, but as an operating system which conforms to an
OSEK operating system conformance class.

� the tool environment of the operating system configuration and initialisation is not part
of the operating system specification and therefore implementation-specific.

� commercial systems which provide the user with all OSEK operating system specific
services and their functionality via an OSEK adaptation layer, are also OSEK operating
system compliant. They are compliant irrespective of their actual suitability for control
units as regards the memory space they require and their processing speed.

The conformance class selected for application software is determined by the needs on
functionality and flexibility.

The real-time behaviour of the application software used with a specific hardware is also
defined by the quality of implementation.

14.1.2 Parameters of implementation
The operating system vendor provides a list of parameters specifying the implementation.
Detailed information is required concerning the functionality, performance and memory
demand. Furthermore the basic conditions to reproduce the measurement of those parameters
have to be mentioned, e.g. functionality, target CPU, clock speed, bus configuration, wait
states etc.

14.1.2.1 Functionality
� Maximum number of tasks
� Maximum number of not suspended tasks
� Maximum number of priorities

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 71

� Number of tasks per priority (for BCC2 and ECC2)
� Upper limit for number of task activations (must be "1" for BCC1 and extended tasks)
� Maximum number of events per task
� Limits for the number of alarm objects (per system / per task)
� Limits for the number of nested resources (per system / per task)
� Lowest priority level used internally by the OS

14.1.2.2 Hardware resources
� RAM and ROM requirement for each of the operating system components
� Size for each linkable module
� Application dependent RAM and ROM requirements for operating system data (e.g. bytes

RAM per task, RAM required per alarm, ...)
� Execution context of the operating system (e.g. size of OS internal tables)
� Timer units reserved for the OS
� Interrupts, traps and other hardware resources occupied by the operating system

14.1.2.3 Performance
� Total execution time for each service17

� OS start-up time (beginning of StartOS until execution of first task in standard mode)
without invoking hook routines

� Interrupt latency18 for ISRs of category 1 and 2
� Task switching times for all types of switching19

� Base load of system without applications running

All performance figures shall be stated as minimum and maximum (worst case) values.

14.1.2.4 Configuration of run time context
A run time context is assigned to each task. This refers to all memory resources of the task
which are occupied at the beginning of the execution time, and which are released again once
the task is terminated. Typically the run time context consists of some registers, a task control
block and a certain amount of stack to operate.

Depending on the design of tasks (e.g. type and preemptability) and depending on the
scheduling mechanism (non-, mixed- or full preemptive) the run time context may have
different sizes. Tasks which can never preempt each other may be executed in the same run
time context in order to achieve an efficient utilisation of the available RAM space.

17 The time of execution may depend on the current state of the system, e.g. there are different execution times of
"SetEvent" depending on the state of the task (waiting or ready). Therefore comparable results have to be
extracted from a common benchmark procedure.
18 Time between interrupt request and execution of the first instruction of user code inside the ISR. A
comparison of interrupt latencies of ISRs category 1 to ISRs category 2 specifies the operating system overhead.
19 Should be measured from the last user instruction of the preceding task to the first user instruction of the
following task so that all overhead is covered. Task switching time may be different for normal task termination,
termination forced by ChainTask(), preemptive task switch etc.

OSEK/VDX Operating System
Specification 2.2.1

72 © by OSEK OSEK OS 2.2.1

The operating system vendor should provide information about the implemented handling of
the run time context (e.g. one context per task or one context per priority level). Considering
this information the user may optimise the design of his application regarding RAM
requirements versus run time efficiency.

14.2 Application design hints
The purpose of this chapter is to provide additional information about possible problems
which might arise when designing applications for the OSEK operating system. Not all of the
consequences for the system design can be mentioned in the specification itself. Other design
hints result from the experience of current ECU applications.

14.2.1 Resource management
Some aspects are mentioned in this chapter in order to guarantee a proper handling of all
resources.

14.2.1.1 Occupation in LIFO order
Each access to a resource should be encapsulated with calls to the services GetResource and
ReleaseResource. Resources have to be released in reversed order of their occupation. The
following code sequence is incorrect because function foo is not allowed to release resource
res_1.

TASK(incorrect)
{

GetResource(res_1);
/* some code accessing resource res_1 */
...
foo();
...
ReleaseResource(res_2);

}

void foo()
{

GetResource(res_2);
/* code accessing resource res_2 */
...
ReleaseResource(res_1);

}
Nested resource occupations is allowed. The occupation of resources has to be performed in
strict LIFO order (stack principle). If the code accessing the resource as shown above is
preempted by a task with higher priority (higher than the ceiling priority of the resource),
another resource might be requested in that task leading to a nested resource occupation which
conforms to the LIFO order.

14.2.1.2 Call level of API-services
The OSEK API-services GetResource and ReleaseResource should be called from the same
functional call level. If function foo is corrected concerning the LIFO order of resource
occupation like:

void foo(void)
{

ReleaseResource(res_1);
GetResource(res_2);
/* some code accessing resource res_2 */
...

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 73

ReleaseResource(res_2);
}

there still may be a problem because ReleaseResource(res_1) is called on a different level than
GetResource(res_1). Calling the API services from different call levels might cause problems
in some implementations.

14.2.1.3 Resources still occupied at task termination or interrupt completion
The access to a resource should be encapsulated directly by the calls of GetResource and
ReleaseResource. Otherwise one might miss to release the resource and possibly terminate the
task.

GetResource(res_1);
...
switch (condition)
{

case CASE_1 :
do_something1();
ReleaseResource(res_1);
break;

case CASE_2 : /* !!! WRONG: no release of */
/* resource here !!! */

do_something2();
break;

default:
do_something3();
ReleaseResource(res_1);

}
...

If in standard status of the operating system a task terminates or in standard or extended status
an interrupt completes without releasing all of the occupied resources the resulting behaviour
is not defined by the specification. Depending on the implementation of the operating system
the resource may be locked forever since further accesses are rejected by the operating system.

14.2.2 Placement of API calls
For the same reasons as above mentioned in chapter 14.2.1.2 the placement of API services
TerminateTask and ChainTask is crucial for the operating system. Both services are used to
terminate the running task. Calling these services from a subroutine level of the task, the
operating system is responsible for a correct treatment of the stack when terminating the task.
One solution could be to store the position of the stack pointer at the entry point of the
running task and restore that value after terminating the task.

14.2.3 Interrupt service routines
The user has to be aware of some possible error cases when using ISRs of category 1 and 2 as
described in chapter 6.

14.2.3.1 Nested interrupts of different categories
Since all interrupts are of higher priority than the task levels, the processing of interrupts has
to be terminated before the system returns to task level. If an ISR of category 2 interrupts an
ISR of category 1 the system will continue processing of ISR1 after ISR2 terminates. Having
tasks activated or events set from interrupt level in ISR2 the operating system is not invoked
after termination of ISR1 in order to perform a rescheduling.

OSEK/VDX Operating System
Specification 2.2.1

74 © by OSEK OSEK OS 2.2.1

Interrupt

No OS call
at the end
of ISR 1

ISR of category 1
{

code without call to
an OS service

}

ISR of category 2
{

code with call to
an OS service
e.g.
ActivateTask();
SetEvent();

}

Figure 14-1 Nested interrupts

Because ISRs of category 1 do not run under control of the operating system the OS has no
possibility to perform a rescheduling when the ISR terminates. Thus any activities
corresponding to the calls of the operating system in the interrupting ISR2 are unbounded
delayed until the next rescheduling point.

As a result of the problems discussed above, each system should set up rules to avoid these
problems. There may be specific implementations which can avoid these problems, or the
application might have specific properties such that these problems can not occur (e.g. in non
preemptive systems). The rules must therefore take into account both the specific
implementations and the applications.

However, for maximal application portability, an easy rule of thumb which always works is
the following:

� all interrupts of category 1 have to have a higher or equal hardware priority compared with
interrupts of category 2.

14.2.3.2 Direct manipulation of interrupt levels
Direct manipulation of interrupt levels is not portable and restricted by the implementation.

14.2.4 Priority and preemption
Tasks are scheduled by the operating system according to their priority. A task is declared as
being preemptable / non preemptable (see chapter 4.6.2). The application has to treat these
two task attributes in a consistent manner to avoid conflicts in the run-time behaviour of the
system. Care has to be taken because non preemptable tasks of lower priority delay tasks of
higher priority.

Typically the preemption of a task is assigned when designing, whereas priority is configured
during system integration. Because many people are involved in larger software projects, the
development process has to be co-ordinated precisely. To achieve a well-defined run-time
behaviour of the system this co-ordination is crucial.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 75

14.2.5 Examples of usage of internal Resources
Besides for non preemptable tasks, internal resources can be used in a number of situations.

In general, they protect a group of tasks against being preempted by another task of the same
group, except if the running task within the group explicitly allows to be rescheduled by
calling Schedule, WaitEvent or TerminateTask/ChainTask. If for example all tasks of a group
call those functions only on first procedure level, stack of those tasks can be highly optimised.

An example - besides non preemptable tasks - is a concept sometimes referred to as ‘co-
operative tasks’, where the lowest priority tasks share the same internal resource and can
freely be preempted by higher priority tasks, but not among themselves.
This example can be extended by excluding the lowest priority of the system for usage as a
background task. This task would now again be preemptable by all tasks.

The concept of non preemptable tasks and co-operative tasks can be easily combined within
one system by using two different internal resources within one configuration.

Tasks which do not have an internal resource assigned are preemptable and act as described in
chapter 4.6.1, ‘Full preemptive scheduling’.

14.2.6 Parameter to pass to ShutdownOS
The parameter passed to ShutdownOS is also passed to the ShutdownHook. If the operating
system calls ShutdownHook, the passed parameter is an implementation dependent error
value. If the user calls ShutdownOS he/she has to use one of the existing OSEK OS error
numbers. If OSEKtime and OSEK coexist, an OSEKtime OS error number can also be passed.

It is strongly recommended to use the error number described in the implementation
documentation. If no specific error number for ShutdownOS is defined, it is possible to use
E_OK and to distinguish this way between operating system calls of ShutdownOS and
application calls.

14.2.7 Error handling
Errors in the application software are typically caused by:
� Errors on handling the operating system, i.e. incorrect configuration / initialisation /

dimensioning of the operating system or violations of restrictions regarding the
operating system service.

� Error in software design, e.g. inappropriate choice of task priorities, unprotected critical
sections, incorrect scaling of time, inefficient conceptual design of task organisation

 Test of implementation

 Breakpoints, traces and time stamps can be integrated individually into the application
software.

 Example: The user can set time stamps enabling him to trace the program execution at the
following locations before calling operating system services:
� When activating or terminating tasks.
� When setting or clearing events in the case of extended tasks.
� At explicit points of the schedule.
� At the beginning or the end of ISRs.
� When occupying and releasing resources or at critical locations.

OSEK/VDX Operating System
Specification 2.2.1

76 © by OSEK OSEK OS 2.2.1

Time monitoring

The operating system needs not include a time monitoring feature which ensures that each or
only, e.g. the lowest-priority task has been activated in any case after a defined maximum time
period.

The user can optionally use hook routines or establish a watchdog task that takes "one-shot
displays" of the operating system status.

Constructional elements
Constructional elements (e.g. DeclareTask) were introduced in OSEK OS as means to create
references to system objects used in the application. Like external declarations constructors
would be placed at the beginning of source files. With respect to the implementation they can
be implemented as macros. With the definition of OIL most implementations do not need
them any more. However they are still kept for compatibility.

14.2.8 Errors and warnings
Most of the error values of system services point to application errors. However, in some
special cases error values indicate warnings which might come up during normal operation.
These cases are:

� ActivateTask, ChainTask E_OS_LIMIT (standard)
� GetAlarm E_OS_NOFUNC (standard)
� SetAbsAlarm, SetRelAlarm E_OS_STATE (standard)
� CancelAlarm E_OS_NOFUNC (standard)
Especially when implementing a central error handling using ErrorHook, this has to be taken
into account.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 77

14.3 Implementation specific tools
When buying or writing portable code one has to be aware of the different implementation
tools on the market. This has an impact, on what kind of documentation has to go in parallel
with the code.

Linker

Compiler

Executable

include OSEK.x

Declarations

User-

program

Version A

Generation

ToolUser-

program

Compiler Compiler

Linker

Executable

Version B

Figure 14-2 Implementation specific tools

The example here shows two possible implementations of a tool chain:
� Version A, with all declarations related to task properties etc. within the code
� Version B, using a separate generation tool for these task properties etc.

 For definitions which should be supplied with portable code please consult the OIL
specification.

OSEK/VDX Operating System
Specification 2.2.1

78 © by OSEK OSEK OS 2.2.1

15 Changes from specification 1.0 to 2.2

15.1 Changes from specification 1.0 to 2.0r1
This chapter mentions all changes in the concept and the API of the OSEK operating system,
with explanation for the reason of change.

15.1.1 Conceptual changes

15.1.1.1 Conformance classes
This chapter refers to chapter 3.2 Conformance classes.

The OSEK OS specification version 2.0 now supports only four conformance classes instead
of five (as in version 1.0). Also the CCs are renamed, so for example ECC1 (version 1.0) has
other features than ECC1 (version 2.0). The experience of working with version 1.0 has
shown that the four CCs of version 2.0 will better meet application requirements.

Changes in detail are:

� Multiple requesting of task activation for extended tasks is not supported. That is only
allowed for basic tasks.

� The number of multiple requesting of task activation is an attribute of the basic task and no
requirement of the conformance class.

� The conformance classes of version 2.0 are no longer strictly upward compatible.

15.1.1.2 Messages
Specification version 2.0 does not support communication via messages. All message services
are part of the communication specification and therefore described in the OSEK COM
specification.

15.1.1.3 Multiple requesting of task activation
This chapter refers to chapter 4.3, Activating a task.

In version 1.0 the order of activation in case of multiple request was not explicitly defined but
up to the implementation. In version 2.0 it is clearly defined that activations are queued in a
FIFO structure according to the order of requesting.

15.1.1.4 Application modes
This chapter refers to chapter 5, Application modes.

For some applications it should be useful to have different application modes depending on
external conditions.

15.1.1.5 Counters
The API for counters has been removed (see chapter 9.1, Counters). In version 1.0 access to
counters was allowed for the application. This feature is strongly depending on the underlying
hardware. Therefore the API services for counters are cancelled in version 2.0. The API
services for alarms are still available.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 79

15.1.1.6 Hook routines
This chapter refers to chapter 11.1 Hook routines.

The naming of hook routines changed from OSxxxx to xxxxHook.

In version 2.0 two additional hook routines StartupHook (see chapter 13.8.2.4) and
ShutdownHook (see chapter 13.8.2.5) are introduced. This feature offers the possibility of user
defined start-up and shutdown.

15.1.1.7 OS execution control
In version 2.0 of the OSEK OS specification two new API services are introduced, StartOS
(see chapter 13.7.2.1) and ShutdownOS (see chapter 13.7.2.3). With these two services, the
user can start-up and shutdown the overall system.

15.1.2 Clarifications

15.1.2.1 Scheduling of non preemptable tasks
When a non preemptable task is preempted by calling the scheduler, the task context is saved.
If the task is assigned to the processor again, the task will continue at the point of preemption
and will not be restarted from the beginning.

15.1.2.2 Services available on which level
In version 2.0 two tables are specifying which service is available on interrupt level, on task
level and in which hook routine.

15.1.2.3 Interrupt processing
In version 2.0 the ISR category 3 is mandatory and not optional any more.

15.1.2.4 Priority ceiling
This chapter refers to chapter 8.5, OSEK Priority Ceiling Protocol.

In version 2.0, the ceiling priority of a resource is defined exactly as:
a) identical or higher to the highest task priority with access to this resource (e.g. TaskX)
and
b) lower than the priority off all other of higher priority than that task (TaskX).

15.1.2.5 Types and constants
In version 2.0 the type TaskType is specified. The following types are defined:
� TaskType: identifies a task
� TaskRefType: points to a variable of TaskType
� TaskStateType: identifies the state of a task
� TaskStateRefType: points to a variable of TaskStateType

15.1.2.6 Naming conventions
In version 2.0 the macro TASK has got a new meaning (see chapter 13.2.5). This change was
necessary because the old version of TASK had a drawback; the user was forced to define a
name for the task function and was not allowed to use the name as task name.

OSEK/VDX Operating System
Specification 2.2.1

80 © by OSEK OSEK OS 2.2.1

TASK TaskFuncName (void)
{ /* Task function for the Task "TaskName" */
 /* The name "TaskFuncName" must NOT be used as a task name */
}

15.1.3 Changes of the documentation

15.1.3.1 Document structure
The specification documentation of version 1.0 consists of two documents, the "concept" and
the "API". In version 2.0 these two papers are integrated into this one, called OSEK OS
specification.

15.1.3.2 New chapters
Portability of application software (paragraph in chapter 1.1)

This new chapter regards aspects of portability of OSEK software.

Implementation and application specific topics (see chapter 14)

This new chapter gives hints for implementing an OSEK operating system.

15.1.3.3 Removed chapters
Chapter messages

The message concept is described in the OSEK COM specification. Therefore the message
parts are removed.

System generation

All questions of system generation are described in an extra paper called OIL specification
(OIL = OSEK Implementation Language). Several references to that paper are made
throughout this document.

15.2 Changes from specification 2.0r1 to 2.1 and 2.1r1
Most changes appeared from 2.0r1 to 2.1. Changes from 2.1 to 2.1r1 are specifically marked.

A lot of wording within the document has been changed for clarification and to improve
readability (2.1 and 2.1r1). The document structure was also changed for the same reason.
These changes are not explicitly mentioned in this section, but only changes in the concept
and the API of the OSEK operating system.

15.2.1 Behaviour of ChainTask/TerminateTask with allocated resources is
undefined.
In 2.0r1 the behaviour was not undefined but only the occupation of the resource was. As this
is a clear application error resulting in unsafe behaviour it was not considered useful to define
part of the behaviour in case of serious errors.

15.2.2 GetTaskID is allowed in ISRs.
As GetTaskState was allowed in ISRs and hook routines, and GetTaskID was already allowed
in hook routines, it seemed inconsistent and problematic not to allow it in ISRs.

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 81

15.2.3 Interrupt handling has been clarified and extended.
� Support for interrupts of category 3 is optional.
� Clarification that EnableInterrupt/DisableInterrupt manipulates interrupt sources and that

the InterruptDescriptor is global.
� Added functions DisableAllInterrupts/EnableAllInterrupts.
� Added functions SuspendOSInterrupts/ResumeOSInterrupts.
� Optional extension of resources to interrupts (including the concept of interrupt priorities).

15.2.4 Error checking of GetResource/ReleaseResource have been modified.
The definition in 2.0r1 was incomplete and the extension of the resource concept to ISRs
required this change.

15.2.5 Added constant OSTICKSPERBASE.
There have been constants for two of the three values returned by GetAlarmBase for a single
system counter. The missing third one was added for completeness.

15.2.6 ShutdownOS is allowed in ISRs and certain hook routines.
ShutdownOS is meant to be called by the application in case of fatal errors. As such errors are
likely to be discovered in ISRs or hooks (e.g. ErrorHook) it was considered dangerous to
prevent the application from immediately shutting down the operating system.

15.2.7 Behaviour of ShutdownOS after ShutdownHook returns is
implementation defined.
Version 2.0r1 of the specification was inconsistent in this point.

15.2.8 Added constant OSDEFAULTAPPMODE.
This constant was added to increase portability of applications.

15.2.9 ErrorHook is never called recursively.
Recursive calling of ErrorHook possibly leads to unbounded recursion and was considered too
dangerous.

15.2.10 Local Messages added to specification.
Intra processor message handling (refer to conformance class CCCA/CCAB as defined in the
OSEK Communication Specification) has been added.

15.2.11 Startup/shutdown when OSEK and OSEKtime coexist (2.1r1)
In case OSEK OS coexists with OSEKtime, restrictions have been added to the startup and the
shutdown procedure of the system. Especially, ShutdownHook must return.

15.3 Changes from specification 2.1r1 to 2.2/2.2.1 (ISO version)
This chapter lists all changes introduced in order to transform the OSEK OS V2.1r1
specification into OSEK OS V2.2. Version 2.2 serves as a base for ISO 17356-3.20

20 The editorial changes done during ISO standardisation have been integrated in version 2.2.1.

OSEK/VDX Operating System
Specification 2.2.1

82 © by OSEK OSEK OS 2.2.1

A lot of wording within the document has been changed for clarification and to improve
readability. The document structure has been changed for the same reason. These changes are
not explicitly mentioned in this section, but only changes in the concept and the API of the
OSEK operating system.

15.3.1 Add alarm-callbacks to alarms
Beside task activation or event setting, an alarm may now be alternatively linked to an alarm-
callback routine which is executed when the alarm expires. See chapter 9.3.

15.3.2 Interrupt handling: changes to functionality
� Category 3 interrupts have been removed, category 1 and 2 interrupts remain unchanged.

� All system services and system objects for interrupt descriptors have been removed.

� Add SuspendAllInterrupts/ResumeAllInterrupts, see chapter 6, chapter 13.3.2.3 and
chapter 13.3.2.4.

� Allow system service calls in category 1 interrupts, see Figure 12-1.

15.3.3 Scheduling: add internal resources
� A new concept extending the existing resource concept has been introduced to generalise

non preemptable tasks.

� In this context, Schedule was modified (new status in standard mode). See chapter 8.7,
4.6.3 and 14.2.5.

15.3.4 Error handling
� The interface to hook routines is now standardised, implementation specific extensions to

the interface are no longer allowed.

� Add additional information to ErrorHook: a mechanism for passing additional information
to ErrorHook has been defined, as well as what part of this information is mandatory.

� Remove “mild” errors from chapter Error characteristics: replace mild error by warning in
the specification (chapter 12.2.3). Warnings are defined as return values not equal to
E_OK in standard mode.

� Add E_OS_LIMIT to ActivateTask and ChainTask in standard mode, see chapter 13.2.3.1
and 13.2.3.3.

15.3.5 Miscellaneous
� Enhanced application mode functionality (AUTOSTART feature)

Tasks and now also alarms can be started automatically depending on the application
mode, see chapter 5. Contrarily, functionality within StartupHook has been restricted.

� Changed minimal requirements for OSEK OS implementations in Figure 3-3.
Number for task priorities for ECC1/2 has been changed and internal resources have been
added.

� Add linked resources
See chapter 8.1, 8.5 and 8.6.

� Add additional constants to access properties of counters, see chapter 13.6.4

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 83

16 Index
ActivateTask ... 50
AlarmBaseRefType................................. 62
AlarmBaseType 62
alarm-callback... 37
ALARMCALLBACK............................. 66
alarms.. 36
AlarmType .. 62
AppModeType .. 66
CancelAlarm ... 65
ChainTask ... 51
ClearEvent... 61
conformance class 13
counters ... 36
DeclareAlarm.. 62
DeclareEvent... 60
DeclareResource 58
DeclareTask .. 50
DisableAllInterrupts................................ 55
E_OS_ACCESS...................................... 49
E_OS_CALLEVEL................................. 49
E_OS_ID... 49
E_OS_LIMIT .. 49
E_OS_NOFUNC..................................... 49
E_OS_RESOURCE................................ 49
E_OS_STATE .. 49
E_OS_SYS_PARITY 49
E_OS_SYS_STACK 49
E_OS_VALUE 49
EnableAllInterrupts................................. 54
ErrorHook ... 68
EventMaskRefType 60
EventMaskType 60
GetActiveApplicationMode.................... 66
GetAlarm... 63
GetAlarmBase... 63
GetEvent ... 61
GetResource.. 58
GetTaskID... 53
GetTaskState ... 53
INVALID_TASK.................................... 54
ISR .. 58
maxallowedvalue 62
message ... 38
mincycle .. 62

multiple requesting..................................19
OSDEFAULTAPPMODE.......................67
OSError ...69
OSErrorGetServiceId69
OSMAXALLOWEDVALUE66
OSMINCYCLE66
OSServiceId...69
OSServiceIdType68
OSTICKDURATION..............................66
OSTICKSPERBASE...............................66
PostTaskHook ...68
PreTaskHook...68
READY ...54
ReleaseResource......................................59
RES_SCHEDULER59
rescheduling...22
ResourceType..58
ResumeAllInterrupts55
ResumeOSInterrupts56
RUNNING...54
Schedule ..52
SetAbsAlarm ...64
SetEvent ..60
SetRelAlarm..63
ShutdownHook..69
ShutdownOS..67
StartOS ..66
StartupHook ..69
StatusType ...48
SuspendAllInterrupts...............................56
SUSPENDED..54
SuspendOSInterrupts...............................57
TASK ..54
TaskRefType ...49
TaskStateRefType49
TaskStateType ...49
TaskType ...49
TerminateTask...51
TickRefType..62
ticksperbase ...62
TickType ...62
WaitEvent..61
WAITING..54

OSEK/VDX Operating System
Specification 2.2.1

84 © by OSEK OSEK OS 2.2.1

16.1 List of figures

Figure 1-1 Software interfaces inside ECU.. 7
Figure 3-1 Processing levels of the OSEK operating system... 12
Figure 3-2 Restricted upward compatibility for conformance classes 14
Figure 3-3 The minimum requirements for Conformance Classes 14
Figure 4-1 Extended task state model .. 17
Figure 4-2 States and status transitions for extended tasks .. 17
Figure 4-3 Basic task state model... 18
Figure 4-4 States and status transitions for basic tasks .. 18
Figure 4-5 Scheduler: order of events .. 20
Figure 4-6 Full preemptive scheduling... 21
Figure 4-7 Non preemptive scheduling .. 22
Figure 6-1 ISR categories of the OSEK operating system ... 25
Figure 7-1 Synchronisation of preemptable extended tasks ... 28
Figure 7-2 Synchronisation of non preemptable extended tasks .. 28
Figure 8-1 Priority inversion on occupying semaphores .. 30
Figure 8-2 Deadlock situation using semaphores... 31
Figure 8-3 Resource assignment with priority ceiling between preemptable tasks............ 32
Figure 8-4 Resource assignment with priority ceiling between preemptable tasks and

interrupt services routines. ... 33
Figure 8-5 Resource assignment with priority ceiling between interrupt services routines34
Figure 9-1 Layered model of alarm management... 37
Figure 11-1 Example of centralised error handling (extended status).................................. 41
Figure 11-2 System start-up ... 42
Figure 11-3 PreTaskHook and PostTaskHook ... 43
Figure 12-1 API service restrictions... 45
Figure 14-1 Nested interrupts... 74
Figure 14-2 Implementation specific tools... 77

OSEK/VDX Operating System
Specification 2.2.1

OSEK OS 2.2.1 © by OSEK 85

17 History
Version Date Remarks
1.0 11. Sept. 1995 Authors:

Thomas Wollstadt Adam Opel AG
Wolfgang Kremer BMW AG
Jochem Spohr Daimler-Benz AG
Stephan Steinhauer Daimler-Benz AG
Thomas Thurner Daimler-Benz AG
Karl Joachim Neumann University of Karlsruhe
Helmar Kuder Mercedes-Benz AG
François Mosnier Renault SA
Dietrich Schäfer-Siebert Robert Bosch GmbH
Jürgen Schiemann Robert Bosch GmbH
Reiner John Siemens AG

2.0 02. June 1997 Authors:
Wolfgang Kremer BMW AG
Salvatore Parisi Centro Ricerche Fiat
Andree Zahir ETAS GmbH & Co KG
Stephan Steinhauer Daimler-Benz AG
Jochem Spohr ATM Computer GmbH
Jan Söderberg Delco
Piero Mortara Magneti Marelli
Helmar Kuder Mercedes-Benz AG
Bob France Motorola SPS
Kenji Suganuma Nippondenso co., ltd
Stefan Poledna Robert Bosch AG
Gerhard Göser Siemens Automotive SA
Georg Weil Siemens Automotive SA
Alain Calvy Siemens Automotive SA
Karl Westerholz Siemens Semiconductors
Jürgen Meyer Softing GmbH
Ansgar Maisch University of Karlsruhe

2.0 revision 1 15. October 1997 Authors see version 2.0

OSEK/VDX Operating System
Specification 2.2.1

86 © by OSEK OSEK OS 2.2.1

2.1 22. May 2000 Authors:
Manfred Geischeder BMW
Klaus Gresser BMW
Adam Jankowiak DaimlerChrysler
Jochem Spohr DaimlerChrysler
Andree Zahir ETAS
Markus Schwab Infineon
Erik Svenske Mecel
Maxim Tchervinsky Motorola
Ken Tindell NRTA
Gerhard Göser Siemens Automotive
Carsten Thierer University of Karlsruhe
Winfried Janz Vector Informatik
Volker Barthelmann 3Soft

2.1 revision 1 13. November 2000 Authors:
OSEK OS WG/OSEKtime WG
compiled by: Jochem Spohr DaimlerChrysler

2.2 10. September 2001 Authors:
OSEK OS/ISO WG

2.2.1 16. January 2003 Authors:
integration of editorial changes to ISO 17356-3
compiled by: Jochem Spohr IMH

	This document is an official release and replaces all previously distributed documents. The OSEK group retains the right to make changes to this document without notice and does not accept any liability for errors.�All rights reserved. No part of this do
	Introduction
	System philosophy
	Purpose of this document
	Structure of this document

	Summary
	Architecture of the OSEK operating system
	Processing levels
	Conformance classes
	Relationship between OSEK OS and OSEKtime OS

	Task management
	Task concept
	Task state model
	Extended tasks
	Basic tasks
	Comparison of the task types

	Activating a task
	Task switching mechanism
	Task priority
	Scheduling policy
	Full preemptive scheduling
	Non preemptive scheduling
	Groups of tasks
	Mixed preemptive scheduling
	Selecting the scheduling policy

	Termination of tasks

	Application modes
	Scope of application modes
	Start up performance
	Support for application modes

	Interrupt processing
	Event mechanism
	Resource management
	Behaviour during access to occupied resources
	Restrictions when using resources
	Scheduler as a resource
	General problems with synchronisation mechanisms
	Explanation of priority inversion
	Deadlocks

	OSEK Priority Ceiling Protocol
	OSEK Priority Ceiling Protocol with extensions for interrupt levels
	Internal Resources

	Alarms
	Counters
	Alarm management
	Alarm-callback routines

	Messages
	Error handling, tracing and debugging
	Hook routines
	Error handling
	System start-up
	System shutdown
	Debugging

	Description of system services
	Definition of system objects
	Conventions
	Type of calls
	Legitimacy of calls
	Error characteristics

	Specification of operating system services
	Common data types
	Task management
	Data types
	Constructional elements
	DeclareTask

	System services
	ActivateTask
	TerminateTask
	ChainTask
	Schedule
	GetTaskID
	GetTaskState

	Constants
	Naming convention

	Interrupt handling
	Data types
	System services
	EnableAllInterrupts
	DisableAllInterrupts
	ResumeAllInterrupts
	SuspendAllInterrupts
	ResumeOSInterrupts
	SuspendOSInterrupts

	Naming convention

	Resource management
	Data types
	Constructional elements
	DeclareResource

	System services
	GetResource
	ReleaseResource

	Constants

	Event control
	Data types
	Constructional elements
	DeclareEvent

	System services
	SetEvent
	ClearEvent
	GetEvent
	WaitEvent

	Alarms
	Data types
	Constructional elements
	DeclareAlarm

	System services
	GetAlarmBase
	GetAlarm
	SetRelAlarm
	SetAbsAlarm
	CancelAlarm

	Constants
	Naming convention

	Operating system execution control
	Data types
	System services
	GetActiveApplicationMode
	StartOS
	ShutdownOS

	Constants

	Hook routines
	Data Types
	System services
	ErrorHook
	PreTaskHook
	PostTaskHook
	StartupHook
	ShutdownHook

	Constants
	Macros

	Implementation and application specific topics
	Implementation hints.
	Aspects of implementation
	Parameters of implementation
	Functionality
	Hardware resources
	Performance
	Configuration of run time context

	Application design hints
	Resource management
	Occupation in LIFO order
	Call level of API-services
	Resources still occupied at task termination or interrupt completion

	Placement of API calls
	Interrupt service routines
	Nested interrupts of different categories
	Direct manipulation of interrupt levels

	Priority and preemption
	Examples of usage of internal Resources
	Parameter to pass to ShutdownOS
	Error handling
	Errors and warnings

	Implementation specific tools

	Changes from specification 1.0 to 2.2
	Changes from specification 1.0 to 2.0r1
	Conceptual changes
	Conformance classes
	Messages
	Multiple requesting of task activation
	Application modes
	Counters
	Hook routines
	OS execution control

	Clarifications
	Scheduling of non preemptable tasks
	Services available on which level
	Interrupt processing
	Priority ceiling
	Types and constants
	Naming conventions

	Changes of the documentation
	Document structure
	New chapters
	Removed chapters

	Changes from specification 2.0r1 to 2.1 and 2.1r1
	Behaviour of ChainTask/TerminateTask with allocated resources is undefined.
	GetTaskID is allowed in ISRs.
	Interrupt handling has been clarified and extended.
	Error checking of GetResource/ReleaseResource have been modified.
	Added constant OSTICKSPERBASE.
	ShutdownOS is allowed in ISRs and certain hook routines.
	Behaviour of ShutdownOS after ShutdownHook returns is implementation defined.
	Added constant OSDEFAULTAPPMODE.
	ErrorHook is never called recursively.
	Local Messages added to specification.
	Startup/shutdown when OSEK and OSEKtime coexist (2.1r1)

	Changes from specification 2.1r1 to 2.2/2.2.1 (ISO version)
	Add alarm-callbacks to alarms
	Interrupt handling: changes to functionality
	Scheduling: add internal resources
	Error handling
	Miscellaneous

	Index
	List of figures

	History

